Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Ultrasound-assisted Synthesis of Biologically Promising Organoselenium Scaffolds

Author(s): Bubun Banerjee*, Arvind Singh, Aditi Sharma, Anu Priya, Manmeet Kaur and Gurpreet Kaur

Volume 27, Issue 7, 2023

Published on: 23 June, 2023

Page: [568 - 579] Pages: 12

DOI: 10.2174/1385272827666230522151128

Price: $65

Abstract

Selenium metal acts as an essential nutrient in many selenoproteins. Various selenium- containing compounds are reported to possess a broad range of biological activities. In many commercially available drug molecules, selenium plays an important role. As a result, during the last two decades, organoselenium chemistry has expanded widely. A huge number of methods have been reported for the synthesis of structurally diverse organoselenium compounds under various reaction conditions. On the other hand, ultrasound-assisted protocols are found much more advantageous over traditional thermal methods in terms of reaction times, yields, product selectivity, purity of the products etc. In many occasions, it was found that ultrasound plays a pivotal role in achieving the desired products in high yields. In this review, we have summarized the recent literature on the ultrasound-assisted synthesis of various organoselenium scaffolds under diverse reaction conditions.

Graphical Abstract

[1]
Fenelle, R.W. Chemistry International. The News Magazine of the International Union of Pure and Applied Chemistry (IUPAC); Pergamon Press: New York, 1985.
[2]
Quinn, C.F.; Galeas, M.L.; Freeman, J.L.; Pilon-Smits, E.A.H. Selenium: Deterrence, toxicity, and adaptation. Integr. Environ. Assess. Manag., 2007, 3(3), 460-462.
[http://dx.doi.org/10.1002/ieam.5630030317] [PMID: 17695118]
[3]
Naithani, R. Organoselenium compounds in cancer chemoprevention. Mini Rev. Med. Chem., 2008, 8(7), 657-668.
[http://dx.doi.org/10.2174/138955708784567368] [PMID: 18537721]
[4]
Wessjohann, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem., 2007, 388(10), 997-1006.
[http://dx.doi.org/10.1515/BC.2007.138] [PMID: 17937613]
[5]
Ninomiya, M.; Garud, D.R.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev., 2011, 255(23-24), 2968-2990.
[http://dx.doi.org/10.1016/j.ccr.2011.07.009]
[6]
Sarma, B.K.; Mugesh, G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org. Biomol. Chem., 2008, 6(6), 965-974.
[http://dx.doi.org/10.1039/b716239a] [PMID: 18327317]
[7]
Wirth, T. Small organoselenium compounds: More than just glutathione peroxidase mimics. Angew. Chem. Int. Ed., 2015, 54(35), 10074-10076.
[http://dx.doi.org/10.1002/anie.201505056] [PMID: 26192066]
[8]
Mugesh, G.; du Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2180.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243]
[9]
Sahu, P.K.; Kim, G.; Yu, J.; Ahn, J.Y.; Song, J.; Choi, Y.; Jin, X.; Kim, J.H.; Lee, S.K.; Park, S.; Jeong, L.S. Stereoselective synthesis of 4′-selenonucleosides via seleno-Michael reaction as potent antiviral agents. Org. Lett., 2014, 16(21), 5796-5799.
[http://dx.doi.org/10.1021/ol502899b] [PMID: 25340622]
[10]
Engman, L.; Cotgreave, I.; Angulo, M.; Taylor, C.W.; Paine-Murrieta, G.D.; Powis, G. Diaryl chalcogenides as selective inhibitors of thioredoxin reductase and potential antitumor agents. Anticancer Res., 1997, 17(6D), 4599-4605.
[PMID: 9494575]
[11]
Goudgaon, N.M.; Naguib, F.N.M.; el Kouni, M.H.; Schinazi, R.F. Phenylselenenyl- and phenylthio-substituted pyrimidines as inhibitors of dihydrouracil dehydrogenase and uridine phosphorylase. J. Med. Chem., 1993, 36(26), 4250-4254.
[http://dx.doi.org/10.1021/jm00078a015] [PMID: 8277507]
[12]
Woods, J.A.; Hadfield, J.A.; McGown, A.T.; Fox, B.W. Bioactivity and molecular modelling of diphenylsulfides and diphenylselenides. Bioorg. Med. Chem., 1993, 1(5), 333-340.
[http://dx.doi.org/10.1016/S0968-0896(00)82139-2] [PMID: 8081863]
[13]
Engman, L.; Stern, D.; Frisell, H.; Vessman, K.; Berglund, M.; Ek, B.; Andersson, C.M. Synthesis, antioxidant properties, biological activity and molecular modelling of a series of chalcogen analogues of the 5-lipoxygenase inhibitor DuP 654. Bioorg. Med. Chem., 1995, 3(9), 1255-1262.
[http://dx.doi.org/10.1016/0968-0896(95)00111-S] [PMID: 8564418]
[14]
Millois, C.; Diaz, P. Solution-phase synthesis of diaryl selenides using polymer-supported borohydride. Org. Lett., 2000, 2(12), 1705-1708.
[http://dx.doi.org/10.1021/ol0058184] [PMID: 10880206]
[15]
Rafique, J.; Saba, S.; Canto, R.; Frizon, T.; Hassan, W.; Waczuk, E.; Jan, M.; Back, D.; Da Rocha, J.; Braga, A. Synthesis and biological evaluation of 2-picolylamide-based diselenides with non-bonded interactions. Molecules, 2015, 20(6), 10095-10109.
[http://dx.doi.org/10.3390/molecules200610095] [PMID: 26039333]
[16]
de Souza, D.; Mariano, D.O.C.; Nedel, F.; Schultze, E.; Campos, V.F.; Seixas, F.; da Silva, R.S.; Munchen, T.S.; Ilha, V.; Dornelles, L.; Braga, A.L.; Rocha, J.B.T.; Collares, T.; Rodrigues, O.E.D. New organochalcogen multitarget drug: Synthesis and antioxidant and antitumoral activities of chalcogenozidovudine derivatives. J. Med. Chem., 2015, 58(8), 3329-3339.
[http://dx.doi.org/10.1021/jm5015296] [PMID: 25811955]
[17]
Terazawa, R.; Garud, D.R.; Hamada, N.; Fujita, Y.; Itoh, T.; Nozawa, Y.; Nakane, K.; Deguchi, T.; Koketsu, M.; Ito, M. Identification of organoselenium compounds that possess chemopreventive properties in human prostate cancer LNCaP cells. Bioorg. Med. Chem., 2010, 18(19), 7001-7008.
[http://dx.doi.org/10.1016/j.bmc.2010.08.019] [PMID: 20805033]
[18]
Madhav, B.; Narayana, M.S.; Anil, K.B.S.P.; Ramesh, K.; Nageswar, Y.V.D. A tandem one-pot aqueous phase synthesis of thiazoles/selenazoles. Tetrahedron Lett., 2012, 53(30), 3835-3838.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.097]
[19]
Karelia, N.; Desai, D.; Hengst, J.A.; Amin, S.; Rudrabhatla, S.V.; Yun, J. Selenium-containing analogs of SAHA induce cytotoxicity in lung cancer cells. Bioorg. Med. Chem. Lett., 2010, 20(22), 6816-6819.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.113] [PMID: 20855208]
[20]
Mitra, S.; Mukherjee, S.; Sen, S.K.; Hajra, A. Environmentally benign synthesis and antimicrobial study of novel chalcogenophosphates. Bioorg. Med. Chem. Lett., 2014, 24(9), 2198-2201.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.008] [PMID: 24685541]
[21]
Pizzo, C.; Faral-Tello, P.; Yaluff, G.; Serna, E.; Torres, S.; Vera, N.; Saiz, C.; Robello, C.; Mahler, G. New approach towards the synthesis of selenosemicarbazones, useful compounds for Chagas’ disease. Eur. J. Med. Chem., 2016, 109, 107-113.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.040] [PMID: 26774036]
[22]
Pizzo, C.; Mahler, S.G. Synthesis of selenazoles by in situ cycloisomerization of propargyl selenoamides using oxygen-selenium exchange reaction. J. Org. Chem., 2014, 79(4), 1856-1860.
[http://dx.doi.org/10.1021/jo402661b] [PMID: 24490782]
[23]
Wu, W.; Murakami, K.; Koketsu, M.; Yamada, Y.; Saiki, I. Induction of apoptosis in human gastric adenocarcinoma cells by two novel organoselenium compounds, TS-2 and TS-6. Anticancer Res., 1999, 19(6B), 5375-5381.
[PMID: 10697564]
[24]
El-Bayoumy, K.; Sinha, R. Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutat. Res., 2004, 551(1-2), 181-197.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.02.023] [PMID: 15225592]
[25]
Patrick, L. Selenium biochemistry and cancer: A review of the literature. Altern. Med. Rev., 2004, 9(3), 239-258.
[PMID: 15387717]
[26]
Ahn, H.J.; Koketsu, M.; Yang, E.M.; Kim, Y.M.; Ishihara, H.; Yang, H.O. 2-(4-methylphenyl)-1,3-selenazol-4-one induces apoptosis by different mechanisms in SKOV3 and HL 60 cells. J. Cell. Biochem., 2006, 99(3), 807-815.
[http://dx.doi.org/10.1002/jcb.20973] [PMID: 16676363]
[27]
Nam, K.N.; Koketsu, M.; Lee, E.H. 5-Chloroacetyl-2-amino-1,3-selenazoles attenuate microglial inflammatory responses through NF-κB inhibition. Eur. J. Pharmacol., 2008, 589(1-3), 53-57.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.034] [PMID: 18538761]
[28]
Choi, S.Y.; Jo, Y.O.; Koketsu, M.; Ishihara, H.; Kim, S.H.; Kim, S.Y. Inhibitory effects of 2-(4-chlorophenyl)-1,3-selenazol-4-one on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. J. Korean Soc. Appl. Biol. Chem., 2009, 52(4), 371-374.
[http://dx.doi.org/10.3839/jksabc.2009.066]
[29]
Koketsu, M.; Choi, S.Y.; Ishihara, H.; Lim, B.O.; Kim, H.; Kim, S.Y. Inhibitory effects of 1,3-selenazol-4-one derivatives on mushroom tyrosinase. Chem. Pharm. Bull., 2002, 50(12), 1594-1596.
[http://dx.doi.org/10.1248/cpb.50.1594] [PMID: 12499597]
[30]
Lee, E.H.; Lim, Y.J.; Ha, S.K.; Kang, T.H.; Koketsu, M.; Kang, C.; Kim, S.Y.; Park, J.H. Inhibitory effects of 5-chloroacetyl-2-piperidino-1,3-selenazole, a novel selenium-containing compound, on skin melanin biosynthesis. J. Pharm. Pharmacol., 2010, 62(3), 352-359.
[http://dx.doi.org/10.1211/jpp.62.03.0010] [PMID: 20487219]
[31]
Nishina, A.; Sekiguchi, A.; Fukumoto, R.; Koketsu, M.; Furukawa, S. Selenazoles (selenium compounds) facilitate survival of cultured rat pheochromocytoma PC12 cells after serum-deprivation and stimulate their neuronal differentiation via activation of Akt and mitogen-activated protein kinase, respectively. Biochem. Biophys. Res. Commun., 2007, 352(2), 360-365.
[http://dx.doi.org/10.1016/j.bbrc.2006.11.025] [PMID: 17126295]
[32]
Goldstein, B.M.; Kennedy, S.D.; Hennen, W.J. Selenium-77 NMR and crystallographic studies of selenazofurin and its 5-amino derivative. J. Am. Chem. Soc., 1990, 112(23), 8265-8268.
[http://dx.doi.org/10.1021/ja00179a007]
[33]
Shafiee, A.; Khashayarmanesh, Z.; Kamal, F. Selenium heterocycles XXXVIII [I]. Synthesis and antimicrobial activity of 2-arylselenazoles. J. Sci. Islam. Repub. Iran, 1990, 1, 111-115.
[34]
Shafiee, A.; Shafaati, A.; Habibi-Khameneh, B. Selenium heterocycles. XXXIX. Synthesis of thieno[3, 4- d]thiazole, thieno[3, 4- d]selenazole, selenolo[3, 4- d]thiazole and selenolo[3, 4- d]selenazole. J. Heterocycl. Chem., 1989, 26(3), 709-711.
[http://dx.doi.org/10.1002/jhet.5570260334]
[35]
Garud, D.R.; Makimura, M.; Koketsu, M. Synthetic approaches to selenacephams and selenacephems via a cleavage of diselenide and selenium anion. New J. Chem., 2011, 35(3), 581-586.
[http://dx.doi.org/10.1039/C0NJ00782J]
[36]
Ranu, B.C.; Banerjee, B. Organoselenium Chemistry; De Gruyter: Berlin, Boston, 2020.
[http://dx.doi.org/10.1515/9783110625110]
[37]
Banerjee, B.; Koketsu, M. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds. Coord. Chem. Rev., 2017, 339, 104-127.
[http://dx.doi.org/10.1016/j.ccr.2017.03.008]
[38]
Richards, W.T.; Loomis, A.L. The chemical effects of high frequency sound waves I. A preliminary survey. J. Am. Chem. Soc., 1927, 49(12), 3086-3100.
[http://dx.doi.org/10.1021/ja01411a015]
[39]
Sharma, A.; Priya, A.; Kaur, M.; Singh, A.; Kaur, G.; Banerjee, B. Ultrasound-assisted synthesis of bioactive S -heterocycles. Synth. Commun., 2021, 51(21), 3209-3236.
[http://dx.doi.org/10.1080/00397911.2021.1970775]
[40]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[41]
Banerjee, B. Recent developments on ultrasound-assisted organic synthesis in aqueous medium. J. Serb. Chem. Soc., 2017, 82(7-8), 755-790.
[http://dx.doi.org/10.2298/JSC170217057B]
[42]
Kaur, G.; Sharma, A.; Banerjee, B. Ultrasound and ionic liquid: An ideal combination for organic transformations. ChemistrySelect, 2018, 3(19), 5283-5295.
[http://dx.doi.org/10.1002/slct.201800326]
[43]
Banerjee, B. Recent developments on ultrasound-assisted synthesis of bioactive N-heterocycles at ambient temperature. Aust. J. Chem., 2017, 70(8), 872-888.
[http://dx.doi.org/10.1071/CH17080]
[44]
Banerjee, B. Ultrasound and nano-catalysts: An ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4(8), 2484-2500.
[http://dx.doi.org/10.1002/slct.201803081]
[45]
Banerjee, B.; Tajti, Á.; Keglevich, G. Ultrasound-assisted synthesis of organophosphorus compounds. In: Organophosphorus Chemistry: Novel Developments; Keglevich, G., Ed.; De Gruyter: Berlin, Boston, 2018; pp. 248-263.
[http://dx.doi.org/10.1515/9783110535839-013]
[46]
Khorrami, A.R.; Faraji, F.; Bazgir, A. Ultrasound-assisted three-component synthesis of 3-(5-amino-1H-pyrazol-4-yl)-3-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl)indolin-2-ones in water. Ultrason. Sonochem., 2010, 17(3), 587-591.
[http://dx.doi.org/10.1016/j.ultsonch.2009.11.017] [PMID: 20022284]
[47]
Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev., 1997, 26(6), 443-451.
[http://dx.doi.org/10.1039/cs9972600443]
[48]
Suslick, K.S.; Hammerton, D.A.; Cline, R.E. Sonochemical hot spot. J. Am. Chem. Soc., 1986, 108(18), 5641-5642.
[http://dx.doi.org/10.1021/ja00278a055]
[49]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[50]
Yuan, Y.; Hou, W.; Tang, M.; Luo, H.; Chen, L.J.; Guan, Y.H.; Sutherland, I.A. Separation of flavonoids from the leaves of oroxylumindicumby HSCCC. Chromatographia, 2008, 68(11-12), 885-892.
[http://dx.doi.org/10.1365/s10337-008-0859-0]
[51]
Anand, K.V.; Anandhi, R.; Pakkiyaraj, M.; Geraldine, P. Protective effect of chrysin on carbon tetrachloride (CCl4)—induced tissue injury in male Wistar rats. Toxicol. Ind. Health, 2011, 27(10), 923-933.
[http://dx.doi.org/10.1177/0748233711399324] [PMID: 21511893]
[52]
Han, C. Screening of anticarcinogenic ingredients in tea polyphenols. Cancer Lett., 1997, 114(1-2), 153-158.
[http://dx.doi.org/10.1016/S0304-3835(97)04647-8] [PMID: 9103276]
[53]
Hasanzadeh, M.; Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn. Mag., 2016, 12(47), 436.
[http://dx.doi.org/10.4103/0973-1296.191453] [PMID: 27761071]
[54]
Zhang, Q.; Ma, S.; Liu, B.; Liu, J.; Zhu, R.; Li, M. Chrysin induces cell apoptosis via activation of the p53/Bcl-2/caspase-9 pathway in hepatocellular carcinoma cells. Exp. Ther. Med., 2016, 12(1), 469-474.
[http://dx.doi.org/10.3892/etm.2016.3282] [PMID: 27347080]
[55]
Tang, Q.; Ji, F.; Guo, J.; Wang, J.; Li, Y.; Bao, Y. Directional modification of chrysin for exerting apoptosis and enhancing significantly anti-cancer effects of 10-hydroxy camptothecin. Biomed. Pharmacother., 2016, 82, 693-703.
[http://dx.doi.org/10.1016/j.biopha.2016.06.008] [PMID: 27470413]
[56]
Hamilton-Miller, J.M. Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob. Agents Chemother., 1995, 39(11), 2375-2377.
[http://dx.doi.org/10.1128/AAC.39.11.2375] [PMID: 8585711]
[57]
Yamada, J.; Tomita, Y. Antimutagenic activity of water extracts of black tea and long tea. Biosci. Biotechnol. Biochem., 1994, 58(12), 2197-2200.
[http://dx.doi.org/10.1271/bbb.58.2197]
[58]
Miura, S.; Watanabe, J.; Sano, M.; Tomita, T.; Osawa, T.; Hara, Y.; Tomita, I. Effects of various natural antioxidants on the Cu(2+)-mediated oxidative modification of low density lipoprotein. Biol. Pharm. Bull., 1995, 18(1), 1-4.
[http://dx.doi.org/10.1248/bpb.18.1] [PMID: 7735221]
[59]
Mercer, L.D.; Kelly, B.L.; Horne, M.K.; Beart, P.M. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem. Pharmacol., 2005, 69(2), 339-345.
[http://dx.doi.org/10.1016/j.bcp.2004.09.018] [PMID: 15627486]
[60]
Parajuli, P.; Joshee, N.; Rimando, A.; Mittal, S.; Yadav, A. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med., 2009, 75(1), 41-48.
[http://dx.doi.org/10.1055/s-0028-1088364] [PMID: 19031366]
[61]
Fonseca, S.F.; Padilha, N.B.; Thurow, S.; Roehrs, J.A.; Savegnago, L.; de Souza, M.N.; Fronza, M.G.; Collares, T.; Buss, J.; Seixas, F.K.; Alves, D.; Lenardão, E.J. Ultrasound-promoted copper-catalyzed synthesis of bis-arylselanyl chrysin derivatives with boosted antioxidant and anticancer activities. Ultrason. Sonochem., 2017, 39, 827-836.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.007] [PMID: 28733012]
[62]
Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A. Asymmetric qazidoselenenylation of alkenes: A key step for the Synthesis of enantiomerically enriched nitrogen-containing compounds. Angew. Chem., 2003, 115(27), 3239-3241.
[http://dx.doi.org/10.1002/ange.200351229]
[63]
Back, T.G.; Bethell, R.J.; Parvez, M.; Taylor, J.A.; Wehrli, D. Cycloaddition reactions of 1-Phenylseleno-2-(p -toluenesulfonyl)ethyne. J. Org. Chem., 1999, 64(20), 7426-7432.
[http://dx.doi.org/10.1021/jo990730t]
[64]
Stefani, H.A.; Silva, N.C.S.; Manarin, F.; Lüdtke, D.S.; Zukerman-Schpector, J.; Madureira, L.S.; Tiekink, E.R.T. Synthesis of 1,2,3-triazolylpyranosides through click chemistry reaction. Tetrahedron Lett., 2012, 53(14), 1742-1747.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.102]
[65]
Stefani, H.A.; Leal, D.M.; Manarin, F. 4-Organochalcogenoyl-1H-1,2,3-triazoles: Synthesis and functionalization by a nickel-catalyzed Negishi cross-coupling reaction. Tetrahedron Lett., 2012, 53(48), 6495-6499.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.062]
[66]
Alves, D.; Braga, A.; Deobald, A.; Camargo, L.; Hörner, M.; Rodrigues, O. Synthesis of arylseleno-1,2,3-triazoles via copper-catalyzed 1,3-dipolar cycloaddition of azidoarylselenides with alkynes. Synthesis, 2011, 2011(15), 2397-2406.
[http://dx.doi.org/10.1055/s-0030-1260083]
[67]
Seus, N.; Saraiva, M.T.; Alberto, E.E.; Savegnago, L.; Alves, D. Selenium compounds in Click Chemistry: Copper catalyzed 1,3-dipolar cycloaddition of azidomethyl arylselenides and alkynes. Tetrahedron, 2012, 68(51), 10419-10425.
[http://dx.doi.org/10.1016/j.tet.2012.07.019]
[68]
Rodrigues, O.; Alves, D.; Saraiva, M.; Seus, N.; de Souza, D.; Paixão, M.; Jacob, R.; Lenardão, E.; Perin, G. Synthesis of [(arylselanyl)alkyl]-1,2,3-triazoles by copper-catalyzed 1,3-dipolar cycloaddition of (arylselanyl)alkynes with benzyl azides. Synthesis, 2012, 44(13), 1997-2004.
[http://dx.doi.org/10.1055/s-0031-1291135]
[69]
Donato, F.; de Gomes, M.G.; Goes, A.T.R.; Seus, N.; Alves, D.; Jesse, C.R.; Savegnago, L. Involvement of the dopaminergic and serotonergic systems in the antidepressant-like effect caused by 4-phenyl-1-(phenylselanylmethyl)-1,2,3-triazole. Life Sci., 2013, 93(9-11), 393-400.
[http://dx.doi.org/10.1016/j.lfs.2013.07.024] [PMID: 23911670]
[70]
da Cruz, E.H.G.; Silvers, M.A.; Jardim, G.A.M.; Resende, J.M.; Cavalcanti, B.C.; Bomfim, I.S.; Pessoa, C.; de Simone, C.A.; Botteselle, G.V.; Braga, A.L.; Nair, D.K.; Namboothiri, I.N.N.; Boothman, D.A.; da Silva Júnior, E.N. Synthesis and antitumor activity of selenium-containing quinone-based triazoles possessing two redox centres, and their mechanistic insights. Eur. J. Med. Chem., 2016, 122, 1-16.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.019] [PMID: 27341379]
[71]
Savegnago, L.; Sacramento, M.; Brod, L.M.P.; Fronza, M.G.; Seus, N.; Lenardão, E.J.; Paixão, M.W.; Alves, D. Phenylselanyl-1H-1,2,3-triazole-4-carbonitriles: synthesis, antioxidant properties and use as precursors to highly functionalized tetrazoles. RSC Advances, 2016, 6(10), 8021-8031.
[http://dx.doi.org/10.1039/C5RA22445D]
[72]
Xavier, D.M.; Goldani, B.S.; Seus, N.; Jacob, R.G.; Barcellos, T.; Paixão, M.W.; Luque, R.; Alves, D. Sonochemistry in organocatalytic enamine-azide [3+2] cycloadditions: A rapid alternative for the synthesis of 1,2,3-triazoyl carboxamides. Ultrason. Sonochem., 2017, 34, 107-114.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.007] [PMID: 27773224]
[73]
Costa, G.P.; Seus, N.; Roehrs, J.A.; Jacob, R.G.; Schumacher, R.F.; Barcellos, T.; Luque, R.; Alves, D. Ultrasound-promoted organocatalytic enamine–azide [3 + 2] cycloaddition reactions for the synthesis of ((arylselanyl)phenyl-1 H -1,2,3-triazol-4-yl)ketones. Beilstein J. Org. Chem., 2017, 13, 694-702.
[http://dx.doi.org/10.3762/bjoc.13.68] [PMID: 28503204]
[74]
Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Xu, Q.; Bai, Z.; Zhang, Q.; Bao, K.; Wu, Y.; Zhang, W. 3-(3,4,5-Trimethoxyphenylselenyl)-1H-indoles and their selenoxides as combretastatin A-4 analogs: Microwave-assisted synthesis and biological evaluation. Eur. J. Med. Chem., 2015, 90, 184-194.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.024] [PMID: 25461319]
[75]
Vieira, B.M.; Thurow, S.; Brito, J.S.; Perin, G.; Alves, D.; Jacob, R.G.; Santi, C.; Lenardão, E.J. Sonochemistry: An efficient alternative to the synthesis of 3-selanylindoles using CuI as catalyst. Ultrason. Sonochem., 2015, 27, 192-199.
[http://dx.doi.org/10.1016/j.ultsonch.2015.05.012] [PMID: 26186837]
[76]
Wen, Z.; Li, X.; Zuo, D.; Lang, B.; Wu, Y.; Jiang, M.; Ma, H.; Bao, K.; Wu, Y.; Zhang, W. Ultrasound-promoted two-step synthesis of 3-arylselenylindoles and 3-arylthioindoles as novel combretastatin A-4 analogues. Sci. Rep., 2016, 6(1), 23986-23994.
[http://dx.doi.org/10.1038/srep23986] [PMID: 27045272]
[77]
Vieira, B.M.; Thurow, S.; da Costa, M.; Casaril, A.M.; Domingues, M.; Schumacher, R.F.; Perin, G.; Alves, D.; Savegnago, L.; Lenardão, E.J. Ultrasound-assisted synthesis and antioxidant activity of 3-selanyl-1H-indole and 3-selanylimidazo[1,2-a]pyridine derivatives. Asian J. Org. Chem., 2017, 6(11), 1635-1646.
[http://dx.doi.org/10.1002/ajoc.201700339]
[78]
Vieira, B.M.; Padilha, N.; Nascimento, N.M.; Perin, G.; Alves, D.; Schumacher, R.F.; Lenardão, E.J. Ultrasound-assisted synthesis of imidazo[1,2-a]pyridines and sequential one-pot preparation of 3-selanyl-imidazo[1,2-a]pyridine derivatives. ARKIVOC, 2019, 2019(2), 6-23.
[http://dx.doi.org/10.24820/ark.5550190.p010.972]
[79]
Sharma, A.; Singh, A.; Priya, A.; Kaur, M.; Gupta, V.K.; Jaitak, V.; Banerjee, B. Trisodium citrate dihydrate catalyzed one-pot pseudo four-component synthesis of fully functionalized pyridine derivatives. Synth. Commun., 2022, 52(15), 1614-1627.
[http://dx.doi.org/10.1080/00397911.2022.2101378]
[80]
Khan, M.N.; Karamthulla, S.; Choudhury, L.H.; Haque Faizi, M.S. Ultrasound assisted multicomponent reactions: A green method for the synthesis of highly functionalized selenopyridines using reusable polyethylene glycol as reaction medium. RSC Advances, 2015, 5(28), 22168-22172.
[http://dx.doi.org/10.1039/C5RA02403J]
[81]
Penteado, F.; Gomes, C.S.; Perin, G.; Garcia, C.S.; Bortolatto, C.F.; Brüning, C.A.; Lenardão, E.J. Regioselective synthesis of 1-Sulfanyl- and 1-Selanylindolizines. J. Org. Chem., 2019, 84(11), 7189-7198.
[http://dx.doi.org/10.1021/acs.joc.9b00871] [PMID: 31046283]
[82]
Vieira, M.M.; Dalberto, B.T.; Coelho, F.L.; Schneider, P.H. Ultrasound-promoted regioselective synthesis of chalcogeno-indolizines by a stepwise 1,3-dipolar cycloaddition. Ultrason. Sonochem., 2020, 68, 105228.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105228] [PMID: 32604055]
[83]
Ranu, B.C.; Das, A. A convenient synthesis of β-phenylselenocarbonyl compounds by In-TMSCl promoted cleavage of diphenyl diselenideand subsequent Michael addition. Adv. Synth. Catal., 2005, 347(5), 712-714.
[http://dx.doi.org/10.1002/adsc.200404355]
[84]
Cheng, T.; Zheng, X.; Ke, Q. Ultrasound assisted ring-opening reaction of epoxides with 1,2-diphenyldiselenide. J. Chem. Res., 2011, 35(9), 522-524.
[http://dx.doi.org/10.3184/174751911X13149579868111]
[85]
Lv, G.S.; Duan, F.J.; Ding, J.C.; Cheng, T.X.; Gao, W.X.; Chen, J.X.; Wu, H.Y. Tandem base-free synthesis of β-hydroxy sulphides under ultrasound irradiation. J. Chem. Sci., 2012, 124(5), 1057-1062.
[http://dx.doi.org/10.1007/s12039-012-0305-6]
[86]
Rodrigues, O.E.D.; de Souza, D.; Soares, L.C.; Dornelles, L.; Burrow, R.A.; Appelt, H.R.; Alves, C.F.; Alves, D.; Braga, A.L. Stereoselective synthesis of selenosteroids. Tetrahedron Lett., 2010, 51(17), 2237-2240.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.090]
[87]
Perin, G.; Araujo, D.R.; Nobre, P.C.; Lenardao, E.J.; Jacob, R.G.; Silva, M.S.; Roehrs, J.A. Ultrasound-promoted synthesis of 2-organoselanyl-naphthalenes using Oxone ® in aqueous medium as an oxidizing agent. PeerJ, 2018, 6, e4706.
[http://dx.doi.org/10.7717/peerj.4706] [PMID: 29761042]
[88]
Ley, S.V.; O’Neil, A.; Low, C.M.R. Ultrasonic formation and reactions of sodium phenylselenide. Tetrahedron, 1986, 42(19), 5363-5368.
[http://dx.doi.org/10.1016/S0040-4020(01)82086-X]
[89]
Shafiee, A.; Khashayarmanesh, Z.; Kamal, F. Selenium heterocycles XXXVIII. Synthesis and antimicrobial activity of 2-arylselenazoles. J. Sci. Islam. Repub. Iran., 1990, 1, 111-115.
[90]
Angeli, A.; Trallori, E.; Ferraroni, M.; Di Cesare Mannelli, L.; Ghelardini, C.; Supuran, C.T. Discovery of new 2, 5-disubstituted 1,3-selenazoles as selective human carbonic anhydrase IX inhibitors with potent anti-tumor activity. Eur. J. Med. Chem., 2018, 157, 1214-1222.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.096] [PMID: 30193219]
[91]
Lalithamba, H.S.; Narendra, N.; Naik, S.A.; Sureshbabu, V.V. Ultrasound mediated synthesis of 2-amino-1,3-selenazoles derived from Fmoc/Boc/Z-α-amino acids. ARKIVOC, 2010, 2010(11), 77-90.
[http://dx.doi.org/10.3998/ark.5550190.0011.b08]
[92]
Chang, W.J.; Kulkarni, M.V.; Sun, C.M. Regioselective one-pot three component synthesis of chiral 2-iminoselenazolines under sonication. RSC Advances, 2015, 5(118), 97113-97120.
[http://dx.doi.org/10.1039/C5RA18763J]
[93]
Sedighian, H.; Imani, K.; Bazgir, A. Ultrasound-assisted a domino three-component reaction to polycyclic selenopyrans synthesis. Phosphorus Sulfur Silicon Relat. Elem., 2022, 197(2), 89-95.
[http://dx.doi.org/10.1080/10426507.2021.1991344]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy