Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

PAFAH1B3 Regulates Papillary Thyroid Carcinoma Cell Proliferation and Metastasis by Affecting the EMT

Author(s): Wenjie Jiang, Ruida Quan, Adheesh Bhandari, Suzita Hirachan, Chengze Chen, Shihui Lv and Chen Zheng*

Volume 31, Issue 9, 2024

Published on: 04 August, 2023

Page: [1152 - 1164] Pages: 13

DOI: 10.2174/0929867330666230427102920

Price: $65

Abstract

Introduction: Thyroid carcinoma (TC) is currently the prevalent type of endocrine malignancy worldwide, having an incidence of around 15.5 per 100,000 people. However, the underlying mechanisms of TC tumorigenesis remain to be further elucidated.

Methods: Performing the database analyses, Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) was found to be dysregulated in several carcinomas and might trigger tumor occurrence as well as the progression of TC. Clinicopathological information of patients from our local validated cohort and The Cancer Genome Atlas (TCGA) cohort also confirmed this hypothesis.

Results: Our present research showed that elevated expression of PAFAH1B3 has a close association with worse behavior in papillary thyroid carcinoma (PTC). We utilized the small interfering RNA to obtain the PAFAH1B3-transfected PTC cell lines, including BCPAP, FTC-133, and TPC-1, and then further examined their biological function in vitro. Furthermore, gene set enrichment analysis suggested that PAFAH1B3 is implicated with epithelial-mesenchymal transition (EMT). Afterward, the western blotting assays aimed at EMT-related proteins were performed.

Conclusion: In short, our results revealed that silencing PAFAH1B3 could hinder the capabilities of proliferation, migration, and invasion of PTC cells. Increasing expression of PAFAH1B3 might be of quintessence with lymph node metastasis by triggering EMT in PTC patients.

[1]
Mao, Y.; Xing, M. Recent incidences and differential trends of thyroid cancer in the USA. Endocr Relat Cancer., 2016, 23(4), 313-22.
[2]
Shimura, H.; Matsumoto, Y.; Murakami, T.; Fukunari, N.; Kitaoka, M.; Suzuki, S.J.C. Diagnostic strategies for thyroid nodules based on ultrasonographic findings in Japan. Cancers, 2021, 13(18), 4629.
[3]
Sebastian, S.O.; Gonzalez, J.R.; Paricio, P.P. Papillary thyroid carcinoma: Prognostic index for survival including the histological variety. Arch Surg, 2000, 135(3), 272-7.
[http://dx.doi.org/10.1001/archsurg.135.3.272]
[4]
Kato, K.; Clark, G.D.; Bazan, N.G.; Zorumski, C.F.J.N. Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature, 1994, 367(6459), 175-9.
[http://dx.doi.org/10.1038/367175a0]
[5]
Vandenberghe, L.; Heindryckx, B.; Smits, K. Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) is required for the formation of the meiotic spindle during in vitro oocyte maturation. Reprod Fertil Dev., 2018, 30(12), 1739-1750.
[6]
Satoh, K.; Imaizumi, T.-A.; Kawamura, Y. Platelet-activating factor (PAF) stimulates the production of PAF acetylhydrolase by the human hepatoma cell line, HepG2. J. Clin. Invest., 1991, 87(2), 476-481.
[7]
Nilsson, R.; Jain, M.; Madhusudhan, N. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun., 2014, 5, 3128.
[http://dx.doi.org/10.1038/ncomms4128]
[8]
Kume, K.; Shimizu, T. Platelet-activating factor (PAF) induces growth stimulation, inhibition, and suppression of oncogenic transformation in NRK cells overexpressing the PAF receptor. J. Biol. Chem., 1997, 272(36), 22898-904.
[9]
Seo, K.H.; Ko, H.-M.; Kim, H.-A. Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kappaB activation. Cancer Res., 2006, 66(9), 4681-6.
[10]
Melnikova, V.O.; Mourad-Zeidan, A.A.; Lev, D.C. Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J. Biol. Chem., 2006, 281(5), 2911-22.
[11]
Xie, T.; Guo, X.; Wu, D. PAFAH1B3 expression is correlated with gastric cancer cell proliferation and immune infiltration. Front. Oncol., 2021, 11, 591545.
[http://dx.doi.org/10.3389/fonc.2021.591545] [PMID: 33732641]
[12]
Xu, W.; Lu, X.; Liu, J. Identification of PAFAH1B3 as candidate prognosis marker and potential therapeutic target for hepatocellular carcinoma. Front. Oncol., 2021, 11, 700700.
[http://dx.doi.org/10.3389/fonc.2021.700700]
[13]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-8.
[14]
Thiery, J.P.; Acloque, H.; Huang, R.Y. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-90.
[15]
Wei, J.; Huang, K.; Chen, Z.; Hu, M.; Bai, Y.; Lin, S.; Du, H. Characterization of glycolysis-associated molecules in the tumor microenvironment revealed by pan-cancer tissues and lung cancer single cell data. Cancers, 2020, 12(7), 1788.
[http://dx.doi.org/10.3390/cancers12071788] [PMID: 32635458]
[16]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[17]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[18]
Morris, L.G.T.; Tuttle, R.M.; Davies, L. Changing trends in the incidence of thyroid cancer in the United States. JAMA Otolaryngol. Head Neck Surg., 2016, 142(7), 709-711.
[http://dx.doi.org/10.1001/jamaoto.2016.0230] [PMID: 27078686]
[19]
Nikiforov, Y.E.; Seethala, R.R.; Tallini, G.; Baloch, Z.W.; Basolo, F.; Thompson, L.D.R.; Barletta, J.A.; Wenig, B.M.; Al Ghuzlan, A.; Kakudo, K.; Giordano, T.J.; Alves, V.A.; Khanafshar, E.; Asa, S.L.; El-Naggar, A.K.; Gooding, W.E.; Hodak, S.P.; Lloyd, R.V.; Maytal, G.; Mete, O.; Nikiforova, M.N.; Nosé, V.; Papotti, M.; Poller, D.N.; Sadow, P.M.; Tischler, A.S.; Tuttle, R.M.; Wall, K.B.; LiVolsi, V.A.; Randolph, G.W.; Ghossein, R.A. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma. JAMA Oncol., 2016, 2(8), 1023-1029.
[http://dx.doi.org/10.1001/jamaoncol.2016.0386] [PMID: 27078145]
[20]
Fonseca, E.; Soares, P.; Rossi, S.; Sobrinho-Simões, M. Prognostic factors in thyroid carcinomas. Verh. Dtsch. Ges. Pathol., 1997, 81, 82-96.
[PMID: 9474858]
[21]
Gilliland, F.D.; Hunt, W.C.; Morris, D.M.; Key, C.R. Prognostic factors for thyroid carcinoma. Cancer, 1997, 79(3), 564-573.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970201)79:3<564::AID-CNCR20>3.0.CO;2-0] [PMID: 9028369]
[22]
Hay, I.D.; Bergstralh, E.J.; Goellner, J.R.; Ebersold, J.R.; Grant, C.S. Predicting outcome in papillary thyroid carcinoma: Development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery, 1993, 114(6), 1050-1057.
[PMID: 8256208]
[23]
Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med., 1994, 97(5), 418-428.
[http://dx.doi.org/10.1016/0002-9343(94)90321-2] [PMID: 7977430]
[24]
Sherman, S.I.; Brierley, J.D.; Sperling, M.; Ain, K.B.; Bigos, S.T.; Cooper, D.S.; Haugen, B.R.; Ho, M.; Klein, I.; Ladenson, P.W.; Robbins, J.; Ross, D.S.; Specker, B.; Taylor, T.; Maxon, H.R., III Prospective multicenter study of thyroiscarcinoma treatment: Initial analysis of staging and outcome. Cancer, 1998, 83(5), 1012-1021.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980901)83:5<1012::AID-CNCR28>3.0.CO;2-9] [PMID: 9731906]
[25]
LiVolsi, V.A.; Fadda, G.; Baloch, Z.W. Prognostic factors in well-differentiated thyroid cancer. Rays, 2000, 25(2), 163-175.
[PMID: 11370535]
[26]
Wilson, D.B.; Staren, E.D.; Prinz, R.A. Thyroid reoperations: Indications and risks. Am. Surg., 1998, 64(7), 674-678.
[PMID: 9655281]
[27]
White, M.L.; Gauger, P.G.; Doherty, G.M. Central lymph node dissection in differentiated thyroid cancer. World J. Surg., 2007, 31(5), 895-904.
[http://dx.doi.org/10.1007/s00268-006-0907-6] [PMID: 17347896]
[28]
White, M.L.; Doherty, G.M. Level VI lymph node dissection for papillary thyroid cancer. Minerva Chir., 2007, 62(5), 383-393.
[PMID: 17947949]
[29]
Wingert, D.J.; Friesen, S.R.; Iliopoulos, J.I.; Pierce, G.E.; Thomas, J.H.; Hermreck, A.S. Post-thyroidectomy hypocalcemia. Am. J. Surg., 1986, 152(6), 606-610.
[http://dx.doi.org/10.1016/0002-9610(86)90435-6] [PMID: 3789283]
[30]
Xing, M.; Alzahrani, A.S.; Carson, K.A.; Viola, D.; Elisei, R.; Bendlova, B.; Yip, L.; Mian, C.; Vianello, F.; Tuttle, R.M.; Robenshtok, E.; Fagin, J.A.; Puxeddu, E.; Fugazzola, L.; Czarniecka, A.; Jarzab, B.; O’Neill, C.J.; Sywak, M.S.; Lam, A.K.; Riesco-Eizaguirre, G.; Santisteban, P.; Nakayama, H.; Tufano, R.P.; Pai, S.I.; Zeiger, M.A.; Westra, W.H.; Clark, D.P.; Clifton-Bligh, R.; Sidransky, D.; Ladenson, P.W.; Sykorova, V. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA, 2013, 309(14), 1493-1501.
[http://dx.doi.org/10.1001/jama.2013.3190] [PMID: 23571588]
[31]
Xing, M.; Alzahrani, A.S.; Carson, K.A.; Shong, Y.K.; Kim, T.Y.; Viola, D.; Elisei, R.; Bendlová, B.; Yip, L.; Mian, C.; Vianello, F.; Tuttle, R.M.; Robenshtok, E.; Fagin, J.A.; Puxeddu, E.; Fugazzola, L.; Czarniecka, A.; Jarzab, B.; O’Neill, C.J.; Sywak, M.S.; Lam, A.K.; Riesco-Eizaguirre, G.; Santisteban, P.; Nakayama, H.; Clifton-Bligh, R.; Tallini, G.; Holt, E.H.; Sýkorová, V. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J. Clin. Oncol., 2015, 33(1), 42-50.
[http://dx.doi.org/10.1200/JCO.2014.56.8253] [PMID: 25332244]
[32]
Romei, C.; Ciampi, R.; Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol., 2016, 12(4), 192-202.
[http://dx.doi.org/10.1038/nrendo.2016.11] [PMID: 26868437]
[33]
Xing, M.; Haugen, B.R.; Schlumberger, M. Progress in molecular-based management of differentiated thyroid cancer. Lancet, 2013, 381(9871), 1058-1069.
[http://dx.doi.org/10.1016/S0140-6736(13)60109-9] [PMID: 23668556]
[34]
Wang, Y.; Bhandari, A.; Niu, J.; Yang, F.; Xia, E.; Yao, Z.; Jin, Y.; Zheng, Z.; Lv, S.; Wang, O. The lncRNA UNC5B-AS1 promotes proliferation, migration, and invasion in papillary thyroid cancer cell lines. Hum. Cell, 2019, 32(3), 334-342.
[http://dx.doi.org/10.1007/s13577-019-00242-8] [PMID: 30805847]
[35]
Wang, Q.; Yang, H.; Wu, L.; Yao, J.; Meng, X.; Jiang, H.; Xiao, C.; Wu, F. Identification of specific long non-coding RNA expression: Profile and analysis of association with clinicopathologic characteristics and BRAF mutation in papillary thyroid Cancer. Thyroid, 2016, 26(12), 1719-1732.
[http://dx.doi.org/10.1089/thy.2016.0024] [PMID: 27758138]
[36]
Gibb, E.A.; Brown, C.J.; Lam, W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer, 2011, 10(1), 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[37]
Monillas, E.S.; Caplan, J.L.; Thévenin, A.F.; Bahnson, B.J. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(5), 469-475.
[http://dx.doi.org/10.1016/j.bbapap.2015.02.007] [PMID: 25707358]
[38]
Stafforini, D.M. Diverse functions of plasma PAF-AH in tumorigenesis. Enzymes, 2015, 38, 157-179.
[http://dx.doi.org/10.1016/bs.enz.2015.09.005] [PMID: 26612652]
[39]
Fiedler, E.R.C.; Bhutkar, A.; Lawler, E.; Besada, R.; Hemann, M.T. In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv., 2018, 2(11), 1229-1242.
[http://dx.doi.org/10.1182/bloodadvances.2017015610] [PMID: 29853524]
[40]
Kohnz, R.A.; Mulvihill, M.M.; Chang, J.W.; Hsu, K.L.; Sorrentino, A.; Cravatt, B.F.; Bandyopadhyay, S.; Goga, A.; Nomura, D.K. Activity-based protein profiling of oncogene-driven changes in metabolism reveals broad dysregulation of PAFAH1B2 and 1B3 in cancer. ACS Chem. Biol., 2015, 10(7), 1624-1630.
[http://dx.doi.org/10.1021/acschembio.5b00053] [PMID: 25945974]
[41]
Fan, J.; Yang, Y.; Qian, J.; Zhang, X.; Ji, J.; Zhang, L.; Li, S.; Yuan, F. Aberrant expression of PAFAH1B3 affects proliferation and apoptosis in osteosarcoma. Front. Oncol., 2021, 11, 664478.
[http://dx.doi.org/10.3389/fonc.2021.664478] [PMID: 34136395]
[42]
Ribatti, D.; Tamma, R.; Annese, T. Epithelial-Mesenchymal Transition in cancer: A historical overview. Transl. Oncol., 2020, 13(6), 100773.
[http://dx.doi.org/10.1016/j.tranon.2020.100773] [PMID: 32334405]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy