Abstract
The application describes compounds, such as compounds of general Formula, with warheads and their use in treating medical diseases or disorders, such as viral infections. Pharmaceutical compositions and synthetic methods of various compounds with warheads are included. The compounds are inhibitors of proteases, such as the 3C, CL- or 3CL-like protease.
[1]
Ábrányi-Balogh, P.; Petri, L.; Imre, T.; Szijj, P.; Scarpino, A.; Hrast, M. Mitrović A.; Fonovič U.P.; Németh, K.; Barreteau, H.; Roper, D.I.; Horváti, K.; Ferenczy, G.G.; Kos, J.; Ilaš, J.; Gobec, S.; Keserű G.M. A road map for prioritizing warheads for cysteine targeting covalent inhibitors. Eur. J. Med. Chem., 2018, 160, 94-107.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.010] [PMID: 30321804]
[http://dx.doi.org/10.1016/j.ejmech.2018.10.010] [PMID: 30321804]
[2]
Yu, W.; Zhao, Y.; Ye, H.; Wu, N.; Liao, Y.; Chen, N.; Li, Z.; Wan, N.; Hao, H.; Yan, H.; Xiao, Y.; Lai, M. Structure-based design of a dual-targeted covalent inhibitor against papain-like and main proteases of SARS-CoV-2. J. Med. Chem., 2022, 65(24), 16252-16267.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00954] [PMID: 36503248]
[http://dx.doi.org/10.1021/acs.jmedchem.2c00954] [PMID: 36503248]
[3]
Ullrich, S.; Nitsche, C. SARS‐CoV‐2 papain‐like protease: Structure, function and inhibition. ChemBioChem, 2022, 23(19), e202200327.
[http://dx.doi.org/10.1002/cbic.202200327] [PMID: 35993805]
[http://dx.doi.org/10.1002/cbic.202200327] [PMID: 35993805]
[4]
Alzyoud, L.; Ghattas, M.A.; Atatreh, N. Allosteric binding sites of the SARS-CoV-2 main protease: Potential targets for broad-spectrum anti-coronavirus agents. Drug Des. Devel. Ther., 2022, 16, 2463-2478.
[http://dx.doi.org/10.2147/DDDT.S370574] [PMID: 35941927]
[http://dx.doi.org/10.2147/DDDT.S370574] [PMID: 35941927]
[5]
Cherqaoui, D.; Oubahmane, M.; Hdoufane, I.; Bjij, I.; Lahcen, N.A.; Villemin, D.; Daoud, R.; Allali, A.E. Host cell proteases mediating SARS-CoV-2 entry: An overview. Curr. Top. Med. Chem., 2022, 22(21), 1776-1792.
[http://dx.doi.org/10.2174/1568026622666220726122339] [PMID: 35894476]
[http://dx.doi.org/10.2174/1568026622666220726122339] [PMID: 35894476]
[6]
Hu, Q.; Xiong, Y.; Zhu, G.H.; Zhang, Y.N.; Zhang, Y.W.; Huang, P.; Ge, G.B. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm, 2020, 3(3), e151.
[http://dx.doi.org/10.1002/mco2.151]
[http://dx.doi.org/10.1002/mco2.151]
[7]
Ng, T.I.; Correia, I.; Seagal, J.; DeGoey, D.A.; Schrimpf, M.R.; Hardee, D.J.; Noey, E.L.; Kati, W.M. Antiviral drug discovery for the treatment of COVID-19 infections. Viruses, 2022, 14(5), 961.
[http://dx.doi.org/10.3390/v14050961] [PMID: 35632703]
[http://dx.doi.org/10.3390/v14050961] [PMID: 35632703]
[8]
Cannalire, R.; Cerchia, C.; Beccari, A.R.; Di Leva, F.S.; Summa, V. Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: State of the art and future opportunities. J. Med. Chem., 2022, 65(4), 2716-2746.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01140] [PMID: 33186044]
[http://dx.doi.org/10.1021/acs.jmedchem.0c01140] [PMID: 33186044]
[9]
Adedeji, A.O.; Sarafianos, S.G. Antiviral drugs specific for coronaviruses in preclinical development. Curr. Opin. Virol., 2014, 8, 45-53.
[http://dx.doi.org/10.1016/j.coviro.2014.06.002] [PMID: 24997250]
[http://dx.doi.org/10.1016/j.coviro.2014.06.002] [PMID: 24997250]
[10]
Amin, S.A.; Banerjee, S.; Ghosh, K.; Gayen, S.; Jha, T. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorg. Med. Chem., 2021, 29, 115860.
[http://dx.doi.org/10.1016/j.bmc.2020.115860] [PMID: 33191083]
[http://dx.doi.org/10.1016/j.bmc.2020.115860] [PMID: 33191083]
[11]
Dragovich, P.S.; Webber, S.E.; Babine, R.E.; Fuhrman, S.A.; Patick, A.K.; Matthews, D.A.; Lee, C.A.; Reich, S.H.; Prins, T.J.; Marakovits, J.T.; Littlefield, E.S.; Zhou, R.; Tikhe, J.; Ford, C.E.; Wallace, M.B.; Meador, J.W., III; Ferre, R.A.; Brown, E.L.; Binford, S.L.; Harr, J.E.V.; DeLisle, D.M.; Worland, S.T. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. Michael acceptor structure-activity studies. J. Med. Chem., 1998, 41(15), 2806-2818.
[http://dx.doi.org/10.1021/jm980068d] [PMID: 9667970]
[http://dx.doi.org/10.1021/jm980068d] [PMID: 9667970]
[12]
Vandyck, K.; Abdelnabi, R.; Gupta, K.; Jochmans, D.; Jekle, A.; Deval, J.; Misner, D.; Bardiot, D.; Foo, C.S.; Liu, C.; Ren, S.; Beigelman, L.; Blatt, L.M.; Boland, S.; Vangeel, L.; Dejonghe, S.; Chaltin, P.; Marchand, A.; Serebryany, V.; Stoycheva, A.; Chanda, S.; Symons, J.A.; Raboisson, P.; Neyts, J. ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits in vivo efficacy in a Syrian hamster model. Biochem. Biophys. Res. Commun., 2021, 555, 134-139.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.096] [PMID: 33813272]
[http://dx.doi.org/10.1016/j.bbrc.2021.03.096] [PMID: 33813272]