Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

Antimicrobial Compounds from Microorganisms-Associated with Selected Desert Flora

Author(s): Kamilia Tawfik*, Daliah AlBekiry, Eman Hamdan, Mahria Ayas and Amal Almousa

Volume 4, 2023

Published on: 01 August, 2023

Article ID: e250523217344 Pages: 7

DOI: 10.2174/2665978604666230525144506

Price: $65

Abstract

Background: The immense genetic variety found in plants and microbes provides a plethora of opportunities for human advancement in the creation of medicine. Microorganisms have been exceptionally rich sources of drugs. Nowadays, the emergence of new infectious diseases and the resistance of some pathogenic microbes necessitates further attempts to find new antimicrobial agents in the fight against infections.

Objective: The main goal of this study was to explore and evaluate the biologically active secondary metabolites from selected desert flora-associated microorganisms.

Methods: This was achieved through the isolation of bacteria and fungi associated with plants selected from diverse parts of the Saudi Arabian desert. This study was directed to test the optimal microbial culture composition for the production of biologically active metabolites against pathogenic microbes.

Results: The produced secondary metabolites showed profound antibiosis activities. Some of which were comparable to or more potent than some of the currently used antibiotics.

Conclusion: These findings lay the foundation for further discoveries of new metabolites that are urgently needed to face the uprising microbial resistance and mutations that the whole world is continuously suffering from.

[1]
Abdel-Razek, A.S.; El-Naggar, M.E.; Allam, A.; Morsy, O.M.; Othman, S.I. Microbial natural products in drug discovery. Processes (Basel), 2020, 8(4), 470.
[http://dx.doi.org/10.3390/pr8040470]
[2]
Radulović, N.S.; Blagojević, P.D.; Stojanović-Radić, Z.Z.; Stojanović, N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem., 2013, 20(7), 932-952.
[PMID: 23210781]
[3]
Ali-Shtayeh, M.S.; Yaghmour, R.M.R.; Faidi, Y.R.; Salem, K.; Al-Nuri, M.A. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol., 1998, 60(3), 265-271.
[http://dx.doi.org/10.1016/S0378-8741(97)00153-0] [PMID: 9613839]
[4]
The top 10 causes of death. 2020. Available from: who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[5]
Aati, H.; El-Gamal, A.; Shaheen, H.; Kayser, O. Traditional use of ethnomedicinal native plants in the Kingdom of Saudi Arabia. J. Ethnobiol. Ethnomed., 2019, 15(1), 2.
[http://dx.doi.org/10.1186/s13002-018-0263-2] [PMID: 30626417]
[6]
Limbago, B. M100-S11, Performance standards for antimicrobial susceptibility testing. Clin. Microbiol. Newsl., 2001, 23(6), 49.
[http://dx.doi.org/10.1016/S0196-4399(01)88009-0]
[7]
Jones, P.; Garcia, B.J.; Furches, A.; Tuskan, G.A.; Jacobson, D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci., 2019, 10(July), 862.
[http://dx.doi.org/10.3389/fpls.2019.00862] [PMID: 31333701]
[8]
Zhou, L.; Li, X.; Kotta-Loizou, I.; Dong, K.; Li, S.; Ni, D.; Hong, N.; Wang, G.; Xu, W. A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. ISME J., 2021, 15(7), 1893-1906.
[http://dx.doi.org/10.1038/s41396-021-00892-3] [PMID: 33531623]
[9]
Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res., 2005, 109(6), 661-686.
[http://dx.doi.org/10.1017/S095375620500273X] [PMID: 16080390]
[10]
Mefteh, F.B.; Daoud, A.; Chenari Bouket, A.; Alenezi, F.N.; Luptakova, L.; Rateb, M.E.; Kadri, A.; Gharsallah, N.; Belbahri, L. Fungal root microbiome from healthy and brittle leaf diseased date palm trees (Phoenix Dactylifera L.) reveals a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites. Front. Microbiol., 2017, 8(FEB), 307.
[http://dx.doi.org/10.3389/fmicb.2017.00307] [PMID: 28293229]
[11]
Perveen, K. Antibacterial activity of Phoenix dactylifera L. leaf and pit extracts against selected gram negative and gram positive pathogenic bacteria. J. Med. Plants Res., 2012, 6(2), 296-300.
[12]
Taleb, H.; Maddocks, S.E.; Morris, R.K.; Kanekanian, A.D. Chemical characterisation and the anti-inflammatory, antiangiogenic and antibacterial properties of date fruit (Phoenix dactylifera L.). J. Ethnopharmacol., 2016, 194, 457-468.
[http://dx.doi.org/10.1016/j.jep.2016.10.032] [PMID: 27729284]
[13]
Samy, Selim Susceptibility of imipenem-resistant Pseudomonas aeruginosa to flavonoid glycosides of date palm (Phoenix dactylifera L.) tamar growing in Al Madinah, Saudi Arabia. Afr. J. Biotechnol., 2011, 11(2), 416-422.
[http://dx.doi.org/10.5897/AJB11.1412]
[14]
Kardan-Yamchi, J.; Mahboubi, M.; Kazemian, H.; Hamzelou, G.; Feizabadi, M.M. The chemical composition and antimycobacterial activities of Trachyspermum copticum and Pelargonium graveolens essential oils. Recent Patents Anti-Infect. Drug Disc., 2020, 15(1), 68-74.
[http://dx.doi.org/10.2174/22124071MTAxfOTUvx] [PMID: 31657682]
[15]
Raja, R.R. Medicinally potential plants of labiatae (lamiaceae) family: An overview. Res. J. Med. Plant, 2012, 6(3), 203-213.
[http://dx.doi.org/10.3923/rjmp.2012.203.213]
[16]
Essid, R.; Hammami, M.; Gharbi, D.; Karkouch, I.; Hamouda, T.B.; Elkahoui, S.; Limam, F.; Tabbene, O. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains. Appl. Microbiol. Biotechnol., 2017, 101(18), 6993-7006.
[http://dx.doi.org/10.1007/s00253-017-8442-y] [PMID: 28766033]
[17]
Ennaifer, M.; Bouzaiene, T.; Messaoud, C.; Hamdi, M. Phytochemicals, antioxidant, anti-acetyl-cholinesterase, and antimicrobial activities of decoction and infusion of Pelargonium graveolens. Nat. Prod. Res., 2020, 34(18), 2634-2638.
[http://dx.doi.org/10.1080/14786419.2018.1547299] [PMID: 30584784]
[18]
Yasser, M.M.; Marzouk, M.A.; El-Shafey, N.M.; Shaban, S.A. Diversity and antimicrobial activity of endophytic fungi from the medicinal plant Pelargonium graveolens (Geranium) in middle Egypt. Jordan J. Biol. Sci., 2020, 13(2), 197-205.
[19]
Reis, A.C.C.; Silva, B.M.; de Moura, H.M.M.; Pereira, G.R.; Brandão, G.C. Anti-Zika virus activity and chemical characterization by ultra-high performance liquid chromatography (UPLC-DAD-UV-MS) of ethanol extracts in Tecoma species. BMC Complementary Med Ther, 2020, 20(1), 246.
[http://dx.doi.org/10.1186/s12906-020-03040-0] [PMID: 32767975]
[20]
Robles-Zepeda, R.E.; Velázquez-Contreras, C.A.; Garibay-Escobar, A.; Gálvez-Ruiz, J.C.; Ruiz-Bustos, E. Antimicrobial activity of Northwestern Mexican plants against Helicobacter pylori. J. Med. Food, 2011, 14(10), 1280-1283.
[http://dx.doi.org/10.1089/jmf.2010.0263] [PMID: 21663492]
[21]
Bakr, R.; Fayed, M.A.; Salem, M.; Hussein, A. Tecoma stans: Alkaloid profile and antimicrobial activity. J. Pharm. Bioallied Sci., 2019, 11(4), 341-347.
[http://dx.doi.org/10.4103/jpbs.JPBS_79_19] [PMID: 31619916]
[22]
Patriota, L.L.S.; Procópio, T.F.; de Souza, M.F.D.; de Oliveira, A.P.S.; Carvalho, L.V.N.; Pitta, M.G.R.; Rego, M.J.B.M.; Paiva, P.M.G.; Pontual, E.V.; Napoleão, T.H. A trypsin inhibitor from tecoma stans leaves inhibits growth and promotes atp depletion and lipid peroxidation in Candida albicans and Candida krusei. Front. Microbiol., 2016, 7, 611.
[http://dx.doi.org/10.3389/fmicb.2016.00611] [PMID: 27199940]
[23]
Dhayalan, M.; Denison, M.I.J.; Ayyar, M.; Gandhi, N.N.; Krishnan, K.; Abdulhadi, B. Biogenic synthesis, characterization of gold and silver nanoparticles from Coleus forskohlii and their clinical importance. J. Photochem. Photobiol. B, 2018, 183, 251-257.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.042] [PMID: 29734113]
[24]
Syeda, A.M.; Riazunnisa, K. Data on GC-MS analysis, in vitro anti-oxidant and anti-microbial activity of the Catharanthus roseus and Moringa oleifera leaf extracts. Data Brief, 2020, 29, 105258.
[http://dx.doi.org/10.1016/j.dib.2020.105258] [PMID: 32154338]
[25]
Pham, H.N.T.; Sakoff, J.A.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Phytochemical, antioxidant, anti-proliferative and antimicrobial properties of Catharanthus roseus root extract, saponin-enriched and aqueous fractions. Mol. Biol. Rep., 2019, 46(3), 3265-3273.
[http://dx.doi.org/10.1007/s11033-019-04786-8] [PMID: 30945069]
[26]
Maema, L.P.; Potgieter, M.; Masevhe, N.A.; Samie, A. Antimicrobial activity of selected plants against fungal species isolated from South African AIDS patients and their antigonococcal activity. J. Complement. Integr. Med., 2020, 17(3), 20190087.
[http://dx.doi.org/10.1515/jcim-2019-0087] [PMID: 32301751]
[27]
Simonetti, G.; Brasili, E.; Pasqua, G. Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules, 2020, 25(16), 3748.
[http://dx.doi.org/10.3390/molecules25163748] [PMID: 32824589]
[28]
Ahmad, S.; AbdEl-Salam, N.M.; Ullah, R. In vitro antimicrobial bioassays, DPPH radical scavenging activity, and ftir spectroscopy analysis of Heliotropium bacciferum. BioMed Res. Int., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/3818945] [PMID: 27597961]
[29]
Falana, M.B.; Nurudeen, Q.O. Evaluation of phytochemical constituents and in vitro antimicrobial activities of leaves extracts of Calotropis procera against certain human pathogens. Not. Sci. Biol., 2020, 12(2), 208-221.
[http://dx.doi.org/10.15835/nsb12210699]
[30]
Rani, R.; Sharma, D.; Chaturvedi, M.; Parkash Yadav, J. Antibacterial activity of twenty different endophytic fungi isolated from calotropis procera and time kill assay. Clin Microbiol., 2017, 6(3), 1000280.
[http://dx.doi.org/10.4172/2327-5073.1000280]
[31]
Salah, F.; Ghoul, Y.E.; Mahdhi, A.; Majdoub, H.; Jarroux, N.; Sakli, F. Effect of the deacetylation degree on the antibacterial and antibiofilm activity of acemannan from Aloe vera. Ind. Crops Prod., 2017, 103, 13-18.
[http://dx.doi.org/10.1016/j.indcrop.2017.03.031]
[32]
Saddiq, A.A.; Al-Ghamdi, H. Aloe vera extract: A novel antimicrobial and antibiofilm against methicillin resistant Staphylococcus aureus strains. Pak. J. Pharm. Sci., 2018, 31(5)(Supplementary)(Suppl.), 2123-2130.
[PMID: 30393222]
[33]
Chandrakar, S.; Gupta, A.K. Actinomycin-producing endophytic streptomyces parvulus associated with root of aloe vera and optimization of conditions for antibiotic production. Probiotics Antimicrob. Proteins, 2019, 11(3), 1055-1069.
[http://dx.doi.org/10.1007/s12602-018-9451-6] [PMID: 30058033]
[34]
Habid Oueslati, M.; Bouajila, J.; Ben Jannet, H. Two new bioactive biphenylpropanoids from the roots of Salsola imbricata (Chenopodiaceae) growing in Saudi Arabia. Orient. J. Chem., 2017, 33(4), 1871-1878.
[http://dx.doi.org/10.13005/ojc/330432]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy