Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Combinatorial Chemosensitive Nanomedicine Approach for the Treatment of Breast Cancer

Author(s): Priya Gupta, Yub Raj Neupane, Suhel Parvez, Kanchan Kohli and Yasmin Sultana*

Volume 23, Issue 9, 2023

Published on: 27 September, 2022

Page: [876 - 888] Pages: 13

DOI: 10.2174/1566524023666220819122948

Price: $65

Abstract

Breast cancer is the most commonly diagnosed type of cancer and ranks second among cancer that leads to death. From becoming the foremost reason for global concern, this multifactorial disease is being treated by conventional chemotherapies that are associated with severe side effects, with chemoresistance being the ruling reason. Exemestane, an aromatase inhibitor that has been approved by the US FDA for the treatment of breast cancer in post-menopausal women, acts by inhibiting the aromatase enzyme, in turn, inhibiting the production of estrogen. However, the clinical application of exemestane remains limited due to its poor aqueous solubility and low oral bioavailability. Furthermore, the treatment regimen of exemestane often leads to thinning of bone mineral density. Thymoquinone, a natural compound derived from the oil of the seeds of Nigella sativa Linn, possesses the dual property of being a chemosensitizer and chemotherapeutic agent. In addition, it has been found to exhibit potent bone protection properties, as evidenced by several studies. To mitigate the limitations associated with exemestane and to deliver to the cancerous cells overcoming chemoresistance, the present hypothesis has been put forth, wherein a natural chemosensitizer and chemotherapeutic agent thymoquinone will be incorporated into a lipid nanocarrier along with exemestane for combinatorial delivery to cancer cells. Additionally, thymoquinone being bone protecting will help in ousting the untoward effect of exemestane at the same time delivering it to the required malignant cells, safeguarding the healthy cells, reducing the offsite toxicity, and providing potent synergistic action.

Keywords: Breast cancer, exemestane, thymoquinone, chemoresistance, chemosensitizer, combinatorial delivery

[1]
Waks AG, Winer EP. Breast cancer treatment: A Review. JAMA 2019; 321(3): 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[2]
Dolatkhah R, Somi MH, Jafarabadi MA, et al. Breast cancer survival and incidence: 10 years cancer registry data in the Northwest, Iran. Int J Breast Cancer 2020; 2020: 1963814.
[http://dx.doi.org/10.1155/2020/1963814] [PMID: 32411480]
[3]
Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021; 173: 306-30.
[http://dx.doi.org/10.1016/j.addr.2021.03.018] [PMID: 33798642]
[4]
Mangla B, Neupane YR, Singh A, Kohli K. Tamoxifen and Sulphoraphane for the breast cancer management: A synergistic nanomedicine approach. Med Hypotheses 2019; 132: 109379.
[http://dx.doi.org/10.1016/j.mehy.2019.109379] [PMID: 31454641]
[5]
Schneider R, Barakat A, Pippen J, Osborne C. Aromatase inhibitors in the treatment of breast cancer in post-menopausal female patients: an update. Breast Cancer 2011; 3: 113-25.
[http://dx.doi.org/10.2147/BCTT.S22905] [PMID: 24367181]
[6]
Olin JL, St Pierre M. Aromatase inhibitors in breast cancer prevention. Ann Pharmacother 2014; 48(12): 1605-10.
[http://dx.doi.org/10.1177/1060028014548416] [PMID: 25159003]
[7]
Hashemi-Meshkini A, Keshavarz K, Gharibnaseri Z, et al. Cost-effectiveness analysis review of exemestane in the treatment of primary and advanced breast cancer. Arch Med Sci 2013; 9(3): 472-8.
[http://dx.doi.org/10.5114/aoms.2013.35347] [PMID: 23847669]
[8]
Untch M, Jackisch C. Exemestane in early breast cancer: A review. Ther Clin Risk Manag 2008; 4(6): 1295-304.
[http://dx.doi.org/10.2147/TCRM.S4007] [PMID: 19337436]
[9]
Lønning PE. Exemestane: A review of its clinical efficacy and safety. Breast 2001; 10(3): 198-208.
[http://dx.doi.org/10.1054/brst.2001.0293] [PMID: 14965585]
[10]
Morden JP, Alvarez I, Bertelli G, et al. Long-term follow-up of the intergroup exemestane study. J Clin Oncol 2017; 35(22): 2507-14.
[http://dx.doi.org/10.1200/JCO.2016.70.5640] [PMID: 28467729]
[11]
Mustacchi G, Mansutti M, Sacco C, et al. Neo-adjuvant exemestane in elderly patients with breast cancer: A phase II, multicentre, open-label, Italian study. Ann Oncol 2009; 20(4): 655-9.
[http://dx.doi.org/10.1093/annonc/mdn687] [PMID: 19150936]
[12]
Pagani O, Regan MM, Walley BA, et al. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med 2014; 371(2): 107-18.
[http://dx.doi.org/10.1056/NEJMoa1404037] [PMID: 24881463]
[13]
Decensi A, Dunn BK, Puntoni M, Gennari A, Ford LG. Exemestane for breast cancer prevention: A critical shift? Cancer Discov 2012; 2(1): 25-40.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0248] [PMID: 22585166]
[14]
Goss PE, Ingle JN, Alés-Martínez JE, et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 2011; 364(25): 2381-91.
[http://dx.doi.org/10.1056/NEJMoa1103507] [PMID: 21639806]
[15]
Zhang Y, Simondsen K, Kolesar JM. Exemestane for primary prevention of breast cancer in postmenopausal women. Am J Heal Pharm 2012; 69(16): 1384-8.
[http://dx.doi.org/10.2146/ajhp110585] [PMID: 22855103]
[16]
Singh A, Neupane YR, Mangla B, Kohli K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: Formulation design, in vitro, ex vivo, and in vivo Studies. J Pharm Sci 2019; 108(10): 3382-95.
[http://dx.doi.org/10.1016/j.xphs.2019.06.003] [PMID: 31201904]
[17]
Hadji P, Ziller M, Kieback DG, et al. Effects of exemestane and tamoxifen on bone health within the Tamoxifen Exemestane Adjuvant Multicentre (TEAM) trial: results of a German, 12-month, prospective, randomised substudy. Ann Oncol 2009; 20(7): 1203-9.
[http://dx.doi.org/10.1093/annonc/mdn762] [PMID: 19218306]
[18]
Khan SA, Khan AM, Karim S, Kamal MA, Damanhouri GA, Mirza Z. Panacea seed “Nigella”: A review focusing on regenerative effects for gastric ailments. Saudi J Biol Sci 2016; 23(4): 542-53.
[http://dx.doi.org/10.1016/j.sjbs.2014.10.001] [PMID: 27298589]
[19]
Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review on clinical trials of black Seed (Nigella sativa) and its active constituent, thymoquinone. J Pharmacopuncture 2017; 20(3): 179-93.
[http://dx.doi.org/10.3831/KPI.2017.20.021] [PMID: 30087794]
[20]
Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res 2015; 95-96: 138-58.
[http://dx.doi.org/10.1016/j.phrs.2015.03.011] [PMID: 25829334]
[21]
Ahmad A, Mishra RK, Vyawahare A, et al. Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm J 2019; 27(8): 1113-26.
[http://dx.doi.org/10.1016/j.jsps.2019.09.008] [PMID: 31885471]
[22]
Woo CC, Loo SY, Gee V, et al. Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway. Biochem Pharmacol 2011; 82(5): 464-75.
[http://dx.doi.org/10.1016/j.bcp.2011.05.030] [PMID: 21679698]
[23]
Rajput S, Kumar BNP, Dey KK, Pal I, Parekh A, Mandal M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci 2013; 93(21): 783-90.
[http://dx.doi.org/10.1016/j.lfs.2013.09.009] [PMID: 24044882]
[24]
Cagri S, Kenan İ, Banu İ, Sezen S, et al. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumor Biol 2016; 37: 4467-77.
[http://dx.doi.org/10.1007/s13277-015-4307-0]
[25]
Connelly L, Barham W, Onishko HM, et al. Inhibition of NF-kappa B activity in mammary epithelium increases tumor latency and decreases tumor burden. Oncogene 2011; 30(12): 1402-12.
[http://dx.doi.org/10.1038/onc.2010.521] [PMID: 21076466]
[26]
Santoso ARB, Huwae TECJ, Kristianto Y, Putera MA. Effect of thymoquinone: the extract of Nigella sativa in accelerating soft callus formation in fracture. Int J Res Med Sci 2019; 7: 4068.
[http://dx.doi.org/10.18203/2320-6012.ijrms20194969]
[27]
Kalamegam G, Alfakeeh SM, Bahmaid AO, et al. In vitro evaluation of the anti-inflammatory effects of thymoquinone in osteoarthritis and in silico analysis of inter-related pathways in age-related degenerative diseases. Front Cell Dev Biol 2020; 8: 646.
[http://dx.doi.org/10.3389/fcell.2020.00646] [PMID: 32793594]
[28]
Anwar M, Tayyab M. Effect of Nigella sativa on lipid profile in albino rats. Gomal J Med Sci 2007; 5: 28-31.
[29]
Kirui PK, Cameron J, Benghuzzi HA, et al. Effects of sustained delivery of thymoqiunone on bone healing of male rats. Biomed Sci Instrum 2004; 40: 111-6.
[PMID: 15133944]
[30]
Ozdemir H, Kara MI, Erciyas K, Ozer H, Ay S. Preventive effects of thymoquinone in a rat periodontitis model: a morphometric and histopathological study. J Periodontal Res 2012; 47(1): 74-80.
[http://dx.doi.org/10.1111/j.1600-0765.2011.01406.x] [PMID: 21992581]
[31]
Wirries A, Schubert AK, Zimmermann R, Jabari S, Ruchholtz S, El-Najjar N. Thymoquinone accelerates osteoblast differentiation and activates bone morphogenetic protein-2 and ERK pathway. Int Immunopharmacol 2013; 15(2): 381-6.
[http://dx.doi.org/10.1016/j.intimp.2012.12.033] [PMID: 23333454]
[32]
Kara MI, Erciyas K, Altan AB, Ozkut M, Ay S, Inan S. Thymoquinone accelerates new bone formation in the rapid maxillary expansion procedure. Arch Oral Biol 2012; 57(4): 357-63.
[http://dx.doi.org/10.1016/j.archoralbio.2011.09.012] [PMID: 22036504]
[33]
Umar S, Zargan J, Umar K, Ahmad S, Katiyar CK, Khan HA. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact 2012; 197(1): 40-6.
[http://dx.doi.org/10.1016/j.cbi.2012.03.003] [PMID: 22450443]
[34]
Vaillancourt F, Silva P, Shi Q, Fahmi H, Fernandes JC, Benderdour M. Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J Cell Biochem 2011; 112(1): 107-17.
[http://dx.doi.org/10.1002/jcb.22884] [PMID: 20872780]
[35]
Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[36]
Niu Z, Conejos-Sánchez SI, Griffin BT, O’Driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106(Pt B): 337-54.
[http://dx.doi.org/10.1016/j.addr.2016.04.001] [PMID: 27080735]
[37]
Feeney OM, Crum MF, McEvoy CL, et al. 50years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv Drug Deliv Rev 2016; 101: 167-94.
[http://dx.doi.org/10.1016/j.addr.2016.04.007] [PMID: 27089810]
[38]
Li H, Chen M, Su Z, Sun M, Ping Q. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. Int J Pharm 2016; 511(1): 524-37.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.049] [PMID: 27452421]
[39]
Garcés AS, Amaral MH, Lobo JMS, Silva AC. Formulations based on Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci 2018; 112: 159-67.
[40]
Neupane YR, Sabir MD, Ahmad N, Ali M, Kohli K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology 2013; 24(41): 415102.
[http://dx.doi.org/10.1088/0957-4484/24/41/415102] [PMID: 24061410]
[41]
Neupane YR, Srivastava M, Ahmad N, Kumar N, Bhatnagar A, Kohli K. Lipid based nanocarrier system for the potential oral delivery of decitabine: formulation design, characterization, ex vivo, and in vivo assessment. Int J Pharm 2014; 477(1-2): 601-12.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.001] [PMID: 25445972]
[42]
El Moukhtari SH, Rodríguez-Nogales C, Blanco-Prieto MJ. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv Drug Deliv Rev 2021; 173: 238-51.
[http://dx.doi.org/10.1016/j.addr.2021.03.004] [PMID: 33774117]
[43]
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196: 111305.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111305] [PMID: 32795844]
[44]
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25(2): 219-34.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[45]
Irby D, Du C, Li F. Lipid-drug conjugate for enhancing drug delivery. Mol Pharm 2017; 14(5): 1325-38.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01027] [PMID: 28080053]
[46]
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 2019; 160: 130-42.
[http://dx.doi.org/10.1016/j.mimet.2019.03.017] [PMID: 30898602]
[47]
Velmurugan R, Selvamuthukumar S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. App Nanosci 2016; 6: 159-73.
[http://dx.doi.org/10.1007/s13204-015-0434-6]
[48]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[49]
Salvi VR, Pawar P. Nanostructured Lipid Carriers (NLC) system: A novel drug targeting carrier. J Drug Deliv Sci Technol 2019; 51: 255-67.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[50]
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2022; 2: 2100109.
[http://dx.doi.org/10.1002/anbr.202100109]
[51]
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol Rev 2016; 68(3): 701-87.
[52]
Akanda M, Getti G, Nandi U, Mithu MS, Douroumis D. Bioconjugated Solid Lipid Nanoparticles (SLNs) for targeted prostate cancer therapy. Int J Pharm 2021; 599: 120416.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120416] [PMID: 33647403]
[53]
Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother 2019; 116: 109006.
[http://dx.doi.org/10.1016/j.biopha.2019.109006] [PMID: 31152925]
[54]
Bhagwat GS, Athawale RB, Gude RP, et al. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front Pharmacol 2020; 11: 614290.
[http://dx.doi.org/10.3389/fphar.2020.614290] [PMID: 33329007]
[55]
Satari N, Taymouri S, Varshosaz J, Rostami M, Mirian M. Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Dev Ind Pharm 2020; 46(8): 1265-77.
[http://dx.doi.org/10.1080/03639045.2020.1788063] [PMID: 32594775]
[56]
Akanda M, Getti G, Douroumis D. In vivo evaluation of nanostructured lipid carrier systems (NLCs) in mice bearing prostate cancer tumours. Drug Deliv Transl Res 2021.
[http://dx.doi.org/10.1007/s13346-021-01095-1] [PMID: 34845679]
[57]
Chand P, Kumar H, Badduri N, et al. Design and evaluation of cabazitaxel loaded NLCs against breast cancer cell lines. Colloids Surf B Biointerfaces 2021; 199: 111535.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111535] [PMID: 33360926]
[58]
Sartaj A, Annu , Biswas L, et al. Ribociclib nanostructured lipid carrier aimed for breast cancer: Formulation optimization, attenuating in vitro specification, and in vivo scrutinization. BioMed Res Int 2022; 2022: 6009309.
[http://dx.doi.org/10.1155/2022/6009309] [PMID: 35155677]
[59]
Taymouri S, Alem M, Varshosaz J, Rostami M, Akbari V, Firoozpour L. Biotin decorated sunitinib loaded nanostructured lipid carriers for tumor targeted chemotherapy of lung cancer. J Drug Deliv Sci Technol 2019; 50: 237-47.
[http://dx.doi.org/10.1016/j.jddst.2019.01.024]
[60]
Soni K, Mujtaba A, Kohli K. Lipid drug conjugate nanoparticle as a potential nanocarrier for the oral delivery of pemetrexed diacid: Formulation design, characterization, ex vivo, and in vivo assessment. Int J Biol Macromol 2017; 103: 139-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.015] [PMID: 28499946]
[61]
Emami J, Rezazadeh M, Rostami M, et al. Co-delivery of paclitaxel and α-tocopherol succinate by novel chitosan-based polymeric micelles for improving micellar stability and efficacious combination therapy. Drug Dev Ind Pharm 2015; 41(7): 1137-47.
[http://dx.doi.org/10.3109/03639045.2014.935390] [PMID: 25019502]
[62]
Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 2009; 61(13): 1203-13.
[http://dx.doi.org/10.1016/j.addr.2009.05.006] [PMID: 19699247]
[63]
Hayashi K, Nakamura M, Miki H, et al. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 2014; 4(8): 834-44.
[http://dx.doi.org/10.7150/thno.9199] [PMID: 24955144]
[64]
Di H, Wu H, Gao Y, Li W, Zou D, Dong C. Doxorubicin- and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy. Drug Dev Ind Pharm 2016; 42(12): 2038-43.
[http://dx.doi.org/10.1080/03639045.2016.1190743] [PMID: 27184819]
[65]
Minarini PRR, de Souza AO, Soares EG, Barata LES, Silva CL, Bentley MVLB. Antimycobacterial activity of 2-phenoxy-1-phenylethanone, a synthetic analogue of neolignan, entrapped in polymeric microparticles. Drug Dev Ind Pharm 2012; 38(3): 259-63.
[http://dx.doi.org/10.3109/03639045.2011.598535] [PMID: 21854223]
[66]
Wang H, Zhao Y, Wu Y, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 2011; 32(32): 8281-90.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.032] [PMID: 21807411]
[67]
Efferth T, Saeed MEM, Mirghani E, Alim A. Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 2017; 8: 50284-304.
[http://dx.doi.org/10.18632/oncotarget.17466]
[68]
Mangla B, Kohli K. Combination of natural agent with synthetic drug for the breast cancer therapy. Intl J Drug Dev 2018; 10: 22-6.
[69]
Bhushan P, Ashok DBV. Natural products drug discovery: Accelerating the clinical candidate development using reverse pharmacology approache. Indian J Exp Biol 2010; 48(3): 220-7.
[70]
Royt M, Mukherjee S, Sarkar R, Biswas J. Curcumin sensitizes chemotherapeutic drugs via modulation of PKC, telomerase, NF-kB and HDAC in breast cancer. Ther Deliv 2011; 2(10): 1275-93.
[71]
Zhan Y, Chen Y, Liu R, Zhang H, Zhang Y. Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling. Arch Pharm Res 2014; 37: 1086-95.
[http://dx.doi.org/10.1007/s12272-013-0311-3]
[72]
Baktiar Laskar Y, Meitei Lourembam R, Behari Mazumder P. Herbal remedies for breast cancer prevention and treatment. In: In: Hassan BAR, Ed. Medicinal Plants - Use in Prevention and Treatment of Diseases. 2020.
[http://dx.doi.org/10.5772/intechopen.89669]
[73]
Mohan A, Narayanan S, Sethuraman S, Krishnan UM. Combinations of plant polyphenols & anti-cancer molecules: A novel treatment strategy for cancer chemotherapy. Anticancer Agents Med Chem 2013; 13(2): 281-95.
[http://dx.doi.org/10.2174/1871520611313020015] [PMID: 22721388]
[74]
Sobral AF, Amaral C, Correia-da-Silva G, Teixeira N. Unravelling exemestane: From biology to clinical prospects. J Steroid Biochem Mol Biol 2016; 163: 1-11.
[http://dx.doi.org/10.1016/j.jsbmb.2016.03.019] [PMID: 26992705]
[75]
Hong Y, Chen S. Aromatase inhibitors: Structural features and biochemical characterization. Ann N Y Acad Sci 2006; 1089: 237-51.
[http://dx.doi.org/10.1196/annals.1386.022] [PMID: 17261771]
[76]
Wang X, Chen S. Aromatase destabilizer: novel action of exemestane, a food and drug administration-approved aromatase inhibitor. Cancer Res 2006; 66(21): 10281-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2134] [PMID: 17079446]
[77]
Hong Y, Yu B, Sherman M, Yuan YC, Zhou D, Chen S. Molecular basis for the aromatization reaction and exemestane-mediated irreversible inhibition of human aromatase. Mol Endocrinol 2007; 21(2): 401-14.
[http://dx.doi.org/10.1210/me.2006-0281] [PMID: 17095574]
[78]
Rizwanullah M, Perwez A, Mir SR, Alam Rizvi MM, Amin S. Exemestane encapsulated polymer-lipid hybrid nanoparticles for improved efficacy against breast cancer: optimization,in vitrocharacterization and cell culture studies. Nanotechnology 2021; 32(41): 415101.
[http://dx.doi.org/10.1088/1361-6528/ac1098] [PMID: 34198267]
[79]
Mishra B, Padaliya R, Patel RR. Exemestane encapsulated vitamin E-TPGS-polymeric nanoparticles: preparation, optimization, characterization, and in vitro cytotoxicity assessment. Artif Cells Nanomed Biotechnol 2017; 45(3): 522-34.
[http://dx.doi.org/10.3109/21691401.2016.1163714] [PMID: 27017970]
[80]
Singh A, Neupane Y, Shafi S, Mangla B, Kohli K. PEGylated liposomes as an emerging therapeutic platform for oral nanomedicine in cancer therapy: in vitro and in vivo assessment. J Mol Liq 2020; 303: 112649.
[http://dx.doi.org/10.1016/j.molliq.2020.112649]
[81]
Vinod BS, Maliekal TT, Anto RJ. Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance. Antioxid Redox Signal 2013; 18(11): 1307-48.
[http://dx.doi.org/10.1089/ars.2012.4573] [PMID: 22871022]
[82]
de Oliveira Júnior RG, Christiane Adrielly AF, da Silva Almeida JRG, Grougnet R, Thiéry V, Picot L. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms. Fitoterapia 2018; 129: 383-400.
[http://dx.doi.org/10.1016/j.fitote.2018.02.025] [PMID: 29476786]
[83]
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence. Oncotarget 2016; 7(32): 52517-29.
[http://dx.doi.org/10.18632/oncotarget.9593] [PMID: 27232756]
[84]
Wang H, Khor TO, Shu L, et al. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 2012; 12(10): 1281-305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[85]
Singh S, Sharma B, Kanwar SS, Kumar A. Lead phytochemicals for anticancer drug development. Front Plant Sci 2016; 7: 1667.
[http://dx.doi.org/10.3389/fpls.2016.01667] [PMID: 27877185]
[86]
Amaral RG, dos Santos SA, Andrade LN, Severino P, Carvalho AA. Natural products as treatment against cancer: A historical and current vision. Clin Oncol 2019; 4: 1-5.
[87]
Shoieb AM, Elgayyar M, Dudrick PS, Bell JL, Tithof PK. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int J Oncol 2003; 22(1): 107-13.
[http://dx.doi.org/10.3892/ijo.22.1.107] [PMID: 12469192]
[88]
Alobaedi OH, Talib WH, Basheti IA. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pac J Trop Med 2017; 10(4): 400-8.
[http://dx.doi.org/10.1016/j.apjtm.2017.03.026] [PMID: 28552110]
[89]
Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-hancock H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. J Exp Clin Cancer Res 2010; 29(1): 87.
[90]
Lena H O, Wamidh H T, Iman A B. Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J Cancer Res Ther 2018; 14: 324-30.
[http://dx.doi.org/10.4103/0973-1482.235349]
[91]
Li F, Rajendran P, Sethi G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 2010; 161(3): 541-54.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00874.x] [PMID: 20880395]
[92]
Effenberger-Neidnicht NK, Schobert R. Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother Pharmacol 2011; 67(4): 867-74.
[http://dx.doi.org/10.1007/s00280-010-1386-x] [PMID: 20582416]
[93]
Costa JG, Keser V, Jackson C, et al. A multiple endpoint approach reveals potential in vitro anticancer properties of thymoquinone in human renal carcinoma cells. Food Chem Toxicol 2020; 136: 111076.
[http://dx.doi.org/10.1016/j.fct.2019.111076] [PMID: 31883990]
[94]
Al-Mutairi A, Rahman A, Rao MS. Low doses of thymoquinone and ferulic acid in combination effectively inhibit proliferation of cultured MDA-MB 231 breast adenocarcinoma cells. Nutr Cancer 2021; 73(2): 282-9.
[http://dx.doi.org/10.1080/01635581.2020.1743869] [PMID: 32223348]
[95]
Ibrahim WN, Muizzuddin Bin Mohd Rosli L, Doolaanea AA. Formulation, cellular uptake and cytotoxicity of thymoquinone-loaded PLGA nanoparticles in malignant melanoma cancer cells. Int J Nanomedicine 2020; 15: 8059-74.
[http://dx.doi.org/10.2147/IJN.S269340] [PMID: 33116518]
[96]
Sunoqrot S, Alfaraj M, Hammad AM, et al. Development of a thymoquinone polymeric anticancer nanomedicine through optimization of polymer molecular weight and nanoparticle architecture. Pharmaceutics 2020; 12(9): E811.
[http://dx.doi.org/10.3390/pharmaceutics12090811] [PMID: 32867015]
[97]
Alhakamy NA, Badr-Eldin SMA, A Fahmy U, et al. Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics 2020; 12(8): E761.
[http://dx.doi.org/10.3390/pharmaceutics12080761] [PMID: 32806507]
[98]
Moghaddam FA, Ebrahimian M, Oroojalian F, et al. Effect of thymoquinone-loaded lipid–polymer nanoparticles as an oral delivery system on anticancer efficiency of doxorubicin. J Nanostructure Chem 2021.
[http://dx.doi.org/10.1007/s40097-021-00398-6]
[99]
Zafar S, Akhter S, Garg N, Selvapandiyan A, Kumar Jain G, Ahmad FJ. Co-encapsulation of docetaxel and thymoquinone in mPEG-DSPE-vitamin E TPGS-lipid nanocapsules for breast cancer therapy: Formulation optimization and implications on cellular and in vivo toxicity. Eur J Pharm Biopharm 2020; 148: 10-26.
[http://dx.doi.org/10.1016/j.ejpb.2019.12.016] [PMID: 31923585]
[100]
Arslan AH, Tomruk CÖ, Meydanlı EG, et al. Histopathological evaluation of the effect of systemic thymoquinone administration on healing of bone defects in rat tibia. 2017; 2818
[http://dx.doi.org/10.1080/13102818.2016.1257925]
[101]
Thummuri D, Jeengar MK, Shrivastava S, et al. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res 2015; 99: 63-73.
[http://dx.doi.org/10.1016/j.phrs.2015.05.006] [PMID: 26022736]
[102]
Verma D, Khuroo T, Talegaonkar S, Iqbal Z. Nanopotentiated combination cancer therapy: Chemotherapeutic and chemosensitizer (2C approach). Med Hypotheses 2015; 84(6): 580-2.
[http://dx.doi.org/10.1016/j.mehy.2015.03.003] [PMID: 25792105]
[103]
Curcio M, Cirillo G, Tucci P, et al. Dextran-curcumin nanoparticles as a methotrexate delivery vehicle: A step forward in breast cancer combination therapy. Pharmaceuticals 2019; 13(1): E2.
[http://dx.doi.org/10.3390/ph13010002] [PMID: 31881645]
[104]
Tian F, Fan T, Zhang Y, Jiang Y, Zhang X. Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NF-κB signaling pathway in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2012; 44(10): 847-55.
[http://dx.doi.org/10.1093/abbs/gms074] [PMID: 23017833]
[105]
Xue JP, Wang G, Zhao ZB, Wang Q, Shi Y. Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells. Oncol Rep 2014; 32(4): 1647-53.
[http://dx.doi.org/10.3892/or.2014.3365] [PMID: 25109508]
[106]
Poofery J, Khaw-On P, Subhawa S, et al. Potential of thai herbal extracts on lung cancer treatment by inducing apoptosis and synergizing chemotherapy. Molecules 2020; 25(1): E231.
[http://dx.doi.org/10.3390/molecules25010231] [PMID: 31935933]
[107]
Beloqui A, del Pozo-Rodríguez A, Isla A, Rodríguez-Gascón A, Solinís MÁ. Nanostructured lipid carriers as oral delivery systems for poorly soluble drugs. J Drug Deliv Sci Technol 2017; 42: 144-54.
[http://dx.doi.org/10.1016/j.jddst.2017.06.013]
[108]
Seigneuric R, Markey L, Nuyten DSA, et al. From nanotechnology to nanomedicine: Applications to cancer research. Curr Mol Med 2010; 10(7): 640-52.
[http://dx.doi.org/10.2174/156652410792630634] [PMID: 20712588]
[109]
Duncan R, Gaspar R. Nanomedicine ( s ) under the microscope. Mol Pharmaceutics 2011; 2101-41.
[http://dx.doi.org/10.1021/mp200394t]
[110]
Couvreur P. Nanoparticles in drug delivery: Past, present and future*. Adv Drug Deliv Rev 2012; 4-6.
[http://dx.doi.org/10.1016/j.addr.2012.04.010] [PMID: 22580334]
[111]
Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm 2013; 453(1): 215-24.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.054] [PMID: 23578826]
[112]
Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res 2021; 11(2): 471-97.
[http://dx.doi.org/10.1007/s13346-021-00908-7] [PMID: 33528830]
[113]
Ghadi R, Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. J Control Release 2017; 248: 71-95.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.014] [PMID: 28088572]
[114]
Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[115]
Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70(2): 440-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[116]
Patravale V, Dandekar P, Jain R. Nanotxicology: Evaluating toxicity potential of drug-nanoparticles. In: Nanoparticle Drug Delivery. 2012; pp. 123-55.
[117]
Liu Q, Li J, Pu G, Zhang F, Liu H, Zhang Y. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv 2016; 23(4): 1364-8.
[http://dx.doi.org/10.3109/10717544.2015.1031295] [PMID: 25874959]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy