Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

A Research Update on Exendin-4 as a Novel Molecule Against Parkinson’s Disease

Author(s): Niraj Kumar Singh*, Ashini Singh, Mini Varshney and Ritik Agrawal

Volume 23, Issue 9, 2023

Published on: 12 June, 2023

Page: [889 - 900] Pages: 12

DOI: 10.2174/1566524023666230529093314

Price: $65

Abstract

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, and its consequences severely influence the quality of a patient’s life and mobility. PD is characterized by bradykinesias with tremors and/or rigidity. Pathophysiologically, PD is associated with the gradual degeneration of dopaminergic neurons in the substantia nigra pars compacta of the midbrain, neuroinflammation, increased accumulation of the alpha (α)-synuclein, overburden of oxidative stress, and mitochondrial dysfunction. To date, there are no effective therapies with underlying shreds of evidence that alters the progression of PD. Exendin-4, a glucagon-like peptide 1 (GLP-1) receptor agonist, has gained attention for its tremendous neuroprotective potential against numerous neurodegenerative disorders, including PD. Further, several pieces of research evidence have suggested the beneficial role of Exendin-4 in PD-like experimental models. The present review article highlights the preclinical and clinical evidence of the therapeutic benefits of Exendin-4 against PD. Exendin-4 reverses the PD-like symptoms in experimental animals by dramatically minimizing the loss of dopaminergic neuronal and accumulation of α-synuclein in the PD-like brain. Further, it also reduces the mitochondrial toxicity and expression of pro-inflammatory mediators such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β. These observations designate that Exendin-4 is a multifactorial compound that could be considered a safe, effective, and new ingredient for developing clinically useful pharmacotherapy for managing PD-like manifestations.

[1]
Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 2020; 11: 356.
[http://dx.doi.org/10.3389/fphar.2020.00356] [PMID: 32390826]
[2]
Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 2021; 7(1): 47.
[http://dx.doi.org/10.1038/s41572-021-00280-3] [PMID: 34210995]
[3]
Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp Mol Pathol 2023; 129: 104846.
[http://dx.doi.org/10.1016/j.yexmp.2022.104846] [PMID: 36436571]
[4]
Zhu B, Yin D, Zhao H, Zhang L. The immunology of Parkinson’s disease. Semin Immunopathol 2022; 44(5): 659-72.
[http://dx.doi.org/10.1007/s00281-022-00947-3] [PMID: 35674826]
[5]
Wolters EC. Variability in the clinical expression of Parkinson’s disease. J Neurol Sci 2008; 266(1-2): 197-203.
[http://dx.doi.org/10.1016/j.jns.2007.08.016] [PMID: 17854836]
[6]
Hölscher C. Glucagon-like peptide 1 and glucose-dependent insulinotropic peptide hormones and novel receptor agonists protect synapses in Alzheimer’s and Parkinson’s diseases. Front Synaptic Neurosci 2022; 14: 955258.
[http://dx.doi.org/10.3389/fnsyn.2022.955258] [PMID: 35965783]
[7]
Marino BLB, de Souza LR, Sousa KPA, et al. Parkinson’s Disease: A review from pathophysiology to treatment. Mini Rev Med Chem 2020; 20(9): 754-67.
[http://dx.doi.org/10.2174/1389557519666191104110908] [PMID: 31686637]
[8]
Goyal A, Verma A, Agrawal N. Dietary phytoestrogens: neuroprotective role in Parkinson’s disease. Curr Neurovasc Res 2021; 18(2): 254-67.
[http://dx.doi.org/10.2174/1567202618666210604121233] [PMID: 34086550]
[9]
Zhang L, Li C, Zhang Z, et al. DA5-CH and semaglutide protect against neurodegeneration and reduce α-synuclein levels in the 6-OHDA Parkinson’s Disease rat model. Parkinsons Dis 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/1428817] [PMID: 36419409]
[10]
Garabadu D, Verma J. Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1–42)-induced cognitive deficit rats. Neurochem Int 2019; 128: 39-49.
[http://dx.doi.org/10.1016/j.neuint.2019.04.006] [PMID: 31004737]
[11]
Zaman V, Shields DC, Shams R, et al. Cellular and molecular pathophysiology in the progression of Parkinson’s disease. Metab Brain Dis 2021; 36(5): 815-27.
[http://dx.doi.org/10.1007/s11011-021-00689-5] [PMID: 33599945]
[12]
Athauda D, Foltynie T. The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 2015; 11(1): 25-40.
[http://dx.doi.org/10.1038/nrneurol.2014.226] [PMID: 25447485]
[13]
Lima M, Targa A, Noseda A, et al. Does Parkinson’s disease and type-2 diabetes mellitus present common pathophysiological mechanisms and treatments? CNS Neurol Disord Drug Targets 2014; 13(3): 418-28.
[http://dx.doi.org/10.2174/18715273113126660155] [PMID: 24059307]
[14]
De Pablo-Fernández E, Breen DP, Bouloux PM, Barker RA, Foltynie T, Warner TT. Neuroendocrine abnormalities in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2017; 88(2): 176-85.
[http://dx.doi.org/10.1136/jnnp-2016-314601] [PMID: 27799297]
[15]
Hogg E, Athreya K, Basile C, Tan EE, Kaminski J, Tagliati M. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with Parkinson’s Disease. J Parkinsons Dis 2018; 8(2): 259-65.
[http://dx.doi.org/10.3233/JPD-181305] [PMID: 29614702]
[16]
Glotfelty EJ, Olson L, Karlsson TE, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson’s disease. Expert Opin Investig Drugs 2020; 29(6): 595-602.
[http://dx.doi.org/10.1080/13543784.2020.1764534] [PMID: 32412796]
[17]
Colosimo C, De Iuliis A, Montinaro E, Fatati G, Plebani M. Diabetes mellitus and Parkinson’s disease: Dangerous liaisons between insulin and dopamine. Neural Regen Res 2022; 17(3): 523-33.
[http://dx.doi.org/10.4103/1673-5374.320965] [PMID: 34380882]
[18]
Cheng Z, Tseng Y, White MF. Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 2010; 21(10): 589-98.
[http://dx.doi.org/10.1016/j.tem.2010.06.005] [PMID: 20638297]
[19]
Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P. p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s Disease. Int J Mol Cell Med 2015; 4(2): 67-86.
[PMID: 26261796]
[20]
Morris JK, Zhang H, Gupte AA, Bomhoff GL, Stanford JA, Geiger PC. Measures of striatal insulin resistance in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res 2008; 1240: 185-95.
[http://dx.doi.org/10.1016/j.brainres.2008.08.089] [PMID: 18805403]
[21]
Wang L, Zhai YQ, Xu LL, et al. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Exp Neurol 2014; 251: 22-9.
[http://dx.doi.org/10.1016/j.expneurol.2013.11.001] [PMID: 24220636]
[22]
Choi JY, Jang EH, Park CS, Kang JH. Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radic Biol Med 2005; 38(6): 806-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.12.008] [PMID: 15721991]
[23]
Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-β levels. Nat Med 2002; 8(12): 1390-7.
[http://dx.doi.org/10.1038/nm1202-793] [PMID: 12415260]
[24]
Watson GS, Peskind ER, Asthana S, et al. Insulin increases CSF A 42 levels in normal older adults. Neurology 2003; 60(12): 1899-903.
[http://dx.doi.org/10.1212/01.WNL.0000065916.25128.25] [PMID: 12821730]
[25]
Tokutake T, Kasuga K, Yajima R, et al. Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem 2012; 287(42): 35222-33.
[http://dx.doi.org/10.1074/jbc.M112.348300] [PMID: 22910909]
[26]
Gao S, Duan C, Gao G, Wang X, Yang H. Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling. Int J Biochem Cell Biol 2015; 64: 25-33.
[http://dx.doi.org/10.1016/j.biocel.2015.03.006] [PMID: 25813876]
[27]
Sharma SK, Chorell E, Steneberg P, Vernersson-Lindahl E, Edlund H, Wittung-Stafshede P. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci Rep 2015; 5(1): 12531.
[http://dx.doi.org/10.1038/srep12531] [PMID: 26228656]
[28]
Ashpole NM, Sanders JE, Hodges EL, Yan H, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol 2015; 68: 76-81.
[http://dx.doi.org/10.1016/j.exger.2014.10.002] [PMID: 25300732]
[29]
Athauda D, Foltynie T. Insulin resistance and Parkinson’s disease: A new target for disease modification? Prog Neurobiol 2016; 145-146: 98-120.
[http://dx.doi.org/10.1016/j.pneurobio.2016.10.001] [PMID: 27713036]
[30]
Borlongan CV, Esparza-Salazar FJ, Lezama-Toledo AR, Rivera-Monroy G. Exendin-4 for Parkinson’s disease. Brain Circ 2021; 7(1): 41-3.
[http://dx.doi.org/10.4103/bc.bc_21_21] [PMID: 34084977]
[31]
Alvarez E, Martínez MD, Roncero I, et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem 2005; 92(4): 798-806.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02914.x] [PMID: 15686481]
[32]
Kappe C, Tracy LM, Patrone C, Iverfeldt K, Sjöholm Å. GLP-1 secretion by microglial cells and decreased CNS expression in obesity. J Neuroinflammation 2012; 9(1): 766.
[http://dx.doi.org/10.1186/1742-2094-9-276] [PMID: 23259618]
[33]
Reiner DJ, Mietlicki-Baase EG, McGrath LE, et al. Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J Neurosci 2016; 36(12): 3531-40.
[http://dx.doi.org/10.1523/JNEUROSCI.3579-15.2016] [PMID: 27013681]
[34]
Spielman LJ, Gibson DL, Klegeris A. Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors. Eur J Cell Biol 2017; 96(3): 240-53.
[http://dx.doi.org/10.1016/j.ejcb.2017.03.004] [PMID: 28336086]
[35]
Grieco M, Giorgi A, Gentile MC, et al. Glucagon-like peptide-1: A focus on neurodegenerative diseases. Front Neurosci 2019; 13: 1112.
[http://dx.doi.org/10.3389/fnins.2019.01112] [PMID: 31680842]
[36]
Salameh TS, Rhea EM, Talbot K, Banks WA. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer’s and Parkinson’s disease therapeutics. Biochem Pharmacol 2020; 180: 114187.
[http://dx.doi.org/10.1016/j.bcp.2020.114187] [PMID: 32755557]
[37]
Hamilton A, Patterson S, Porter D, Gault VA, Holscher C. Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. J Neurosci Res 2011; 89(4): 481-9.
[http://dx.doi.org/10.1002/jnr.22565] [PMID: 21312223]
[38]
Teramoto S, Miyamoto N, Yatomi K, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cereb Blood Flow Metab 2011; 31(8): 1696-705.
[http://dx.doi.org/10.1038/jcbfm.2011.51] [PMID: 21487412]
[39]
Bassil F, Fernagut PO, Bezard E, Meissner WG. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: Targets for disease modification? Prog Neurobiol 2014; 118: 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.005] [PMID: 24582776]
[40]
Seufert J, Gallwitz B. The extra-pancreatic effects of GLP-1 receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obes Metab 2014; 16(8): 673-88.
[http://dx.doi.org/10.1111/dom.12251] [PMID: 24373150]
[41]
Wang Q, Li L, Xu E, Wong V, Rhodes C, Brubaker PL. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia 2004; 47(3): 478-87.
[http://dx.doi.org/10.1007/s00125-004-1327-5] [PMID: 14762654]
[42]
Tews D, Lehr S, Hartwig S, Osmers A, Paßlack W, Eckel J. Anti-apoptotic action of exendin-4 in INS-1 beta cells: comparative protein pattern analysis of isolated mitochondria. Horm Metab Res 2009; 41(4): 294-301.
[http://dx.doi.org/10.1055/s-0028-1105911] [PMID: 19085810]
[43]
Li Z, Zhou Z, Huang G, Hu F, Xiang Y, He L. Exendin-4 protects mitochondria from reactive oxygen species induced apoptosis in pancreatic Beta cells. PLoS One 2013; 8(10): e76172.
[http://dx.doi.org/10.1371/journal.pone.0076172] [PMID: 24204601]
[44]
Alismail H, Jin S. Microenvironmental stimuli for proliferation of functional islet β-cells. Cell Biosci 2014; 4(1): 12.
[http://dx.doi.org/10.1186/2045-3701-4-12] [PMID: 24594290]
[45]
Chen SD, Chuang YC, Lin TK, Yang JL. Alternative role of glucagon-like peptide-1 receptor agonists in neurodegenerative diseases. Eur J Pharmacol 2023; 938: 175439.
[http://dx.doi.org/10.1016/j.ejphar.2022.175439] [PMID: 36470445]
[46]
Li L, Zhang L-Y, Jin Q-Q, Hölscher C. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model. Neural Regen Res 2021; 16(8): 1660-70.
[http://dx.doi.org/10.4103/1673-5374.303045] [PMID: 33433498]
[47]
Labandeira C, Fraga-Bau A, Arias Ron D, et al. Parkinson’s disease and diabetes mellitus: Common mechanisms and treatment repurposing. Neural Regen Res 2022; 17(8): 1652-8.
[http://dx.doi.org/10.4103/1673-5374.332122] [PMID: 35017411]
[48]
Parkes DG, Mace KF, Trautmann ME. Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opin Drug Discov 2013; 8(2): 219-44.
[http://dx.doi.org/10.1517/17460441.2013.741580] [PMID: 23231438]
[49]
Drucker DJ, Nauck MA. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696-705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[50]
Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action. Drug Discov Today 2016; 21(5): 802-18. a
[http://dx.doi.org/10.1016/j.drudis.2016.01.013] [PMID: 26851597]
[51]
Chepurny OG, Hussain MA, Holz GG. Exendin-4 as a stimulator of rat insulin I gene promoter activity via bZIP/CRE interactions sensitive to serine/threonine protein kinase inhibitor Ro 31-8220. Endocrinology 2002; 143(6): 2303-13.
[http://dx.doi.org/10.1210/endo.143.6.8870] [PMID: 12021195]
[52]
Gedulin BR, Nikoulina SE, Smith PA, et al. Exenatide (exendin-4) improves insulin sensitivity and beta-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology 2005; 146(4): 2069-76.
[http://dx.doi.org/10.1210/en.2004-1349] [PMID: 15618356]
[53]
Pérez-Tilve D, González-Matías L, Aulinger BA, et al. Exendin-4 increases blood glucose levels acutely in rats by activation of the sympathetic nervous system. Am J Physiol Endocrinol Metab 2010; 298(5): E1088-96.
[http://dx.doi.org/10.1152/ajpendo.00464.2009] [PMID: 20197503]
[54]
Bu LL, Liu YQ, Shen Y, et al. Neuroprotection of exendin-4 by enhanced autophagy in a Parkinsonian rat model of α-synucleinopathy. Neurotherapeutics 2021; 18(2): 962-78.
[http://dx.doi.org/10.1007/s13311-021-01018-5] [PMID: 33723752]
[55]
Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation 2008; 5(1): 19.
[http://dx.doi.org/10.1186/1742-2094-5-19] [PMID: 18492290]
[56]
Li Y, Perry T, Kindy MS, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci 2009; 106(4): 1285-90.
[http://dx.doi.org/10.1073/pnas.0806720106] [PMID: 19164583]
[57]
Zhang Y, Chen Y, Li L, Hölscher C. Neuroprotective effects of (Val8)GLP-1-Glu-PAL in the MPTP Parkinson’s disease mouse model. Behav Brain Res 2015; 293: 107-13.
[http://dx.doi.org/10.1016/j.bbr.2015.07.021] [PMID: 26187689]
[58]
Bendor JT, Logan TP, Edwards RH. The function of α-synuclein. Neuron 2013; 79(6): 1044-66.
[http://dx.doi.org/10.1016/j.neuron.2013.09.004] [PMID: 24050397]
[59]
Bergkvist L, Johnson ME, Mercado G, et al. An extended release GLP-1 analogue increases α-synuclein accumulation in a mouse model of prodromal Parkinson’s disease. Exp Neurol 2021; 341: 113693.
[http://dx.doi.org/10.1016/j.expneurol.2021.113693] [PMID: 33727096]
[60]
Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson’s disease, insulin resistance and novel agents of neuroprotection. Brain 2013; 136(2): 374-84.
[http://dx.doi.org/10.1093/brain/aws009] [PMID: 22344583]
[61]
McClean PL, Gault VA, Harriott P, Hölscher C. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: A link between diabetes and Alzheimer’s disease. Eur J Pharmacol 2010; 630(1-3): 158-62.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.023] [PMID: 20035739]
[62]
Bassil F, Canron MH, Vital A, et al. Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain 2017; 140(5): 1420-36.
[http://dx.doi.org/10.1093/brain/awx044] [PMID: 28334990]
[63]
Tansey MG, Frank-Cannon TC, McCoy MK, et al. Neuroinflammation in Parkinson’s Disease: Is there sufficient evidence for mechanism-based interventional therapy? Front Biosci 2008; 13(13): 709-17.
[http://dx.doi.org/10.2741/2713] [PMID: 17981581]
[64]
Figat M, Kardas G, Kuna P, Panek M. Beneficial influence of exendin-4 on specific organs and mechanisms favourable for the elderly with concomitant obstructive lung diseases. Brain Sci 2022; 12(8): 1090.
[http://dx.doi.org/10.3390/brainsci12081090] [PMID: 36009152]
[65]
Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A new treatment strategy for Parkinson’s Disease through the gut–brain axis. Cell Transplant 2017; 26(9): 1560-71.
[http://dx.doi.org/10.1177/0963689717721234] [PMID: 29113464]
[66]
Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 2007; 167(1): 90-5.
[http://dx.doi.org/10.1093/aje/kwm260] [PMID: 17890755]
[67]
Vicente Miranda H, El-Agnaf OMA, Outeiro TF. Glycation in Parkinson’s disease and Alzheimer’s disease. Mov Disord 2016; 31(6): 782-90.
[http://dx.doi.org/10.1002/mds.26566] [PMID: 26946341]
[68]
Cheong JLY, de Pablo-Fernandez E, Foltynie T, Noyce AJ. The association between type 2 diabetes mellitus and Parkinson’s Disease. J Parkinsons Dis 2020; 10(3): 775-89.
[http://dx.doi.org/10.3233/JPD-191900] [PMID: 32333549]
[69]
Labandeira CM, Fraga-Bau A, Arias Ron D, et al. Diabetes, insulin and new therapeutic strategies for Parkinson’s disease: Focus on glucagon-like peptide-1 receptor agonists. Front Neuroendocrinol 2021; 62: 100914.
[http://dx.doi.org/10.1016/j.yfrne.2021.100914] [PMID: 33845041]
[70]
Lee YS, Jun HS. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/3094642] [PMID: 27110066]
[71]
Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol 2009; 202(3): 431-9.
[http://dx.doi.org/10.1677/JOE-09-0132] [PMID: 19570816]
[72]
Sancandi M, Schul EV, Economides G, Constanti A, Mercer A. Structural changes observed in the piriform cortex in a rat model of pre-motor Parkinson’s Disease. Front Cell Neurosci 2018; 12: 479.
[http://dx.doi.org/10.3389/fncel.2018.00479] [PMID: 30618629]
[73]
Ventorp F, Bay-Richter C, Nagendra AS, et al. Exendin-4 treatment improves LPS-induced depressive-like behavior without affecting pro-inflammatory cytokines. J Parkinsons Dis 2017; 7(2): 263-73.
[http://dx.doi.org/10.3233/JPD-171068] [PMID: 28387682]
[74]
Shiraishi D, Fujiwara Y, Komohara Y, Mizuta H, Takeya M. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun 2012; 425(2): 304-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.086] [PMID: 22842565]
[75]
Park JS, Davis RL, Sue CM. Mitochondrial dysfunction in Parkinson’s Disease: New mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 2018; 18(5): 21.
[http://dx.doi.org/10.1007/s11910-018-0829-3] [PMID: 29616350]
[76]
Müftüoglu M, Elibol B, Dalmızrak Ö, et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 2004; 19(5): 544-8.
[http://dx.doi.org/10.1002/mds.10695] [PMID: 15133818]
[77]
Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005; 14(14): 2063-73.
[http://dx.doi.org/10.1093/hmg/ddi211] [PMID: 15944198]
[78]
Abramov AY, Gegg M, Grunewald A, Wood NW, Klein C, Schapira AHV. Bioenergetic consequences of PINK1 mutations in Parkinson disease. PLoS One 2011; 6(10): e25622.
[http://dx.doi.org/10.1371/journal.pone.0025622] [PMID: 22043288]
[79]
Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 2013; 106-107: 17-32.
[http://dx.doi.org/10.1016/j.pneurobio.2013.04.004] [PMID: 23643800]
[80]
Zhang Z, Chen SD. Autonomic dysfunctions in Parkinson’s Disease: Prevalence, clinical characteristics, potential diagnostic markers, and treatment. Parkinsons Dis 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/8740732] [PMID: 33425317]
[81]
Fan R, Li X, Gu X, Chan JCN, Xu G. Exendin-4 protects pancreatic beta cells from human islet amyloid polypeptide-induced cell damage: Potential involvement of AKT and mitochondria biogenesis. Diabetes Obes Metab 2010; 12(9): 815-24.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01238.x] [PMID: 20649634]
[82]
Zhou H, Yang J, Xin T, et al. Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt–Sfrp2 pathways. Free Radic Biol Med 2014; 77: 363-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.033] [PMID: 25452142]
[83]
Armstrong RJE, Barker RA. Neurodegeneration: A failure of neuroregeneration? Lancet 2001; 358(9288): 1174-6.
[http://dx.doi.org/10.1016/S0140-6736(01)06260-2] [PMID: 11597694]
[84]
Blandini F. Neural and immune mechanisms in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharmacol 2013; 8(1): 189-201.
[http://dx.doi.org/10.1007/s11481-013-9435-y] [PMID: 23378275]
[85]
Ma Y, Zhan M, OuYang L, et al. The effects of unilateral 6-OHDA lesion in medial forebrain bundle on the motor, cognitive dysfunctions and vulnerability of different striatal interneuron types in rats. Behav Brain Res 2014; 266: 37-45.
[http://dx.doi.org/10.1016/j.bbr.2014.02.039] [PMID: 24613235]
[86]
Bertilsson G, Patrone C, Zachrisson O, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson’s disease. J Neurosci Res 2008; 86(2): 326-38.
[http://dx.doi.org/10.1002/jnr.21483] [PMID: 17803225]
[87]
Isacson R, Nielsen E, Dannaeus K, et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test. Eur J Pharmacol 2011; 650(1): 249-55.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.008] [PMID: 20951130]
[88]
Harkavyi A, Rampersaud N, Whitton PS. Neuroprotection by exendin-4 Is GLP-1 receptor specific but DA D3 receptor dependent, causing altered BrdU incorporation in subventricular zone and substantia nigra. J Neurodegener Dis 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/407152] [PMID: 26316987]
[89]
Chen S, Yu SJ, Li Y, et al. Post-treatment with PT302, a long-acting Exendin-4 sustained release formulation, reduces dopaminergic neurodegeneration in a 6-Hydroxydopamine rat model of Parkinson’s disease. Sci Rep 2018; 8(1): 10722.
[http://dx.doi.org/10.1038/s41598-018-28449-z] [PMID: 30013201]
[90]
Aviles-Olmos I, Dickson J, Kefalopoulou Z, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest 2013; 123(6): 2730-6. a
[http://dx.doi.org/10.1172/JCI68295] [PMID: 23728174]
[91]
Aviles-Olmos I, Dickson J, Kefalopoulou Z, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinsons Dis 2014; 4(3): 337-44.
[http://dx.doi.org/10.3233/JPD-140364] [PMID: 24662192]
[92]
Athauda D, Gulyani S, Karnati H, et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with parkinson disease. JAMA Neurol 2019; 76(4): 420-9.
[http://dx.doi.org/10.1001/jamaneurol.2018.4304] [PMID: 30640362]
[93]
Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet 2017; 390(10103): 1664-75.
[http://dx.doi.org/10.1016/S0140-6736(17)31585-4] [PMID: 28781108]
[94]
Athauda D, Maclagan K, Budnik N, et al. Post hoc analysis of the Exenatide-PD trial-Factors that predict response. Eur J Neurosci 2019; 49(3): 410-21.
[http://dx.doi.org/10.1111/ejn.14096] [PMID: 30070753]
[95]
Athauda D, Maclagan K, Budnik N, et al. What effects might exenatide have on non-motor symptoms in Parkinson’s Disease: A post hoc analysis. J Parkinsons Dis 2018; 8(2): 247-58.
[http://dx.doi.org/10.3233/JPD-181329] [PMID: 29843254]
[96]
Soni H. Peptide-based GLP-1/glucagon co-agonists: A double-edged sword to combat diabesity. Med Hypotheses 2016; 95: 5-9.
[http://dx.doi.org/10.1016/j.mehy.2016.08.005] [PMID: 27692167]
[97]
Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 2015; 21(1): 27-36.
[http://dx.doi.org/10.1038/nm.3761] [PMID: 25485909]
[98]
Elbassuoni EA, Ahmed RF. Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson’s with pre-existing diabetes. Neurochem Int 2019; 131: 104583.
[http://dx.doi.org/10.1016/j.neuint.2019.104583] [PMID: 31654678]
[99]
Aksoy D, Solmaz V, Çavuşoğlu T, Meral A, Ateş U, Erbaş O. Neuroprotective effects of eexenatide in a rotenone-induced rat model of Parkinson’s Disease. Am J Med Sci 2017; 354(3): 319-24.
[http://dx.doi.org/10.1016/j.amjms.2017.05.002] [PMID: 28918840]
[100]
Wang V, Kuo TT, Huang EYK, et al. Sustained release GLP-1 agonist PT320 delays disease progression in a mouse model of Parkinson’s Disease. ACS Pharmacol Transl Sci 2021; 4(2): 858-69.
[http://dx.doi.org/10.1021/acsptsci.1c00013] [PMID: 33860208]
[101]
Ji C, Xue GF, Lijun C, et al. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson′s disease by increasing expression of BNDF. Brain Res 2016; 1634: 1-11.
[http://dx.doi.org/10.1016/j.brainres.2015.09.035] [PMID: 26453833]
[102]
Jalewa J, Sharma MK, Gengler S, Hölscher C. A novel GLP-1/GIP dual receptor agonist protects from 6-OHDA lesion in a rat model of Parkinson’s disease. Neuropharmacology 2017; 117: 238-48.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.013] [PMID: 28223210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy