Abstract
A tumour is an uncontrolled growth of tissues in any part of the body. Tumours are of different types and characteristics and have different treatments. Detection of a tumour in the earlier stages makes the treatment easier. Scientists and researchers have been working towards developing sophisticated techniques and methods for identifying the form and stage of tumours. This paper provides a systematic literature survey of techniques for brain tumour segmentation and classification of abnormality and normality from MRI images based on different methods including deep learning techniques. This survey covers publicly available datasets, enhancement techniques, segmentation, feature extraction, and the classification of three different types of brain tumours that include gliomas, meningioma, and pituitary and deep learning algorithms implemented for brain tumour analysis. Finally, this survey provides all the important literature on the detection of brain tumours with their developments.
Graphical Abstract
[http://dx.doi.org/10.1016/j.procs.2016.09.407]
[http://dx.doi.org/10.1007/978-3-319-46723-8_55]
[http://dx.doi.org/10.1007/978-3-319-55524-9_14]
[http://dx.doi.org/10.1109/EMBC.2017.8037243] [PMID: 29060287]
[http://dx.doi.org/10.1109/ISBI.2018.8363654]
[http://dx.doi.org/10.1093/jamia/ocy098] [PMID: 30137371]
“Learning Data Augmentation for Brain Tumor Segmentation with Coarse-to-Fine Generative Adversarial Networks” In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science, vol 11383. Springer, Cham. [http://dx.doi.org/10.1007/978-3-030-11723-8_7]
[http://dx.doi.org/10.1002/mp.12481] [PMID: 28736864]
[http://dx.doi.org/10.3390/diagnostics12041018] [PMID: 35454066]
[http://dx.doi.org/10.1007/978-3-030-00536-8_1]
[http://dx.doi.org/10.1007/978-3-319-75238-9_34]
[http://dx.doi.org/10.1109/CCAA.2018.8777675]
[http://dx.doi.org/10.1109/TMI.2018.2791721] [PMID: 29969407]
[http://dx.doi.org/10.1016/j.media.2017.10.002] [PMID: 29040911]
[http://dx.doi.org/10.1109/ICSSIT.2018.8748487]
[http://dx.doi.org/10.1109/ICOEI.2019.8862575]
[http://dx.doi.org/10.1007/s10916-019-1223-7] [PMID: 30810822]
[http://dx.doi.org/10.1016/j.bbe.2019.06.003]
[http://dx.doi.org/10.1007/s41095-019-0139-y]
[http://dx.doi.org/10.1109/TPAMI.2018.2840695] [PMID: 29993532]
[http://dx.doi.org/10.1007/978-3-030-11723-8_21]
[http://dx.doi.org/10.1109/ICECA.2019.8821931]
[http://dx.doi.org/10.3233/JIFS-169980]
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2495] [PMID: 31010833]
[http://dx.doi.org/10.1109/TRPMS.2018.2890359] [PMID: 34722958]
[http://dx.doi.org/10.1109/JBHI.2018.2874033] [PMID: 30295634]
[http://dx.doi.org/10.3389/fncom.2020.00010] [PMID: 32132913]
[http://dx.doi.org/10.1109/ACCESS.2020.3018160]
[http://dx.doi.org/10.1016/j.bspc.2019.101678]
[http://dx.doi.org/10.1016/j.jneumeth.2019.108520] [PMID: 31734325]
"Brain Tumor Identification and Classification of MRI images using deep learning techniques," in IEEE Access, [http://dx.doi.org/10.1109/ACCESS.2020.3016319]
[http://dx.doi.org/10.3390/app10061999]
[http://dx.doi.org/10.1038/s41598-020-69920-0] [PMID: 32792540]
[http://dx.doi.org/10.1007/978-3-030-25797-2_8]
[http://dx.doi.org/10.1109/ICMLC51923.2020.9469565]
[http://dx.doi.org/10.1016/j.artmed.2020.101980] [PMID: 33250150]
[http://dx.doi.org/10.1109/ACCESS.2020.2966879]
[http://dx.doi.org/10.1007/s11227-021-03901-6]
[http://dx.doi.org/10.1109/TIP.2021.3070752] [PMID: 33830924]
[http://dx.doi.org/10.1038/s41598-021-90428-8] [PMID: 34035406]
[http://dx.doi.org/10.1109/ACCESS.2022.3153108]
[http://dx.doi.org/10.3390/s21062222] [PMID: 33810176]
[http://dx.doi.org/10.1007/s40747-021-00321-0]
[http://dx.doi.org/10.1007/s00371-021-02328-7]
[http://dx.doi.org/10.1155/2022/8104054]
[http://dx.doi.org/10.3390/healthcare9020153] [PMID: 33540873]
[http://dx.doi.org/10.1016/j.neuri.2022.100062]
[http://dx.doi.org/10.3389/fnins.2022.1009581] [PMID: 36188458]
"Classification and Segmentation on Multi-regional Brain Tumors Using Volumetric Images of MRI with Customized 3D UNet Framework", Ahmad, M., Uddin, M.S., Jang, Y.M. (eds) Proceedings of International Conference on Information and Communication Technology for Development. Studies in Autonomic, Data- driven and Industrial Computing. Springer, Singapore. [http://dx.doi.org/10.1007/978-981-19-7528-8_18]
[http://dx.doi.org/10.1016/j.inffus.2022.10.022]
[http://dx.doi.org/10.3390/diagnostics12041018]