Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

A Network Medical Framework based on Inflammatory Genes to Identify Drug Candidates for Abdominal Aortic Aneurysms

Author(s): Xiaoyang Niu and Bing Wang*

Volume 17, 2024

Published on: 06 June, 2023

Article ID: e170523216998 Pages: 11

DOI: 10.2174/1874467217666230517104426

Price: $65

Abstract

Background: Clinically, abdominal aortic aneurysms (AAA) can be treated with surgical intervention, but there is currently no effective drug for the disease.

Methods: This study analyzed the biomedical data of single-cell RNA sequencing (scRNA-seq), RNA-seq and the network medical data of drug-target interaction as well as protein-protein interaction to identify key targets and potential drug compounds of AAA.

Results: Firstly, we identified 10 types of cells from AAA and nonaneurysmal control samples and screened monocyte, mast cell, smooth muscle cell and 327 genes showing significant differences between non-dilated PVATs and dilated PVATs. To further explore the association of three types of cells in AAA, we screened the common DEGs associated with the three types of cells and then identified 10 potential therapeutic targets for AAA. SLC2A3 and IER3 were the key targets that were the most closely related to immune score and significantly related to inflammatory pathways. We then designed a network-based proximity measure to identify potential drugs targeting SLC2A3. Finally, with computer simulation, we found that the compound with the highest affinity to SLC2A3 protein was DB08213, which was embedded into the SLC2A3 protein cavity and formed close contact with various amino acid residues, and was stable during the 100-ns MD simulation.

Conclusion: This study provided a computational framework for drug design and development. It revealed key targets and potential therapeutic drug compounds for AAA, which might contribute to the drug development for AAA.

[1]
Sakalihasan, N.; Michel, J.B.; Katsargyris, A.; Kuivaniemi, H.; Defraigne, J.O.; Nchimi, A.; Powell, J.T.; Yoshimura, K.; Hultgren, R. Abdominal aortic aneurysms. Nat. Rev. Dis. Primers, 2018, 4(1), 34.
[http://dx.doi.org/10.1038/s41572-018-0030-7] [PMID: 30337540]
[2]
Yuan, Z.; Lu, Y.; Wei, J.; Wu, J.; Yang, J.; Cai, Z. Abdominal aortic aneurysm: Roles of inflammatory cells. Front. Immunol., 2021, 11, 609161.
[http://dx.doi.org/10.3389/fimmu.2020.609161] [PMID: 33613530]
[3]
Anagnostakos, J.; Lal, B.K. Abdominal aortic aneurysms. Prog. Cardiovasc. Dis., 2021, 65, 34-43.
[http://dx.doi.org/10.1016/j.pcad.2021.03.009] [PMID: 33831398]
[4]
Nordon, I.M.; Hinchliffe, R.J.; Loftus, I.M.; Thompson, M.M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol., 2011, 8(2), 92-102.
[http://dx.doi.org/10.1038/nrcardio.2010.180] [PMID: 21079638]
[5]
Hensley, S.E.; Upchurch, G.R., Jr Repair of abdominal aortic aneurysms. J. Am. Coll. Cardiol., 2022, 80(8), 821-831.
[http://dx.doi.org/10.1016/j.jacc.2022.04.066] [PMID: 35981826]
[6]
Hallett, R.L.; Ullery, B.W.; Fleischmann, D. Abdominal aortic aneurysms: Pre and post-procedural imaging. Abdom. Radiol., 2018, 43(5), 1044-1066.
[http://dx.doi.org/10.1007/s00261-018-1520-5] [PMID: 29460048]
[7]
Leung, A.D.; Yamanouchi, D. Osteoclastogenesis in abdominal aortic aneurysms: A new therapeutic target. Curr. Drug Targets, 2018, 19(11), 1233-1240.
[http://dx.doi.org/10.2174/1389450118666170925155044] [PMID: 28950811]
[8]
Golledge, J. Abdominal aortic aneurysm: Update on pathogenesis and medical treatments. Nat. Rev. Cardiol., 2019, 16(4), 225-242.
[http://dx.doi.org/10.1038/s41569-018-0114-9] [PMID: 30443031]
[9]
Golledge, J.; Moxon, J.V.; Singh, T.P.; Bown, M.J.; Mani, K.; Wanhainen, A. Lack of an effective drug therapy for abdominal aortic aneurysm. J. Intern. Med., 2020, 288(1), 6-22.
[http://dx.doi.org/10.1111/joim.12958] [PMID: 31278799]
[10]
Barabási, A.L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet., 2011, 12(1), 56-68.
[http://dx.doi.org/10.1038/nrg2918] [PMID: 21164525]
[11]
Sonawane, A.R.; Weiss, S.T.; Glass, K.; Sharma, A. Network medicine in the age of biomedical big data. Front. Genet., 2019, 10, 294.
[http://dx.doi.org/10.3389/fgene.2019.00294] [PMID: 31031797]
[12]
Gerring, Z.F.; Gamazon, E.R.; White, A.; Derks, E.M. Integrative network-based analysis reveals gene networks and novel drug repositioning candidates for Alzheimer disease. Neurol. Genet., 2021, 7(5), e622.
[http://dx.doi.org/10.1212/NXG.0000000000000622] [PMID: 34532569]
[13]
Kim, K.J.; Moon, S.J.; Park, K.S.; Tagkopoulos, I. Network-based modeling of drug effects on disease module in systemic sclerosis. Sci. Rep., 2020, 10(1), 13393.
[http://dx.doi.org/10.1038/s41598-020-70280-y] [PMID: 32770109]
[14]
Quan, P.; Wang, K.; Yan, S.; Wen, S.; Wei, C.; Zhang, X.; Cao, J.; Yao, L. Integrated network analysis identifying potential novel drug candidates and targets for Parkinson’s disease. Sci. Rep., 2021, 11(1), 13154.
[http://dx.doi.org/10.1038/s41598-021-92701-2] [PMID: 34162989]
[15]
Wei, X.; Hou, W.; Liang, J.; Fang, P.; Dou, B.; Wang, Z.; Sai, J.; Xu, T.; Ma, C.; Zhang, Q.; Cheng, F.; Wang, X.; Wang, Q. Network pharmacology-based analysis on the potential biological mechanisms of sinisan against non-alcoholic fatty liver disease. Front. Pharmacol., 2021, 12, 693701.
[http://dx.doi.org/10.3389/fphar.2021.693701] [PMID: 34512330]
[16]
Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., III; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; Hoffman, P.; Stoeckius, M.; Papalexi, E.; Mimitou, E.P.; Jain, J.; Srivastava, A.; Stuart, T.; Fleming, L.M.; Yeung, B.; Rogers, A.J.; McElrath, J.M.; Blish, C.A.; Gottardo, R.; Smibert, P.; Satija, R. Integrated analysis of multimodal single-cell data. Cell, 2021, 184(13), 3573-3587.e29.
[http://dx.doi.org/10.1016/j.cell.2021.04.048] [PMID: 34062119]
[17]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[18]
Wang, J.; Vasaikar, S.; Shi, Z.; Greer, M.; Zhang, B. WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res., 2017, 45(W1), W130-W137.
[http://dx.doi.org/10.1093/nar/gkx356] [PMID: 28472511]
[19]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[20]
Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 2023, 51(D1), D638-D646.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[21]
Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042.
[http://dx.doi.org/10.1093/bioinformatics/btx350] [PMID: 28575181]
[22]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[23]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[24]
Raffort, J.; Lareyre, F.; Clément, M.; Hassen-Khodja, R.; Chinetti, G.; Mallat, Z. Monocytes and macrophages in abdominal aortic aneurysm. Nat. Rev. Cardiol., 2017, 14(8), 457-471.
[http://dx.doi.org/10.1038/nrcardio.2017.52] [PMID: 28406184]
[25]
Eagleton, M.J. Inflammation in abdominal aortic aneurysms: Cellular infiltrate and cytokine profiles. Vascular, 2012, 20(5), 278-283.
[http://dx.doi.org/10.1258/vasc.2011.201207] [PMID: 23091264]
[26]
Ye, T.; Zhang, G.; Liu, H.; Shi, J.; Qiu, H.; Liu, Y.; Han, F.; Hou, N. Relationships between perivascular adipose tissue and abdominal aortic aneurysms. Front. Endocrinol., 2021, 12, 704845.
[http://dx.doi.org/10.3389/fendo.2021.704845] [PMID: 34194399]
[27]
Zhao, G.; Lu, H.; Chang, Z.; Zhao, Y.; Zhu, T.; Chang, L.; Guo, Y.; Garcia-Barrio, M.T.; Chen, Y.E.; Zhang, J. Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovasc. Res., 2021, 117(5), 1402-1416.
[http://dx.doi.org/10.1093/cvr/cvaa214] [PMID: 32678909]
[28]
Tsuruda, T.; Kato, J.; Hatakeyama, K.; Kojima, K.; Yano, M.; Yano, Y.; Nakamura, K.; Nakamura-Uchiyama, F.; Matsushima, Y.; Imamura, T.; Onitsuka, T.; Asada, Y.; Nawa, Y.; Eto, T.; Kitamura, K. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ. Res., 2008, 102(11), 1368-1377.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.173682] [PMID: 18451339]
[29]
Rombouts, K.B.; Merrienboer, T.A.R.; Ket, J.C.F.; Bogunovic, N.; Velden, J.; Yeung, K.K. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur. J. Clin. Invest., 2022, 52(4), e13697.
[http://dx.doi.org/10.1111/eci.13697] [PMID: 34698377]
[30]
Tsuruda, T.; Hatakeyama, K.; Nagamachi, S.; Sekita, Y.; Sakamoto, S.; Endo, G.J.; Nishimura, M.; Matsuyama, M.; Yoshimura, K.; Sato, Y.; Onitsuka, T.; Imamura, T.; Asada, Y.; Kitamura, K. Inhibition of development of abdominal aortic aneurysm by glycolysis restriction. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1410-1417.
[http://dx.doi.org/10.1161/ATVBAHA.111.237065] [PMID: 22499992]
[31]
Zhang, W.; Chien, J.; Yong, J.; Kuang, R. Network-based machine learning and graph theory algorithms for precision oncology. NPJ Precis. Oncol., 2017, 1(1), 25.
[http://dx.doi.org/10.1038/s41698-017-0029-7] [PMID: 29872707]
[32]
Rintala, T.J.; Ghosh, A.; Fortino, V. Network approaches for modeling the effect of drugs and diseases. Brief. Bioinform., 2022, 23(4), bbac229.
[http://dx.doi.org/10.1093/bib/bbac229] [PMID: 35704883]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy