Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Synthesis, Characterization, and In vitro Evaluation of Short Cationic Peptides for Gene Delivery Vehicle Candidate

Author(s): Ace Tatang Hidayat, Rani Maharani*, Anis Yohana Chaerunisaa, Fifi Fitriyah Masduki, Reza Aditama, Heri Setiawan and Tarwadi Tarwadi*

Volume 20, Issue 3, 2024

Published on: 24 July, 2023

Article ID: e070623217759 Pages: 11

DOI: 10.2174/1573407219666230607142441

Price: $65

Abstract

Background: Amongst gene delivery vehicles, peptide-based vectors have drawn the intensive attraction of experts globally due to their simplicity and many advantages due to ease in design, biocompatibility, and safety. Rationally designed peptides are capable of condensing DNA molecules efficiently and facilitating gene expression in the target cells.

Objective: This study aims to design, synthesize and evaluate short cationic peptides composed of several positively charges amino acids of lysine (K) and arginine (R) for gene delivery vehicle candidates.

Methods: The short cationic peptides of PKKKRKV (P1), CHSPKKKRKV (P2), and YGRKKRRQRRR (P3) were synthesized using a solid-phase method on 2-chlorotrityl chloride resin. The crude peptides were purified using RP-HPLC and characterized by HR-TOF-ESI-MS and 1H-NMR. The capability of the peptides to condense DNA was evaluated by ethidium bromide exclusion assay. Cytotoxicity study of the peptides was carried out in HEK-293T, CHO-K1, and HepG2 cells using MTT assay. Gene expression facilitated by the peptides was determined in the HEK-293T.

Results: The peptides were successfully synthesized with high purity (> 90%) and in a high consistency with the synthetic products, as shown by the spectroscopic data. Physicochemical and biological evaluation showed that the cationic peptides are capable of condensing DNA molecule and have low cytotoxicity to the cells of HEK-293T, CHO-K1, and HepG2. Moreover, the cationic peptides facilitated gene delivery of green fluorescence protein more efficiently compared to PLL.

Conclusion: The short cationic peptides rich in lysine and arginine have been successfully synthesized using solid-phase peptide synthesis method. They were found to be capable of condensing DNA, have low cytotoxicity, and facilitate gene delivery. However, structure modification or formulation of cationic peptide with lipid components to form cationic liposome is still needed to enhance transgene expression by these peptides.

Graphical Abstract

[1]
Thapa, R.K.; Sullivan, M.O. Gene delivery by peptide-assisted transport. Curr. Opin. Biomed. Eng., 2018, 7, 71-82.
[http://dx.doi.org/10.1016/j.cobme.2018.10.002] [PMID: 30906908]
[2]
Loughran, S.P.; McCrudden, C.M.; McCarthy, H.O. Designer peptide delivery systems for gene therapy. Eur. J. Nanomed., 2015, 7(2), 85-96.
[http://dx.doi.org/10.1515/ejnm-2014-0037]
[3]
Arabi, F.; Mansouri, V.; Ahmadbeigi, N. Gene therapy clinical trials, where do we go? An overview. Biomed. Pharmacother., 2022, 153, 113324.
[http://dx.doi.org/10.1016/j.biopha.2022.113324] [PMID: 35779421]
[4]
Zylberberg, C.; Gaskill, K.; Pasley, S.; Matosevic, S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther., 2017, 24(8), 441-452.
[http://dx.doi.org/10.1038/gt.2017.41] [PMID: 28504657]
[5]
Bishop, C.J.; Majewski, R.L.; Guiriba, T.R.M.; Wilson, D.R.; Bhise, N.S.; Quiñones-Hinojosa, A.; Green, J.J. Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater., 2016, 37, 120-130.
[http://dx.doi.org/10.1016/j.actbio.2016.03.036] [PMID: 27019146]
[6]
Trabulo, S.; Cardoso, A.L.; Mano, M.; De Lima, M.C.P. Cell-penetrating peptides-mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals (Basel), 2010, 3(4), 961-993.
[http://dx.doi.org/10.3390/ph3040961] [PMID: 27713284]
[7]
Zhu, P.; Jin, L. Cell penetrating peptides: A promising tool for the cellular uptake of macromolecular drugs. Curr. Protein Pept. Sci., 2018, 19(2), 211-220.
[PMID: 28699510]
[8]
Kato, T.; Yamashita, H.; Misawa, T.; Nishida, K.; Kurihara, M.; Tanaka, M.; Demizu, Y.; Oba, M. Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorg. Med. Chem., 2016, 24(12), 2681-2687.
[http://dx.doi.org/10.1016/j.bmc.2016.04.031] [PMID: 27132868]
[9]
Oba, M.; Kato, T.; Furukawa, K.; Tanaka, M. A cell-penetrating peptide with a guanidinylethyl amine structure directed to gene delivery. Sci. Rep., 2016, 6(1), 19913.
[http://dx.doi.org/10.1038/srep19913] [PMID: 26814673]
[10]
Khalil, I.A.; Kimura, S.; Sato, Y.; Harashima, H. Synergism between a cell penetrating peptide and a pH-sensitive cationic lipid in efficient gene delivery based on double-coated nanoparticles. J. Control. Release, 2018, 275, 107-116.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.016] [PMID: 29452131]
[11]
Cherkupally, P.; Acosta, G.A.; Ramesh, S.; De la Torre, B.G.; Govender, T.; Kruger, H.G.; Albericio, F. Solid-phase peptide synthesis (SPPS), C-terminal vs. side-chain anchoring: A reality or a myth. Amino Acids, 2014, 46(8), 1827-1838.
[http://dx.doi.org/10.1007/s00726-014-1746-7] [PMID: 24770904]
[12]
Amblard, M.; Fehrentz, J.A.; Martinez, J.; Subra, G. Methods and protocols of modern solid phase peptide synthesis. Mol. Biotechnol., 2006, 33(3), 239-254.
[http://dx.doi.org/10.1385/MB:33:3:239] [PMID: 16946453]
[13]
Nilsson, B.L.; Soellner, M.B.; Raines, R.T. Chemical synthesis of proteins. Annu. Rev. Biophys. Biomol. Struct., 2005, 34(1), 91-118.
[http://dx.doi.org/10.1146/annurev.biophys.34.040204.144700] [PMID: 15869385]
[14]
Chan, W.C.; White, P.D. Fmoc solid phase peptide synthesis. Oxford University Press: Nottingham , 2000.
[15]
García-Martín, F.; Bayó-Puxan, N.; Cruz, L.J.; Bohling, J.C.; Albericio, F. Chlorotrityl Chloride (CTC) resin as a reusable carboxyl protecting group. QSAR Comb. Sci., 2007, 26(10), 1027-1035.
[http://dx.doi.org/10.1002/qsar.200720015]
[16]
Chen, X.T.; Wang, J.Y.; Ma, Y.N.; Dong, L.Y.; Jia, S.X.; Yin, H.; Fu, X.Y.; Du, S.S.; Qi, Y.K.; Wang, K. DIC/Oxyma‐based accelerated synthesis and oxidative folding studies of centipede toxin RHTX. J. Pept. Sci., 2022, 28(3), e3368.
[http://dx.doi.org/10.1002/psc.3368] [PMID: 34514664]
[17]
Hyde, C.; Johnson, T.; Owen, D.; Quibell, M.; Sheppard, R.C. Some ‘difficult sequences’ made easy. Int. J. Pept. Protein Res., 1994, 43(5), 431-440.
[http://dx.doi.org/10.1111/j.1399-3011.1994.tb00541.x] [PMID: 8070966]
[18]
Paradís-Bas, M.; Tulla-Puche, J.; Albericio, F. The road to the synthesis of “difficult peptides”. Chem. Soc. Rev., 2016, 45(3), 631-654.
[http://dx.doi.org/10.1039/C5CS00680E] [PMID: 26612670]
[19]
Isidro-Llobet, A.; Álvarez, M.; Albericio, F. Amino acid-protecting groups. Chem. Rev., 2009, 109(6), 2455-2504.
[http://dx.doi.org/10.1021/cr800323s] [PMID: 19364121]
[20]
Martin, M.E.; Rice, K.G. Peptide-guided gene delivery. AAPS J., 2007, 9(1), E18-E29.
[http://dx.doi.org/10.1208/aapsj0901003] [PMID: 17408236]
[21]
Tarwadi, T.; Jazayeri, J.A.; Prankerd, R.J.; Pouton, C.W. Preparation and in vitro evaluation of novel lipopeptide transfection agents for efficient gene delivery. Bioconjug. Chem., 2008, 19(4), 940-950.
[http://dx.doi.org/10.1021/bc700463q] [PMID: 18333604]
[22]
Mann, A.; Shukla, V.; Khanduri, R.; Dabral, S.; Singh, H.; Ganguli, M. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol. Pharm., 2014, 11(3), 683-696.
[http://dx.doi.org/10.1021/mp400353n] [PMID: 24476132]
[23]
van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol., 2011, 731, 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20] [PMID: 21516412]
[24]
Kichler, A.; Mason, A.J.; Marquette, A.; Bechinger, B.; Singh, H.; Ganguli, M. Histidine-rich cationic amphipathic peptides for plasmid DNA and siRNA delivery. Methods Mol. Biol., 2013, 948, 85-103.
[http://dx.doi.org/10.1007/978-1-62703-140-0_7] [PMID: 23070765]
[25]
Saxena, V. Preparation and physical characterization of DNA-binding cationic liposomes.Liposomes: Methods and Protocols; D’Souza, G.G.M., Ed.; Springer New York: New York, NY, 2017, pp. 245-250.
[http://dx.doi.org/10.1007/978-1-4939-6591-5_19]
[26]
Ritter, W.; Plank, C.; Lausier, J.; Rudolph, C.; Zink, D.; Reinhardt, D.; Rosenecker, J. A novel transfecting peptide comprising a tetrameric nuclear localization sequence. J. Mol. Med. (Berl.), 2003, 81(11), 708-717.
[http://dx.doi.org/10.1007/s00109-003-0483-2] [PMID: 14574456]
[27]
Park, E.; Cho, H.B.; Takimoto, K. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide–conjugated polyethylenimine. Cytotherapy, 2015, 17(5), 536-542.
[http://dx.doi.org/10.1016/j.jcyt.2014.11.008] [PMID: 25618562]
[28]
Doh, K.O. Validation of heterodimeric TAT-NLS peptide as a gene delivery enhancer. J. Microbiol. Biotechnol., 2015, 25(6), 788-794.
[http://dx.doi.org/10.4014/jmb.1411.11074] [PMID: 25588561]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy