Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

A Survey on the Machine Learning Techniques for Automated Diagnosis from Ultrasound Images

Author(s): Kumar Mohit*, Rajeev Gupta and Basant Kumar

Volume 20, 2024

Published on: 18 July, 2023

Article ID: e290523217408 Pages: 15

DOI: 10.2174/1573405620666230529112655

Price: $65

Abstract

Medical diagnostic systems has recently been very popular and reliable because of possible automatic detections. The machine learning algorithm is evolved as a core tool of computer-aided diagnosis (CAD) for automatic early and accurate disease detections. The algorithm follows region of interest (ROI) selection followed by specific feature extractions and selection from medical images. The selected features are then fed to suitable classifiers for disease identification. The machine learning algorithm's performance depends on the features selected and the classifiers employed for the job. This paper reviews different feature extraction selection and classification techniques for CAD from ultrasound images. Ultrasonography (USG), due to its portability and its non-invasive nature, is the prime choice of doctors for prescribing as an imaging test. A survey on the USG imaging based on four major diseases is performed in this paper, whose diagnosis followed by automatic detection. Various techniques applied for feature extraction, selection, and classification by different authors to achieve improved accuracy are tabulated. For medical images, we found texture based gray-level extracted features and SVM (support vector machine) classifiers to be more significant in improving classification accuracy, even achieving 100% accuracy in many research articles. However, many research articles also suggest the importance of student’s t-test in improving classification accuracy by selecting significant features from extracted features. The proposed algorithm's accuracy also depends on the quality of medical images, which are frequently degraded by the introduction of noise and artifacts while imaging acquisition. So, challenges in denoising are added in this paper as a separate topic to highlight the role of the machine learning algorithm in removing noise and artifacts from the USG images.

[1]
Brattain LJ, Telfer BA, Dhyani M, Grajo JR, Samir AE. Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom Radiol 2018; 43(4): 786-99.
[http://dx.doi.org/10.1007/s00261-018-1517-0] [PMID: 29492605]
[2]
Khandpur RS. Biomedical Instrumentation: Technology and Applications. (1st ed.), India: McGraw-Hill Education 2004.
[3]
Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: A survey. BioMed Res Int 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/5137904] [PMID: 29687000]
[4]
Mougiakakou SG, Golemati S, Gousias I, Nicolaides AN, Nikita KS. Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, Laws’ texture and neural networks. Ultrasound Med Biol 2007; 33(1): 26-36.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2006.07.032] [PMID: 17189044]
[5]
Acharya RU, Faust O, Alvin APC, et al. Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. J Med Syst 2012; 36(3): 1861-71.
[http://dx.doi.org/10.1007/s10916-010-9645-2] [PMID: 21243411]
[6]
Tsiaparas N, Golemati S, Andreadis I, Stoitsis JS, Valavanis I, Nikita KS. Comparison of multiresolution features for texture classification of carotid atherosclerosis from B-mode ultrasound. IEEE Trans Inf Technol Biomed 2011; 15(1): 130-7.
[http://dx.doi.org/10.1109/TITB.2010.2091511] [PMID: 21075733]
[7]
Rajendra Acharya U, Rama Krishnan MM, Vinitha Sree S, et al. Plaque tissue characterization and classification in ultrasound carotid scans: A paradigm for vascular feature amalgamation. IEEE Trans Instrum Meas 2013; 62(2): 392-400.
[http://dx.doi.org/10.1109/TIM.2012.2217651]
[8]
Menchón-Lara RM, Bastida-Jumilla MC, Morales-Sánchez J, Sancho-Gómez JL. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks. Med Biol Eng Comput 2014; 52(2): 169-81.
[http://dx.doi.org/10.1007/s11517-013-1128-4] [PMID: 24281725]
[9]
Huang X, Zhang Y, Qian M, et al. Classification of carotid plaque echogenicity by combining texture features and morphologic characteristics. J Ultrasound Med 2016; 35(10): 2253-61.
[http://dx.doi.org/10.7863/ultra.15.09002] [PMID: 27582533]
[10]
Lekadir K, Galimzianova A, Betriu A, et al. A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inform 2017; 21(1): 48-55.
[http://dx.doi.org/10.1109/JBHI.2016.2631401] [PMID: 27893402]
[11]
Saba L, Jain PK, Suri HS, et al. Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: A polling-based PCA learning paradigm. J Med Syst 2017; 41(6): 98.
[http://dx.doi.org/10.1007/s10916-017-0745-0] [PMID: 28501967]
[12]
Araki T, Jain PK, Suri HS, et al. Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: A machine learning paradigm. Comput Biol Med 2017; 80(Oct): 77-96.
[http://dx.doi.org/10.1016/j.compbiomed.2016.11.011] [PMID: 27915126]
[13]
Qian C, Yang X. An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image. Comput Methods Programs Biomed 2018; 153: 19-32.
[http://dx.doi.org/10.1016/j.cmpb.2017.10.002] [PMID: 29157451]
[14]
Biswas M, Kuppili V, Saba L, et al. Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: A tool for stroke risk. Med Biol Eng Comput 2019; 57(2): 543-64.
[http://dx.doi.org/10.1007/s11517-018-1897-x] [PMID: 30255236]
[15]
Li YC, Shen TY, Chen CC, Chang WT, Lee PY, Huang CCJ. Automatic detection of atherosclerotic plaque and calcification from intravascular ultrasound images by using deep convolutional neural networks. IEEE Trans Ultrason Ferroelectr Freq Control 2021; 68(5): 1762-72.
[http://dx.doi.org/10.1109/TUFFC.2021.3052486] [PMID: 33460377]
[16]
Jain PK, Sharma N, Giannopoulos AA, Saba L, Nicolaides A, Suri JS. Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput Biol Med 2021; 136: 104721.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104721] [PMID: 34371320]
[17]
Minhas FAA, Sabih D, Hussain M. Automated classification of liver disorders using ultrasound images. J Med Syst 2012; 36(5): 3163-72.
[http://dx.doi.org/10.1007/s10916-011-9803-1] [PMID: 22072280]
[18]
Acharya UR, Sree SV, Ribeiro R, et al. Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm. Med Phys 2012; 39(7Part1): 4255-64.
[http://dx.doi.org/10.1118/1.4725759] [PMID: 22830759]
[19]
Subramanya MB, Kumar V, Mukherjee S, Saini M. A CAD system for B-mode fatty liver ultrasound images using texture features. J Med Eng Technol 2015; 39(2): 123-30.
[http://dx.doi.org/10.3109/03091902.2014.990160] [PMID: 25522808]
[20]
Acharya UR, Raghavendra U, Fujita H, et al. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 2016; 79: 250-8.
[http://dx.doi.org/10.1016/j.compbiomed.2016.10.022] [PMID: 27825038]
[21]
Saba L, Dey N, Ashour AS, et al. Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm. Comput Methods Programs Biomed 2016; 130: 118-34.
[http://dx.doi.org/10.1016/j.cmpb.2016.03.016] [PMID: 27208527]
[22]
Acharya UR, Fujita H, Bhat S, et al. Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images. Inf Fusion 2016; 29: 32-9.
[http://dx.doi.org/10.1016/j.inffus.2015.09.006]
[23]
Acharya UR, Fujita H, Sudarshan VK, et al. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images. Inf Fusion 2016; 31: 43-53.
[http://dx.doi.org/10.1016/j.inffus.2015.12.007]
[24]
Kuppili V, Biswas M, Sreekumar A, et al. Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization. J Med Syst 2017; 41(10): 152.
[http://dx.doi.org/10.1007/s10916-017-0797-1] [PMID: 28836045]
[25]
Biswas M, Kuppili V, Edla DR, et al. Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput Methods Programs Biomed 2018; 155: 165-77.
[http://dx.doi.org/10.1016/j.cmpb.2017.12.016] [PMID: 29512496]
[26]
Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Eur Radiol 2021; 31(7): 4576-86.
[http://dx.doi.org/10.1007/s00330-020-07562-6] [PMID: 33447862]
[27]
Acharya UR, Vinitha Sree S, Mookiah MRK, et al. Diagnosis of Hashimoto’s thyroiditis in ultrasound using tissue characterization and pixel classification. Proc Inst Mech Eng H 2013; 227(7): 788-98.
[http://dx.doi.org/10.1177/0954411913483637] [PMID: 23636761]
[28]
Omiotek Z. Fractal analysis of the grey and binary images in diagnosis of Hashimoto’s thyroiditis. Biocybern Biomed Eng 2017; 37(4): 655-65.
[http://dx.doi.org/10.1016/j.bbe.2017.08.004]
[29]
Li D, Zhang Y, Du L, et al. Texture analysis and classification of diffuse thyroid diseases based on ultrasound images 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 1-6.
[30]
Tsantis S, Dimitropoulos N, Cavouras D, Nikiforidis G. Morphological and wavelet features towards sonographic thyroid nodules evaluation. Comput Med Imaging Graph 2009; 33(2): 91-9.
[http://dx.doi.org/10.1016/j.compmedimag.2008.10.010] [PMID: 19111442]
[31]
Ma J, Si L, Manjiri D, et al. Differential diagnosis of thyroid nodules with ultrasound elastography based on support vector machines.2010 IEEE International Ultrasonics Symposium. 1372-5.
[http://dx.doi.org/10.1109/ULTSYM.2010.5935482]
[32]
Iakovidis DK, Keramidas EG, Maroulis D. Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns. Artif Intell Med 2010; 50(1): 33-41.
[http://dx.doi.org/10.1016/j.artmed.2010.04.004] [PMID: 20427164]
[33]
Chang CY, Chen S-J, Tsai M-F. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images. Pattern Recognit 2010; 43(10): 3494-506.
[http://dx.doi.org/10.1016/j.patcog.2010.04.023]
[34]
Chen HL, Yang B, Wang G, Liu J, Chen YD, Liu DY. A three-stage expert system based on support vector machines for thyroid disease diagnosis. J Med Syst 2012; 36(3): 1953-63.
[http://dx.doi.org/10.1007/s10916-011-9655-8] [PMID: 21286792]
[35]
Acharya UR, Faust O, Sree SV, Molinari F, Garberoglio R, Suri JS. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: A class of ThyroScan™ algorithms. Technol Cancer Res Treat 2011; 10(4): 371-80.
[http://dx.doi.org/10.7785/tcrt.2012.500214] [PMID: 21728394]
[36]
Acharya UR, Faust O, Sree SV, Molinari F, Suri JS. ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed 2012; 107(2): 233-41.
[http://dx.doi.org/10.1016/j.cmpb.2011.10.001] [PMID: 22054816]
[37]
Raghavendra U, Rajendra Acharya U, Gudigar A, et al. Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions. Ultrasonics 2017; 77: 110-20.
[http://dx.doi.org/10.1016/j.ultras.2017.02.003] [PMID: 28219805]
[38]
Chi J, Walia E, Babyn P, Wang J, Groot G, Eramian M. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. J Digit Imaging 2017; 30(4): 477-86.
[http://dx.doi.org/10.1007/s10278-017-9997-y] [PMID: 28695342]
[39]
Raghavendra U, Anjan G, Maithri M, et al. Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images. Comput Biol Med 2017; 95(11): 55-62.
[http://dx.doi.org/10.1016/j.compbiomed.2018.02.002]
[40]
Wang J, Jiang J, Zhang D, et al. An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules. Eur Radiol 2022; 32(3): 2120-9.
[http://dx.doi.org/10.1007/s00330-021-08298-7] [PMID: 34657970]
[41]
Khanna NN, Jamthikar AD, Gupta D, et al. Rheumatoid arthritis: Atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning–based tissue characterization. Curr Atheroscler Rep 2019; 21(2): 7.
[http://dx.doi.org/10.1007/s11883-019-0766-x] [PMID: 30684090]
[42]
Burlina P, Billings S, Joshi N, Albayda J. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods. PLoS One 2017; 12(8): e0184059.
[http://dx.doi.org/10.1371/journal.pone.0184059] [PMID: 28854220]
[43]
Dabbaghchian S, Ghaemmaghami MP, Aghagolzadeh A. Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology. Pattern Recognit 2010; 43(4): 1431-40.
[http://dx.doi.org/10.1016/j.patcog.2009.11.001]
[44]
Chang MC, Peter B, Gerhard S. Feature extraction and K-means clustering approach to explore important features of urban identity. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA).
[http://dx.doi.org/10.1109/ICMLA.2017.00015]
[45]
Mohd Sagheer SV, George SN. A review on medical image denoising algorithms. Biomed Signal Process Control 2020; 61: 102036.
[http://dx.doi.org/10.1016/j.bspc.2020.102036]
[46]
Arnal J, Mayzel I. Parallel techniques for speckle noise reduction in medical ultrasound images. Adv Eng Softw 2020; 148: 102867.
[http://dx.doi.org/10.1016/j.advengsoft.2020.102867]
[47]
El-said SA, Azar AT. Speckles suppression techniques for ultrasound images. J Med Imaging Radiat Sci 2012; 43(4): 200-13.
[http://dx.doi.org/10.1016/j.jmir.2012.06.001] [PMID: 31052006]
[48]
Gupta M, Taneja H, Chand L. Performance enhancement and analysis of filters in ultrasound image denoising. Procedia Comput Sci 2018; 132: 643-52.
[http://dx.doi.org/10.1016/j.procs.2018.05.063]
[49]
Singh K, Sharma B, Singh J, et al. Local statistics-based speckle reducing bilateral filter for medical ultrasound images. Mob Netw Appl 2020; 25(6): 2367-89.
[http://dx.doi.org/10.1007/s11036-020-01615-2]
[50]
Yang J, Fan J, Ai D, et al. Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. Neurocomputing 2016; 195: 88-95.
[http://dx.doi.org/10.1016/j.neucom.2015.05.140]
[51]
Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin CW. Deep learning on image denoising: An overview. Neural Netw 2020; 131: 251-75.
[http://dx.doi.org/10.1016/j.neunet.2020.07.025] [PMID: 32829002]
[52]
Duarte-Salazar CA, Castro-Ospina AE, Becerra MA, Delgado-Trejos E. Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: An overview. IEEE Access 2020; 8: 15983-99.
[http://dx.doi.org/10.1109/ACCESS.2020.2967178]
[53]
Kaur P, Singh G, Kaur P. A review of denoising medical images using machine learning approaches. Curr Med Imaging Rev 2018; 14(5): 675-85.
[http://dx.doi.org/10.2174/1573405613666170428154156] [PMID: 30532667]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy