Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Review for Optimal Human-gesture Design Methodology and Motion Representation of Medical Images using Segmentation from Depth Data and Gesture Recognition

Author(s): Anju Gupta*, Sanjeev Kumar and Sanjeev Kumar

Volume 20, 2024

Published on: 20 July, 2023

Article ID: e300523217435 Pages: 14

DOI: 10.2174/1573405620666230530093026

Price: $65

Abstract

Human gesture recognition and motion representation have become a vital base of current intelligent human-machine interfaces because of ubiquitous and more comfortable interaction. Human-gesture recognition chiefly deals with recognizing meaningful, expressive body movements involving physical motions of the face, head, arms, fingers, hands, or body. This review article presents a concise overview of optimal human gesture and motion representation of medical images. It surveys various works undertaken on human gesture design and discusses various design methodologies used for image segmentation and gesture recognition. It further provides a general idea of modeling techniques for analyzing hand gesture images and even discusses the diverse techniques involved in motion recognition. This survey provides insight into various efforts and developments made in the gesture/motion recognition domain by analyzing and reviewing the procedures and approaches employed for identifying diverse human motions and gestures for supporting better and devising improved applications in the near future.

[1]
Mitra S, Acharya T. Gesture recognition: A survey. IEEE Trans Syst Man Cybern C 2007; 37(3): 311-24.
[http://dx.doi.org/10.1109/TSMCC.2007.893280]
[2]
Holz C, Wilson A. Data miming: Inferring spatial object descriptions from human gesture. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 811-20.
[http://dx.doi.org/10.1145/1978942.1979060]
[3]
Pavlovic VI, Sharma R, Huang TS. Visual interpretation of hand gestures for human-computer interaction: A review. IEEE Trans Pattern Anal Mach Intell 1997; 19(7): 677-95.
[http://dx.doi.org/10.1109/34.598226]
[4]
Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 1989; 77(2): 257-86.
[http://dx.doi.org/10.1109/5.18626]
[5]
Mitra S, Acharya T. Data mining: multimedia, soft computing, and bioinformatics. John Wiley & Sons 2005.
[6]
Yang D, Wang S, Liu H, Liu Z, Sun F. Scene modeling and autonomous navigation for robots based on kinect system. Robot 2012; 34(5): 581-9.
[http://dx.doi.org/10.3724/SP.J.1218.2012.00581]
[7]
Zhang L, Zhang S, Jiang F, et al. BoMW: Bag of manifold words for one-shot learning gesture recognition from kinect. IEEE Trans Circ Syst Video Tech 2018; 28(10): 2562-73.
[http://dx.doi.org/10.1109/TCSVT.2017.2721108]
[8]
Wang C, Liu Z, Chan SC. Superpixel-based hand gesture recognition with kinect depth camera. IEEE Trans Multimed 2015; 17(1): 29-39.
[http://dx.doi.org/10.1109/TMM.2014.2374357]
[9]
Sinop AK, Grady L. A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In 2007 IEEE 11th international conference on computer vision (2007, October). 1-8.
[http://dx.doi.org/10.1109/ICCV.2007.4408927]
[10]
Grady L. Multilabel random walker image segmentation using prior models. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). 1: 763-70.
[http://dx.doi.org/10.1109/CVPR.2005.239]
[11]
Couprie C, Grady L, Najman L, Talbot H. Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In 2009 IEEE 12th international conference on computer vision (2009, September). 731-8.
[http://dx.doi.org/10.1109/ICCV.2009.5459284]
[12]
Gulshan V, Rother C, Criminisi A, Blake A, Zisserman A. Geodesic star convexity for interactive image segmentation. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 3129-36.
[http://dx.doi.org/10.1109/CVPR.2010.5540073]
[13]
Zhaojie Ju , Honghai Liu . A unified fuzzy framework for human-hand motion recognition. IEEE Trans Fuzzy Syst 2011; 19(5): 901-13.
[http://dx.doi.org/10.1109/TFUZZ.2011.2150756]
[14]
Xu Y, Yu G, Wang Y, Wu X, Ma Y. A hybrid vehicle detection method based on viola-jones and HOG+ SVM from UAV images. Sensors 2016; 16(8): 1325.
[http://dx.doi.org/10.3390/s16081325] [PMID: 27548179]
[15]
Fernando M, Wijayanayake J. Novel approach to use HU moments with image processing techniques for real time sign language communication. arXiv 2020.
[16]
Pisharady PK, Saerbeck M. Recent methods and databases in vision-based hand gesture recognition: A review. Comput Vis Image Underst 2015; 141: 152-65.
[http://dx.doi.org/10.1016/j.cviu.2015.08.004]
[17]
Sapna V, Ritu T. Neural network techniques applied on real time human gesture recognition: A Survey paper. International Journal of Exploring Emerging Trends in Engineering 2015; 2(6): 259-70.
[18]
Sarkar AR, Sanyal G, Majumder SJIJOCA. Hand gesture recognition systems: A survey. Int J Comput Appl 2013; 71(15)
[19]
Chen L, Wang F, Deng H, Ji K. A survey on hand gesture recognition. 2013 International conference on computer sciences and applications. 313-6.
[http://dx.doi.org/10.1109/CSA.2013.79]
[20]
Yu M, Li G, Jiang D, et al. Application of PSO-RBF neural network in gesture recognition of continuous surface EMG signals. J Intell Fuzzy Syst 2020; 38(3): 2469-80.
[http://dx.doi.org/10.3233/JIFS-179535]
[21]
Bilal S, Akmeliawati R, Shafie AA, Salami MJE. Hidden Markov model for human to computer interaction: A study on human hand gesture recognition. Artif Intell Rev 2013; 40(4): 495-516.
[http://dx.doi.org/10.1007/s10462-011-9292-0]
[22]
Zengeler N, Kopinski T, Handmann U. Hand gesture recognition in automotive human–machine interaction using depth cameras. Sensors 2018; 19(1): 59.
[http://dx.doi.org/10.3390/s19010059] [PMID: 30586882]
[23]
Sagayam KM, Hemanth DJ. Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Real 2017; 21(2): 91-107.
[http://dx.doi.org/10.1007/s10055-016-0301-0]
[24]
Rautaray SS, Agrawal A. Vision based hand gesture recognition for human computer interaction: a survey. Artif Intell Rev 2015; 43(1): 1-54.
[http://dx.doi.org/10.1007/s10462-012-9356-9]
[25]
Oudah M, Al-Naji A, Chahl J. Hand gesture recognition based on computer vision: A review of techniques. J Imag 2020; 6(8): 73.
[26]
Chakraborty BK, Sarma D, Bhuyan MK, MacDorman KF. Review of constraints on vision‐based gesture recognition for human–computer interaction. IET Comput Vis 2018; 12(1): 3-15.
[http://dx.doi.org/10.1049/iet-cvi.2017.0052]
[27]
Itkarkar RR, Nandi AV. A survey of 2D and 3D imaging used in hand gesture recognition for human-computer interaction (HCI). 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). 188-93.
[http://dx.doi.org/10.1109/WIECON-ECE.2016.8009115]
[28]
Yasen M, Jusoh S. A systematic review on hand gesture recognition techniques, challenges and applications. PeerJ Comput Sci 2019; 5: e218.
[http://dx.doi.org/10.7717/peerj-cs.218] [PMID: 33816871]
[29]
Jaramillo-Yánez A, Benalcázar ME, Mena-Maldonado E. Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review. Sensors 2020; 20(9): 2467.
[http://dx.doi.org/10.3390/s20092467] [PMID: 32349232]
[30]
Liu H, Wang L. Gesture recognition for human-robot collaboration: A review. Int J Ind Ergon 2018; 68: 355-67.
[http://dx.doi.org/10.1016/j.ergon.2017.02.004]
[31]
Elboushaki A, Hannane R, Afdel K, Koutti L. MultiD-CNN: A multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in RGB-D image sequences. Expert Syst Appl 2020; 139: 112829.
[http://dx.doi.org/10.1016/j.eswa.2019.112829]
[32]
Chung EA, Benalcázar ME. Real-time hand gesture recognition model using deep learning techniques and EMG signals. In 2019 27th European Signal Processing Conference (EUSIPCO). 1-5.
[http://dx.doi.org/10.23919/EUSIPCO.2019.8903136]
[33]
Ibraheem NA, Khan RZ. Vision based gesture recognition using neural networks approaches: a review. Int J Hum Comput Interact 2012; 3(1): 1-14.
[34]
Wu D, Pigou L, Kindermans PJ, et al. Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Trans Pattern Anal Mach Intell 2016; 38(8): 1583-97.
[http://dx.doi.org/10.1109/TPAMI.2016.2537340] [PMID: 26955020]
[35]
Munasinghe MINP. Dynamic hand gesture recognition using computer vision and neural networks. In 2018 3rd International Conference for Convergence in Technology (I2CT). 1-5.
[http://dx.doi.org/10.1109/I2CT.2018.8529335]
[36]
Chen FS, Fu CM, Huang CL. Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vis Comput 2003; 21(8): 745-58.
[http://dx.doi.org/10.1016/S0262-8856(03)00070-2]
[37]
Ahuja MK, Singh A. Static vision based Hand Gesture recognition using principal component analysis. 2015 IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE).
[http://dx.doi.org/10.1109/MITE.2015.7375353]
[38]
Jalab HA, Omer HK. Human computer interface using hand gesture recognition based on neural network. 2015 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW).
[39]
Shukla J, Dwivedi A. A method for hand gesture recognition. 2014 Fourth International Conference on Communication Systems and Network Technologies. 919-23.
[http://dx.doi.org/10.1109/CSNT.2014.189]
[40]
Chao F, Sun Y, Wang Z, Yao G, Zhu Z, Zhou C, et al. A reduced classifier ensemble approach to human gesture classification for robotic Chinese handwriting. 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 1720-7.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2014.6891656]
[41]
Karn NK, Jiang F. Improved GLOH approach for one-shot learning human gesture recognition. Chinese Conference on Biometric Recognition. 441-52.
[http://dx.doi.org/10.1007/978-3-319-46654-5_49]
[42]
Chaudhary A, Raheja JL, Das K, Raheja S. Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey. arXiv 2013.
[43]
Murthy GRS, Jadon RS. A review of vision based hand gestures recognition. International Journal of Information Technology and Knowledge Management 2009; 2(2): 405-10.
[44]
Ohn-Bar E, Trivedi MM. Hand gesture recognition in real time for automotive interfaces: A multimodal vision-based approach and evaluations. IEEE Trans Intell Transp Syst 2014; 15(6): 2368-77.
[http://dx.doi.org/10.1109/TITS.2014.2337331]
[45]
Ameur S, Khalifa AB, Bouhlel MS. A comprehensive leap motion database for hand gesture recognition. 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). Hammamet, Tunisia. 2016.
[http://dx.doi.org/10.1109/SETIT.2016.7939924]
[46]
Yewale SK, Bharne PK. Hand gesture recognition using different algorithms based on artificial neural network. 2011 International conference on emerging trends in networks and computer communications (ETNCC). 287-92.
[http://dx.doi.org/10.1109/ETNCC.2011.6255906]
[47]
Truong DM, Doan HG, Tran TH, Vu H, Le TL. Robustness analysis of 3D convolutional neural network for human hand gesture recognition. Int J Mach Learn Comput 2019; 9(2): 135-42.
[http://dx.doi.org/10.18178/ijmlc.2019.9.2.777]
[48]
Zhang J, Shi Z. Deformable deep convolutional generative adversarial network in microwave based hand gesture recognition system. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP).
[http://dx.doi.org/10.1109/WCSP.2017.8170976]
[49]
Qi J, Jiang G, Li G, Sun Y, Tao B. Surface EMG hand gesture recognition system based on PCA and GRNN. Neural Comput Appl 2020; 32(10): 6343-51.
[http://dx.doi.org/10.1007/s00521-019-04142-8]
[50]
Cao Z, Xu X, Hu B, Zhou M, Li Q. Real-time gesture recognition based on feature recalibration network with multi-scale information. Neurocomputing 2019; 347: 119-30.
[http://dx.doi.org/10.1016/j.neucom.2019.03.019]
[51]
Lee A, Cho Y, Jin S, Kim N. Enhancement of surgical hand gesture recognition using a capsule network for a contactless interface in the operating room. Comput Methods Programs Biomed 2020; 190: 105385.
[http://dx.doi.org/10.1016/j.cmpb.2020.105385] [PMID: 32062090]
[52]
v A, R R. A Deep Convolutional Neural Network Approach for Static Hand Gesture Recognition. Procedia Comput Sci 2020; 171: 2353-61.
[http://dx.doi.org/10.1016/j.procs.2020.04.255]
[53]
Araga Y, Shirabayashi M, Kaida K, Hikawa H. Real time gesture recognition system using posture classifier and Jordan recurrent neural network. Neural Networks (IJCNN), The 2012 International Joint Conference.
[http://dx.doi.org/10.1109/IJCNN.2012.6252595]
[54]
Alnaim N, Abbod M, Albar A. Hand gesture recognition using convolutional neural network for people who have experienced a stroke. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT).
[http://dx.doi.org/10.1109/ISMSIT.2019.8932739]
[55]
Azad R, Asadi-Aghbolaghi M, Kasaei S, Escalera S. Dynamic 3D hand gesture recognition by learning weighted depth motion maps. IEEE Trans Circ Syst Video Tech 2019; 29(6): 1729-40.
[http://dx.doi.org/10.1109/TCSVT.2018.2855416]
[56]
Hasan H, Abdul-Kareem S. RETRACTED ARTICLE: Human–computer interaction using vision-based hand gesture recognition systems: A survey. Neural Comput Appl 2014; 25(2): 251-61.
[http://dx.doi.org/10.1007/s00521-013-1481-0]
[57]
Chen D, Li G, Sun Y, et al. An interactive image segmentation method in hand gesture recognition. Sensors 2017; 17(2): 253.
[http://dx.doi.org/10.3390/s17020253] [PMID: 28134818]
[58]
Bobić V, Tadić P, Kvaščev G. Hand gesture recognition using neural network based techniques. 2016 13th Symposium on Neural Networks and Applications (NEUREL).
[http://dx.doi.org/10.1109/NEUREL.2016.7800104]
[59]
Alani AA, Cosma G, Taherkhani A, McGinnity TM. Hand gesture recognition using an adapted convolutional neural network with data augmentation. 2018 4th International Conference on Information Management (ICIM).
[http://dx.doi.org/10.1109/INFOMAN.2018.8392660]
[60]
Jia J. Interactive imaging via hand gesture recognition. 2010.
[61]
Holte MB, Tran C, Trivedi MM, Moeslund TB. Human action recognition using multiple views: A comparative perspective on recent developments. Proceedings of the 2011 joint ACM workshop on Human gesture and behavior understanding. 47-52.
[http://dx.doi.org/10.1145/2072572.2072588]
[62]
Meng Z, Zhang M, Guo C, et al. Recent progress in sensing and computing techniques for human activity recognition and motion analysis. Electronics 2020; 9(9): 1357.
[http://dx.doi.org/10.3390/electronics9091357]
[63]
Asadi-Aghbolaghi M, Clapes A, Bellantonio M, Escalante HJ, Ponce-López V, Baró X, et al. A survey on deep learning based approaches for action and gesture recognition in image sequences. 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). 12
[http://dx.doi.org/10.1109/FG.2017.150]
[64]
Lun R, Zhao W. A survey of applications and human motion recognition with microsoft kinect. Int J Pattern Recognit Artif Intell 2015; 29(5): 1555008.
[http://dx.doi.org/10.1142/S0218001415550083]
[65]
Song Y, Demirdjian D, Davis R. Continuous body and hand gesture recognition for natural human-computer interaction. ACM Trans Interact Intell Syst 2012; 2(1): 1-28. [TiiS].
[http://dx.doi.org/10.1145/2133366.2133371]
[66]
Bu X. Human motion gesture recognition algorithm in video based on convolutional neural features of training images. IEEE Access 2020; 8: 160025-39.
[http://dx.doi.org/10.1109/ACCESS.2020.3020141]
[67]
Zhou Y, Gao Z. Intelligent recognition of medical motion image combining convolutional neural network with Internet of Things. IEEE Access 2019; 7: 145462-76.
[http://dx.doi.org/10.1109/ACCESS.2019.2945313]
[68]
Patrona F, Chatzitofis A, Zarpalas D, Daras P. Motion analysis: Action detection, recognition and evaluation based on motion capture data. Pattern Recognit 2018; 76: 612-22.
[http://dx.doi.org/10.1016/j.patcog.2017.12.007]
[69]
Rimkus K, Bukis A, Lipnickas A, Sinkevičius S. 3D human hand motion recognition system. In 2013 6th International Conference on Human System Interactions (HSI). 180-3.
[70]
Gao L, Zhang G, Yu B, Qiao Z, Wang J. Wearable human motion posture capture and medical health monitoring based on wireless sensor networks. Measurement 2020; 166: 108252.
[http://dx.doi.org/10.1016/j.measurement.2020.108252]
[71]
Tran DS, Ho NH, Yang HJ, Baek ET, Kim SH, Lee G. Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network. Appl Sci 2020; 10(2): 722.
[http://dx.doi.org/10.3390/app10020722]
[72]
Pinzón-Arenas JO, Jiménez-Moreno R, Herrera-Benavides JE. Convolutional neural network for hand gesture recognition using 8 different emg signals. 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA). 1-5.
[http://dx.doi.org/10.1109/STSIVA.2019.8730272]
[73]
Wei W, Wong Y, Du Y, Hu Y, Kankanhalli M, Geng W. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface. Pattern Recognit Lett 2019; 119: 131-8.
[http://dx.doi.org/10.1016/j.patrec.2017.12.005]
[74]
Ma Y, Liu Y, Jin R, et al. Hand gesture recognition with convolutional neural networks for the multimodal UAV control. 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). 198-203.
[http://dx.doi.org/10.1109/RED-UAS.2017.8101666]
[75]
Siddiqui N, Chan RH. A wearable hand gesture recognition device based on acoustic measurements at wrist. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
[http://dx.doi.org/10.1109/EMBC.2017.8037842]
[76]
Sombandith V, Walairacht A, Walairacht S. Hand gesture recognition for Lao alphabet sign language using HOG and correlation. 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).
[http://dx.doi.org/10.1109/ECTICon.2017.8096321]
[77]
Barros P, Parisi GI, Jirak D, Wermter S. Real-time gesture recognition using a humanoid robot with a deep neural architecture. 2014 IEEE-RAS International Conference on Humanoid Robots. 646-51.
[http://dx.doi.org/10.1109/HUMANOIDS.2014.7041431]
[78]
Motoche C, Benalcázar ME. Real-time hand gesture recognition based on electromyographic signals and artificial neural networks. International Conference on Artificial Neural Networks. 352-61.
[http://dx.doi.org/10.1007/978-3-030-01418-6_35]
[79]
Nagarajan S, Subashini TS. Static hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVM. Int J Comput Appl 2013; 82(4)
[http://dx.doi.org/10.5120/14106-2145]
[80]
Ghotkar AS, Kharate GK. Vision based real time hand gesture recognition techniques for human computer interaction. Int J Comput Appl 2013; 70(16): 1-8.
[http://dx.doi.org/10.5120/12148-8103]
[81]
Tam S, Boukadoum M, Campeau-Lecours A, Gosselin B. A fully embedded adaptive real-time hand gesture classifier leveraging HD-sEMG and deep learning. IEEE Trans Biomed Circuits Syst 2020; 14(2): 232-43.
[http://dx.doi.org/10.1109/TBCAS.2019.2955641] [PMID: 31765319]
[82]
Lupinetti K, Ranieri A, Giannini F, Monti M. 3D dynamic hand gestures recognition using the Leap Motion sensor and convolutional neural networks. International Conference on Augmented Reality, Virtual Reality and Computer Graphics. 420-39.
[http://dx.doi.org/10.1007/978-3-030-58465-8_31]
[83]
Dong J, Xia Z, Yan W, Zhao Q. Dynamic gesture recognition by directional pulse coupled neural networks for human-robot interaction in real time. J Vis Commun Image Represent 2019; 63: 102583.
[http://dx.doi.org/10.1016/j.jvcir.2019.102583]
[84]
Dhingra N, Kunz A. Res3ATN-deep 3D residual attention network for hand gesture recognition in videos. 2019 International Conference on 3D Vision (3DV). 491-501.
[http://dx.doi.org/10.1109/3DV.2019.00061]
[85]
Ozcan T, Basturk A. Transfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognition. Neural Comput Appl 2019; 31(12): 8955-70.
[http://dx.doi.org/10.1007/s00521-019-04427-y]
[86]
Benalcázar ME, Anchundia CE, Zea JA, Zambrano P, Jaramillo AG, Segura M. Real-time hand gesture recognition based on artificial feed-forward neural networks and emg. 2018 26th European Signal Processing Conference (EUSIPCO).
[http://dx.doi.org/10.23919/EUSIPCO.2018.8553126]
[87]
Chevtchenko SF, Vale RF, Macario V, Cordeiro FR. A convolutional neural network with feature fusion for real-time hand posture recognition. Appl Soft Comput 2018; 73: 748-66.
[http://dx.doi.org/10.1016/j.asoc.2018.09.010]
[88]
Saha S, Pal M, Konar A, Janarthanan R. Neural network based gesture recognition for elderly health care using kinect sensor. International Conference on Swarm, Evolutionary, and Memetic Computing. 376-86.
[http://dx.doi.org/10.1007/978-3-319-03756-1_34]
[89]
Tu YJ, Kao CC, Lin HY. Human computer interaction using face and gesture recognition. Human computer interaction using face and gesture recognition.
[http://dx.doi.org/10.1109/APSIPA.2013.6694276]
[90]
Avola D, Bernardi M, Cinque L, Foresti GL, Massaroni C. Exploiting recurrent neural networks and leap motion controller for the recognition of sign language and semaphoric hand gestures. IEEE Trans Multimed 2019; 21(1): 234-45.
[http://dx.doi.org/10.1109/TMM.2018.2856094]
[91]
Mishra SK, Sinha S, Sinha S, Bilgaiyan S. Recognition of Hand Gestures and Conversion of Voice for Betterment of Deaf and Mute People. International Conference on Advances in Computing and Data Sciences. Singapore. 2019; pp. 46-57.
[http://dx.doi.org/10.1007/978-981-13-9942-8_5]
[92]
Smith KA, Csech C, Murdoch D, Shaker G. Gesture recognition using mm-wave sensor for human-car interface. IEEE Sens Lett 2018; 2(2): 1-4.
[http://dx.doi.org/10.1109/LSENS.2018.2810093]
[93]
Kirishima T, Sato K, Chihara K. Real-time gesture recognition by learning and selective control of visual interest points. IEEE Trans Pattern Anal Mach Intell 2005; 27(3): 351-64.
[http://dx.doi.org/10.1109/TPAMI.2005.61] [PMID: 15747791]
[94]
Xing Y, Di Caterina G, Soraghan J. A new spiking convolutional recurrent neural network (SCRNN) with applications to event-based hand gesture recognition. Front Neurosci 2020; 14: 590164.
[http://dx.doi.org/10.3389/fnins.2020.590164] [PMID: 33324153]
[95]
Malassiotis S, Strintzis MG. Real-time hand posture recognition using range data. Image Vis Comput 2008; 26(7): 1027-37.
[http://dx.doi.org/10.1016/j.imavis.2007.11.007]
[96]
Peng Z, Li C, Muñoz-Ferreras JM, Gómez-García R. An FMCW radar sensor for human gesture recognition in the presence of multiple targets. 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC). 1-3.
[http://dx.doi.org/10.1109/IMBIOC.2017.7965798]
[97]
Dekker B, Jacobs S, Kossen AS, Kruithof MC, Huizing AG, Geurts M. Gesture recognition with a low power FMCW radar and a deep convolutional neural network. 2017 European Radar Conference (EURAD). 163-6.
[http://dx.doi.org/10.23919/EURAD.2017.8249172]
[98]
Jibu S, Osa A, Miike H. Visualizing characteristics of human gesture-Proposal of a ‘ movement-print ’. Art 2003. Preprint
[99]
Shen X, Kim H, Satoru K, Markman A, Javidi B. Spatial-temporal human gesture recognition under degraded conditions using three-dimensional integral imaging. Opt Express 2018; 26(11): 13938-51.
[http://dx.doi.org/10.1364/OE.26.013938] [PMID: 29877439]
[100]
Simonyan Karen. Two-stream convolutional networks for action recognition in videos. arXiv 2014.
[101]
Ma Rui. Human motion gesture recognition based on computer vision. Cognitive Computing Solutions for Complexity Problems in Computational Social Systems. 2021; 2021.
[102]
Debajit S, Bhuyan MK. Methods, databases and recent advancement of vision-based hand gesture recognition for HCI systems: A review. SN Computer Science 2021; 2: 436.
[103]
Bakheet S, Al-Hamadi A. Robust hand gesture recognition using multiple shape-oriented visual cues. EURASIP Journal on Image and Video Processing 2021; 2021
[104]
Mushtaq S, Nadeem A, Zahra S. Hand Gesture Recognition: A Review. International Journal Of Scientific & Technology Research 2021; 10(5)
[105]
Pansare1 J, Aochar G, Salvi T, Braganza J, Tiwari A, Kesharkar D. Effective computer vision techniques for real-time hand gesture recognition and detection. International Research Journal of Engineering and Technology (IRJET) 2021; 8(4)
[106]
Bulugu I. Real-time complex hand gestures recognition based on multidimensional features. Tanzania Journal of Engineering and Technology 2021; 40(2): 45-57.
[107]
Brucker Birgit, de Koning Björn. The influence of gestures and visuospatial ability during learning about movements with dynamic visualizations. Computers in Human Behavior 2021; 129: 107151.
[108]
Lazarou Michalis, Li Bo. A novel shape matching descriptor for real-time static hand gesture recognition. Computer Vision and Image Understanding 2021; 210: 103241.
[109]
Ovur Salih Ertug, Zhou Xuanyi. A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information. Biomedical Signal Processing and Control 2021; 66(2): 102444.
[110]
Caputo A. SHREC 2021: Skeleton-based hand gesture recognition in the wild. Computers & Graphics. 2021; 99: pp. 201-11.
[111]
Khoh Wee How, Ying Han Pang, Shih Yin Ooi On. In-air hand gesture signature using transfer learning and its forgery attack Applied Soft Computing 2021; 113: 108033.
[http://dx.doi.org/10.1016/j.asoc.2021.108033]
[112]
Wang Leran. The effectiveness of zoom touchscreen gestures for authentication and identification and its changes over time. Computers & Security 2021; 111: 102462.
[113]
Tan YR, Lim KM, Lee CP. Hand gesture recognition via enhanced densely connected convolutional neural network. Expert Systems with Applications 2021; 175: 114797.
[114]
Jessica R, Debra C, Ralph C. Frequency of gesture use and language in typically developing prelinguistic children. Infant Behav Dev 2021; 62: 101527.
[115]
Elise C. The interaction of fine motor, gesture, and structural language skills: The case of autism spectrum disorder. Res Autism Spectr Disord 2021; 86: 101824.
[116]
Marlena R. Developing future wearable interfaces for human-drone teams through a virtual drone search game. International Journal of Human-Computer Studies 2021; 147: 102573.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy