Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Effect of Iron Oxide Nanoparticles of Acalypha wilkesiana Ethyl Acetate Extract on Ehrlich Ascites Carcinoma Cells

Author(s): Amal Mahmoud Youssef Moustafa*, Maha Mohamed Abd El-Hamid El-Damrany and Magdy Mahfouz Youssef

Volume 23, Issue 14, 2023

Published on: 09 June, 2023

Page: [1652 - 1669] Pages: 18

DOI: 10.2174/1871520623666230517100427

Price: $65

Abstract

Background: Nanoparticles' precise targeting properties are becoming increasingly important in treating cancer and starting to outweigh cancer therapies.

Methods: The in vivo anticancer activity of ethyl acetate iron oxide nanoparticles (NPS EAE) of Acalypha wilkesiana Müll. Mosaica was tested using Ehrlich ascites carcinoma cells (EAC).

Results: The value of the median lethal dose LD50 limit was found to be 3000 mg/kg. The value count of EAC cells was significantly decreased to 150 ± 2.01 (106) and 275 ± 2.01 (106) cells for each preventive and therapeutic group related to the positive group (525 ± 4.3 (106) cell. Moreover, the results of biological markers decrease in alanine amino transferase activity (ALT), aspartate amino transferase activity (AST), creatinine (CREAT), UREA, albumin, globulin, and total protein level according to the confident group by restoring the abnormal dissimilarity in the biomedical parameters to normal values. Ethyl acetate nano particles induced apoptosis in hepatic and kidney cells. This was designated by increasing the apoptosis regulator Bcl-2 associated X (BAX) level and significantly reducing antiapoptotic assay B-cell lymphoma 2 (Bcl-2) level as an antiapoptotic marker. In the apoptotic marker BAX, there was a significant rise in therapeutic activity with a change of 273.87% and a significant increase in the preventive group with a change of 144.69% according to the positive group. However, in the antiapoptotic marker, Bcl-2 highly decreases in the therapeutic group and preventive group with changes -83.20% and -87.82% according to the positive group, which has a highly significant increase with a change of 5855%.

Conclusion: Histopathology tests showed anticancer activity against (EAC) in both the preventive group and therapeutic group, especially in the preventive group in kidney organs showed no pathology with normal glomeruli and normal tubules, it also showed in liver foci of lobular inflammation with mild development of a portal tract accompanied by inflammation, but in the therapeutic group showed less activity than the preventive group as in the kidney many tubules displayed appearances of slight tubular injury with mild acute tubular injury and in the liver, the therapeutic group becomes a more effective representation in normal liver architecture, with no detected lobular or portal inflammation or confluent necrosis. So the preventive group was considered as protecting agent for the kidney organ. However, the therapeutic group is supposed to be the treatment agent for the liver organ. This is due to the fact that it has a defensive effect rather than a curative effect. There is a possibility that it is a favorable anticancer agent. Green synthesis of Fe3O4- NPS was successfully done using plant extract acting as a reducing, stabilizing, and capping agent.

Graphical Abstract

[1]
McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr., 2016, 7(2), 418-419.
[http://dx.doi.org/10.3945/an.116.012211] [PMID: 26980827]
[2]
Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7(9), 1063-1077.
[http://dx.doi.org/10.1517/17425247.2010.502560] [PMID: 20716019]
[3]
Caputo, F.; De Nicola, M.; Ghibelli, L. Pharmacological potential of bioactive engineered nanomaterials. Biochem. Pharmacol., 2014, 92(1), 112-130.
[http://dx.doi.org/10.1016/j.bcp.2014.08.015] [PMID: 25175739]
[4]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[5]
Seebaluck, N.V.; Munhurrun, P.R.; Naidoo, P.; Rughoonauth, P. An analysis of the push and pull motives for choosing mauritius as “the” wedding destination. Procedia Soc. Behav. Sci., 2015, 175, 201-209.
[http://dx.doi.org/10.1016/j.sbspro.2015.01.1192]
[6]
Al-Rehaily, A.; Thomas, J.; Yusuf, M.; Sivadasan, M. Taxonomy and distribution of two newly recorded genera in Saudi Arabia, Kuwait. J. Sci., 2015, 42(3), 158-169. Available from: https://journalskuwait.org
[7]
Guillén-Meléndez, G.A.; Villa-Cedillo, S.A.; Pérez-Hernández, R.A.; Castillo-Velázquez, U.; Salas-Treviño, D.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.; Gómez-Tristán, C.A.; Garza-Arredondo, A.J.; Zamora-Ávila, D.E.; de Jesús Loera-Arias, M.; Soto-Domínguez, A. Cytotoxic effect in vitro of acalypha monostachya extracts over human tumor cell lines. Plants, 2021, 10(11), 2326.
[http://dx.doi.org/10.3390/plants10112326] [PMID: 34834687]
[8]
Udobang, J.A.; Nwafor, P.A.; Okokon, J.E. Analgesic and antimalarial activities of crude leaf extract and fractions of Acalypha wilkensiana. J. Ethnopharmacol., 2010, 127(2), 373-378.
[http://dx.doi.org/10.1016/j.jep.2009.10.028] [PMID: 19892007]
[9]
Aramjoo, H.; Mohammadparast-Tabas, P.; Farkhondeh, T.; Zardast, M.; Makhdoumi, M.; Samarghandian, S.; Kiani, Z. Protective effect of Sophora pachycarpa seed extract on carbon tetrachloride-induced toxicity in rats. BMC Compl. Med. Ther., 2022, 22(1), 76.
[http://dx.doi.org/10.1186/s12906-022-03554-9] [PMID: 35300676]
[10]
Forcados, G.E.; James, D.B.; Sallau, A.B.; Muhammad, A.; Mabeta, P. Oxidative stress and carcinogenesis: Potential of phytochemicals in breast cancer therapy. Nutr. Cancer, 2017, 69(3), 365-374.
[http://dx.doi.org/10.1080/01635581.2017.1267777] [PMID: 28103111]
[11]
Levitsky, D.O.; Dembitsky, V.M. Anti-breast cancer agents derived from plants. Nat. Prod. Bioprospect., 2015, 5(1), 1-16.
[http://dx.doi.org/10.1007/s13659-014-0048-9] [PMID: 25466288]
[12]
Honary, S.; Barabadi, H.; Gharaei-Fathabad, E.; Naghibi, F. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, penicillium and Penicillium waksmani. Dig. J. Nanomater. Biostruct., 2012, 7(3), 999-1005.
[13]
Aswathy, A.S.; Philip, D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 97, 1-5.
[http://dx.doi.org/10.1016/j.saa.2012.05.083] [PMID: 22743607]
[14]
Gogoi, R.; Singh, P.K.; Kumar, R.; Nair, K.K.; Alam, I.; Srivastava, C.S.; Gopal, M.; Choudhury, S.R.; Goswami, A. Suitability of nano-sulphur for biorational management of powdery mildew of okra (Abelmoschus esculentus moench) caused by Erysiphe cichoracearum. J. Plant Pathol. Microbiol., 2013, 4(4), 1-4.
[http://dx.doi.org/10.4172/2157-7471.1000171]
[15]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[16]
Ahmad, T.; Bustam, M.A.; Irfan, M.; Moniruzzaman, M.; Asghar, H.M.A.; Bhattacharjee, S. Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: Role of phenolic compounds and flavonoids. Biotechnol. Appl. Biochem., 2019, 66(4), 698-708.
[http://dx.doi.org/10.1002/bab.1787] [PMID: 31172593]
[17]
Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep., 2014, 4, 42-49.
[http://dx.doi.org/10.1016/j.btre.2014.08.002] [PMID: 28626661]
[18]
Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl., 2018, 2018, 1-18.
[http://dx.doi.org/10.1155/2018/1062562] [PMID: 30073019]
[19]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[20]
Nani, R.R.; Gorka, A.P.; Nagaya, T.; Yamamoto, T.; Ivanic, J.; Kobayashi, H.; Schnermann, M.J. In vivo activation of duocarmycin–antibody conjugates by near-infrared light. ACS Cent. Sci., 2017, 3(4), 329-337.
[http://dx.doi.org/10.1021/acscentsci.7b00026] [PMID: 28470051]
[21]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[22]
Dhar, P.K.; Saha, P.; Hasan, M.K.; Amin, M.K.; Haque, M.R. Green synthesis of magnetite nanoparticles using Lathyrus sativus peel extract and evaluation of their catalytic activity. Cleaner Eng. Technol., 2021, 3100117
[http://dx.doi.org/10.1016/j.clet.2021.100117]
[23]
Kariuki, R.; Penman, R.; Bryant, S.J.; Orrell-Trigg, R.; Meftahi, N.; Crawford, R.J.; McConville, C.F.; Bryant, G.; Voïtchovsky, K.; Conn, C.E.; Christofferson, A.J.; Elbourne, A. Behavior of citrate-capped ultrasmall gold nanoparticles on a supported lipid bilayer interface at atomic resolution. ACS Nano, 2022, 16(10), 17179-17196.
[http://dx.doi.org/10.1021/acsnano.2c07751] [PMID: 36121776]
[24]
Wang, Z.; Liu, B.; Sun, Q.; Feng, L.; He, F.; Yang, P.; Gai, S.; Quan, Z.; Lin, J. Upconverted metal–organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy. ACS Nano, 2021, 15(7), 12342-12357.
[http://dx.doi.org/10.1021/acsnano.1c04280] [PMID: 34160201]
[25]
Abd Eldaim, M.A.; Tousson, E.; El Sayed, I.E.T.; Abd Elmaksoud, A.Z.; Ahmed, A.A.S. Ameliorative effects of 9-diaminoacridine derivative against Ehrlich ascites carcinoma–induced hepatorenal injury in mice. Environ. Sci. Pollut. Res. Int., 2021, 28(17), 21835-21850.
[http://dx.doi.org/10.1007/s11356-020-11857-y] [PMID: 33415614]
[26]
Jaganathan, S.K.; Mondhe, D.; Wani, Z.A.; Pal, H.C.; Mandal, M. Effect of honey and eugenol on ehrlich ascites and solid carcinoma BioMed Res. Int., 2010. Avaialble from: https://www.hindawi.com/journals/bmri/2010/989163/
[http://dx.doi.org/10.1155/2010/989163]
[27]
Khan, W.; Bakht, J.; Khan, B.M. In vitro antifungal, anti-oxidant and HPLC analysis of the extracts of Physalis philadelphica. Bangladesh J. Pharmacol., 2017, 12(3), 313-318.
[http://dx.doi.org/10.3329/bjp.v12i3.31965]
[28]
Jackman, R.P.; Utter, G.H.; Heitman, J.W.; Hirschkorn, D.F.; Law, J.P.; Gefter, N.; Busch, M.P.; Norris, P.J. Effects of blood sample age at time of separation on measured cytokine concentrations in human plasma. Clin. Vaccine Immunol., 2011, 18(2), 318-326.
[http://dx.doi.org/10.1128/CVI.00465-10] [PMID: 21159926]
[29]
Meier, J.; Theakston, R.D.G. Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 1986, 24(4), 395-401.
[http://dx.doi.org/10.1016/0041-0101(86)90199-6] [PMID: 3715904]
[30]
Bhattacharya, S.; Prasanna, A.; Majumdar, P.; Kumar, R.B.; Haldar, P.K. Antitumor efficacy and amelioration of oxidative stress by Trichosanthes dioica root against EAC in mice. Pharm. Biol., 2011, 49(9), 927-935.
[http://dx.doi.org/10.3109/13880209.2011.557080] [PMID: 21819262]
[31]
Jones, P.; Christodoulos, K.; Dobbs, N.; Thavasu, P.; Balkwill, F.; Blann, A.D.; Caine, G.J.; Kumar, S.; Kakkar, A.J.; Gompertz, N.; Talbot, D.C.; Ganesan, T.S.; Harris, A.L. Combination antiangiogenesis therapy with marimastat, captopril and fragmin in patients with advanced cancer. Br. J. Cancer, 2004, 91(1), 30-36.
[http://dx.doi.org/10.1038/sj.bjc.6601897] [PMID: 15162145] [PMCID: PMC2364746]
[32]
Nguyen, H.T.L.; Nguyen, S.T.; Van Pham, P. Concise Review: 3D cell culture systems for anticancer drug screening. Biomed. Res. Ther., 2016, 3(5), 22.
[http://dx.doi.org/10.7603/s40730-016-0022-8]
[33]
Koracevic, D.; Koracevic, G.; Djordjevic, V.; Andrejevic, S.; Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol., 2001, 54(5), 356-361.
[http://dx.doi.org/10.1136/jcp.54.5.356] [PMID: 11328833]
[34]
Gong, J.; Qian, L.; Kong, X.; Yang, R.; Zhou, L.; Sheng, Y.; Sun, W.; Sun, F.; Huang, Y.; Cao, K. Cardiomyocyte apoptosis in the right auricle of patients with Ostium secundum atrial septal defect diseases. Life Sci., 2007, 80(12), 1143-1151.
[http://dx.doi.org/10.1016/j.lfs.2006.12.012] [PMID: 17275858]
[35]
da Silva-Pereira, J.F.; de Oliveira Valoto, A.L.; Bracht, L.; de Almeida Gonçalves, G.; Peralta, R.M.; Bracht, A. The action of p-synephrine on lipid metabolism in the perfused rat liver. J. Biosci. Med., 2017, 5(5), 8-21.
[http://dx.doi.org/10.4236/jbm.2017.55002]
[36]
Suvarna, S.K.; Layton, C.; Bancroft, J.D. Bancroft’s theory and practice of histological techniques.In: Histobiology and laboratory book; Elsevier: UK, 2019.
[http://dx.doi.org/10.1016/C2015-0-00143-5]
[37]
El-Ansary, A.; Zayed, N.; Al-Ayadhi, L.; Qasem, H.; Anwar, M.; Meguid, N.A.; Bhat, R.S. Doşa, M.D.; Chirumbolo, S.; Bjørklund, G. GABA synaptopathy promotes the elevation of caspases 3 and 9 as pro-apoptotic markers in Egyptian patients with autism spectrum disorder. Acta Neurol. Belg., 2021, 121(2), 489-501.
[http://dx.doi.org/10.1007/s13760-019-01226-z] [PMID: 31673995]
[38]
Haldar, P.K.; Kar, B.; Bala, A.; Bhattacharya, S.; Mazumder, U.K. Antitumor activity of Sansevieria roxburghiana rhizome against EAC in mice. Pharm. Biol., 2010, 48(12), 1337-1343.
[http://dx.doi.org/10.3109/13880201003792592] [PMID: 21091122]
[39]
Azizi, M.; Ghourchian, H.; Yazdian, F.; Bagherifam, S.; Bekhradnia, S.; Nyström, B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci. Rep., 2017, 7(1), 5178.
[http://dx.doi.org/10.1038/s41598-017-05461-3] [PMID: 28701707]
[40]
Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; De Groote, J.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.M.; Phillips, M.J.; Portmann, B.G.; Poulsen, H.; Scheuer, P.J.; Schmid, M.; Thaler, H. Histological grading and staging of chronic hepatitis. J. Hepatol., 1995, 22(6), 696-699.
[http://dx.doi.org/10.1016/0168-8278(95)80226-6] [PMID: 7560864]
[41]
Cao, Z.; Cooper, M.E.; Wu, L.L.; Cox, A.J.; Jandeleit-Dahm, K.; Kelly, D.J.; Gilbert, R.E. Blockade of the renin-angiotensin and endothelin systems on progressive renal injury. Hypertension, 2000, 36(4), 561-568.
[http://dx.doi.org/10.1161/01.HYP.36.4.561] [PMID: 11040236]
[42]
Shojaee, S.; Mahdavi, M. Green synthesis and characterization of iron oxide magnetic nanoparticles using Shanghai White tea (Camelia sinensis) aqueous extract. J. Chem. Pharm. Res., 2016, 8(5), 138-143.
[43]
Asokan, A.; Sithara, A.; Niveditha, R.M.; Reshma, R.; Veena, S.K. Utilization of green synthesized iron oxide nano particles for the removal of arsenic from aqueous solution. AJAST, 2018, 2(2), 1100-1110.
[44]
Vijay Kumar, P.P.N.; Pammi, S.V.N.; Shameem, U.A. A green approach for the synthesis of iron oxide nanoparticles by using roots of a. racemosus and its deg-radation of dye methyl orange. Int. J. Pharm. Drug Anal., 2018, 6(1), 22-28. Available from: http://ijpda.com
[45]
Zhang, S.; Wu, W.; Xiao, X.; Zhou, J.; Ren, F.; Jiang, C. Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles. Nanoscale Res. Lett., 2011, 6(1), 89.
[http://dx.doi.org/10.1186/1556-276X-6-89] [PMID: 21711591]
[46]
Hanaor, D.A.H.; Assadi, M.H.N.; Li, S.; Yu, A.; Sorrell, C.C. Ab initio study of phase stability in doped TiO2. Comput. Mech., 2012, 50(2), 185-194.
[http://dx.doi.org/10.1007/s00466-012-0728-4]
[47]
Mahdavi, M.; Namvar, F.; Bin Ahmad, M.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (fe3o4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 2013, 18(5), 5954-5964.
[http://dx.doi.org/10.3390/molecules18055954]
[48]
Shah, S.R.; Katariya, K.D.; Reddy, D. Quinoline-1,3-oxazole hybrids: Syntheses, anticancer activity and molecular docking studies. ChemistrySelect, 2020, 5(3), 1097-1102.
[http://dx.doi.org/10.1002/slct.201903763]
[49]
Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 1993, 90(17), 7915-7922.
[http://dx.doi.org/10.1073/pnas.90.17.7915] [PMID: 8367443]
[50]
Alkadi, H. A review on free radicals and antioxidants. Infect. Disord. Drug Targets, 2020, 20(1), 16-26.
[http://dx.doi.org/10.2174/22123989OTEznMzIwTcVY] [PMID: 29952268]
[51]
Vitaglione, P.; Morisco, F.; Caporaso, N.; Fogliano, V. Dietary antioxidant compounds and liver health. Crit. Rev. Food Sci. Nutr., 2005, 44(7-8), 575-586.
[http://dx.doi.org/10.1080/10408690490911701] [PMID: 15969329]
[52]
Wiart, C. Medicinal Plants of the Asia-Pacific: Drugs for the future?; World Scientific Publishing Co.: Malaysia, 2006.
[http://dx.doi.org/10.1007/978-1-59745-160-4]
[53]
Islam, M.S.; Rahi, M.S.; Jahangir, C.A.; Rahman, M.H.; Jerin, I.; Amin, R.; Hoque, K.M.F.; Reza, M.A. In vivo anticancer activity of Basella alba leaf and seed extracts against ehrlich’s ascites carcinoma (eac) cell line. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/1537896] [PMID: 30581479]
[54]
Eastman, A.E.; Guo, S. The palette of techniques for cell cycle analysis. FEBS Lett., 2020, 594(13), 2084-2098.
[http://dx.doi.org/10.1002/1873-3468.13842] [PMID: 32441778]
[55]
Figel, S.; Fenstermaker, R.A. Cell-cycle regulation.In: Handbook of Brain Tumor Chemotherapy; Elsevier: UK, 2018, pp. 257-269.
[http://dx.doi.org/10.1016/B978-0-12-812100-9.00018-8]
[56]
Lim, S.W.; Ting, K.N.; Bradshaw, T.D.; Zeenathul, N.A.; Wiart, C.; Khoo, T.J.; Lim, K.H.; Loh, H.S. Acalypha wilkesiana extracts induce apoptosis by causing single strand and double strand DNA breaks. J. Ethnopharmacol., 2011, 138(2), 616-623.
[http://dx.doi.org/10.1016/j.jep.2011.10.005] [PMID: 22008878]
[57]
Lim, S.W.; Loh, H.S.; Ting, K.N.; Bradshaw, T.D.; Zeenathul, N.A. Acalypha wilkesiana Ethyl acetate extract enhances the in vitro cytotoxic effects of α-tocopherol in human brain and lung cancer cells. Int. J. Biosci. Biochem. Bioinform., 2013, 3(4), 353-340.
[http://dx.doi.org/10.7763/IJBBB.2013.V3.226]
[58]
Madlener, S. Svačinová, J.; Kitner, M.; Kopecký, J.; Eytner, R.; Lackner, A.; Phuong, Nha Vo, T.; Frisch, R.; Grusch, M.; de Martin, R.; Doležal, K.; Strnad, M.; Krupitza, G. In vitro anti-inflammatory and anticancer activities of extracts of Acalypha alopecuroidea (Euphorbiaceae). Int. J. Oncol., 2009, 35(4), 881-891.
[http://dx.doi.org/10.3892/ijo_00000403] [PMID: 19724926]
[59]
Kim, J.Y.; Park, K.W.; Moon, K.D.; Lee, M.K.; Choi, J.; Yee, S.T.; Shim, K.H.; Seo, K.I. Induction of apoptosis in HT-29 colon cancer cells by crude saponin from Platycodi Radix. Food Chem. Toxicol., 2008, 46(12), 3753-3758.
[http://dx.doi.org/10.1016/j.fct.2008.09.067] [PMID: 18955103]
[60]
Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem., 2005, 280(7), 5636-5645.
[http://dx.doi.org/10.1074/jbc.M408177200] [PMID: 15533929]
[61]
Tin, M.M.Y.; Cho, C.H.; Chan, K.; James, A.E.; Ko, J.K.S. Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumour xenografts. Carcinogenesis, 2007, 28(6), 1347-1355.
[http://dx.doi.org/10.1093/carcin/bgl238]
[62]
Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun., 2020, 11(1), 102.
[http://dx.doi.org/10.1038/s41467-019-13668-3] [PMID: 31900386]
[63]
Vinardell, M.; Mitjans, M. Antitumor activities of metal oxide nanoparticles. Nanomaterials, 2015, 5(2), 1004-1021.
[http://dx.doi.org/10.3390/nano5021004] [PMID: 28347048]
[64]
Bhaskar, B.V.; Rammohan, A.; Babu, T.M.; Zheng, G.Y.; Chen, W.; Rajendra, W.; Zyryanov, G.V.; Gu, W. Molecular insight into isoform specific inhibition of PI3K-α and PKC-η with dietary agents through an ensemble pharmacophore and docking studies. Sci. Rep., 2021, 11(1), 12150.
[http://dx.doi.org/10.1038/s41598-021-90287-3] [PMID: 34108504]
[65]
Caito, S.W.; Aschner, M.; Aschner, M. Mitochondrial redox dysfunction and environmental exposures. Antioxid. Redox Signal., 2015, 23(6), 578-595.
[http://dx.doi.org/10.1089/ars.2015.6289] [PMID: 25826672]
[66]
Chowdhury, A.R.; Sharma, S.; Mandal, S.; Goswami, A.; Mukhopadhyay, S.; Majumder, H.K.; Majumder, H.K. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem. J., 2002, 366(2), 653-661.
[http://dx.doi.org/10.1042/bj20020098] [PMID: 12027807]
[67]
Casagrande, F.; Darbon, J.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: Regulation of cyclin-dependent kinases CDK2 and CDK111Abbreviations: CDK, cyclin-dependent kinase; CKI, CDK inhibitor; PI 3-kinase, phosphatidylinositol 3-kinase; PKC, protein kinase C; DTT, dithiothreitol; RIPA, radioimmunoprecipitation assay buffer. Biochem. Pharmacol., 2001, 61(10), 1205-1215.
[http://dx.doi.org/10.1016/S0006-2952(01)00583-4] [PMID: 11322924]
[68]
Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H.J.; Yoo, Y.D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., 2001, 19(4), 837-844.
[http://dx.doi.org/10.3892/ijo.19.4.837] [PMID: 11562764]
[69]
Davies, S.P.; Reddy, H.; Caivano, M.; Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J., 2000, 351(1), 95-105.
[http://dx.doi.org/10.1042/bj3510095] [PMID: 10998351]
[70]
LaPensee, E.W.; Ben-Jonathan, N. Novel roles of prolactin and estrogens in breast cancer: Resistance to chemotherapy. Endocr. Relat. Cancer, 2010, 17(2), R91-R107.
[http://dx.doi.org/10.1677/ERC-09-0253] [PMID: 20071456]
[71]
Büssing, A.; Stein, G.M.; Herterich-Akinpelu, I.; Pfüller, U. Apoptosis-associated generation of reactive oxygen intermediates and release of pro-inflammatory cytokines in human lymphocytes and granulocytes by extracts from the seeds of Acalypha wilkesiana. J. Ethnopharmacol., 1999, 66(3), 301-309.
[http://dx.doi.org/10.1016/S0378-8741(98)00227-X] [PMID: 10473177]
[72]
Rodríguez-Berriguete, G.; Fraile, B.; Martínez-Onsurbe, P.; Olmedilla, G.; Paniagua, R.; Royuela, M. MAP kinases and prostate cancer. J. Signal Transduct., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/169170] [PMID: 22046506]
[73]
Makoshi, M.S.; Oladipo, O.O.; Gotep, J.G.; Forcados, G.E.; Shu, M.L.; Chinyere, C.N.; Yusuf, H.B.; Akanbi, B.O.; Samuel, A.L.; Ozele, N.; Dogonyaro, B.B.; Atiku, A.A.; Ahmed, M.S.; Nduaka, C. Safety evaluation of Acalypha wilkesiana in albino rats and BHK-21 cell line. Comp. Clin. Pathol., 2016, 25(3), 543-548.
[http://dx.doi.org/10.1007/s00580-016-2224-2]
[74]
Sokpe, A.; Mensah, M.L.K.; Koffuor, G.A.; Thomford, K.P.; Arthur, R.; Jibira, Y.; Baah, M.K.; Adedi, B.; Agbemenyah, H.Y. Hypotensive and antihypertensive properties and safety for use of Annona muricata and Persea americana and their combination products. Evid. Based Complement. Alternat. Med., 2020, 8833828
[http://dx.doi.org/10.1155/2020/8833828] [PMID: 33488751] [PMCID: PMC7787783]
[75]
Ikewuchi, J.C.; Onyeike, E.N.; Uwakwe, A.A.; Ikewuchi, C.C. Effect of aqueous extract of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg (Euphorbiaceae) on the hematology, plasma biochemistry and ocular indices of oxidative stress in alloxan induced diabetic rats. J. Ethnopharmacol., 2011, Oct 11 137(3), 1415-1424. Epub 2011 Aug 16
[http://dx.doi.org/10.1016/j.jep.2011.08.015] [PMID: 21864665]
[76]
Oputiri, D.; Elias, A. Impact of co-administered lopinavir/ritonavir and sulfamethoxazole/trimethoprim on reproductive indices of male albino rats. Am. J. Pharmacol. Sci., 2014, 2(5), 93-99.
[http://dx.doi.org/10.12691/ajps-2-5-4]
[77]
Forcados, G.E.; Chinyere, C.N.; Shu, M.L. (2016) Acalypha wilkesiana: Therapeutic and toxic potential. J. Med. Surg. Pathol., 2016, 1(3), 122.
[http://dx.doi.org/10.4172/2472-4971.1000122]
[78]
Sule, O.J.; Elekwa, I.; Ayalogu, E.O. Effect of Acalypha Wilkesiana muell arg. On haematological parameters in wistar albino rats. Int. J. Biol. Med. Res., 2012, 3, 1234-1237.
[79]
Ogbuehi, J.; Adikwu, E.; Oputiri, D. Effect of Acalypha wilkesiana Muellarg leaf extract on the oxidative indices, liver enzymes and liver integrity of rats infected with Plasmodium berghei. Br. J. Pharmacol. Toxicol., 2014, 5(2), 76-82.
[http://dx.doi.org/10.19026/bjpt.5.5459]
[80]
Aliabadi, H.S.; Mozaffari, M.; Behdadfar, B.; Raesizadeh, M.; Esfahani, H.Z. Preparation and cytotoxic evaluation of magnetite (Fe3O4) nanoparticles on breast cancer cells and its combinatory effects with doxorubicin used in hyperthermia avicenna. J. Mod. Biotechnol., 2013, 5(2), 96-103.
[81]
Hernandes, E.P.; Bini, R.D.; Endo, K.M.; de Oliveira, Junior, V.A.; de Almeida, I.V.; Dias, G.S.; dos Santos, I.A.; de Oliveira, P.N.; Vicentini, V.E.P.; Cotica, L.F. Doxorubicin-loaded magnetic nanoparticles: Enhancement of doxorubicin’s effect on breast cancer cells (MCF-7). Magnetochemistry, 2022, 8(10), 114.
[http://dx.doi.org/10.3390/magnetochemistry8100114]
[82]
Devi, H.S.; Boda, M.A.; Shah, M.A.; Parveen, S.; Wani, A.H. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth, 2019, 8(1), 38-45.
[http://dx.doi.org/10.1515/gps-2017-0145]
[83]
Chen, F.; Li, T.; Zhang, H.; Saeed, M.; Liu, X.; Huang, L.; Wang, X.; Gao, J.; Hou, B.; Lai, Y.; Ding, C.; Xu, Z.; Xie, Z.; Luo, M.; Yu, H. Acid-ionizable iron nanoadjuvant augments STING activation for personalized vaccination immunotherapy of cancer. Adv. Mater., 2023, 35(10)2209910
[http://dx.doi.org/10.1002/adma.202209910] [PMID: 36576344]
[84]
Meng, J.; Zhang, P.; Chen, Q.; Wang, Z.; Gu, Y.; Ma, J.; Li, W.; Yang, C.; Qiao, Y.; Hou, Y.; Jing, L.; Wang, Y.; Gu, Z.; Zhu, L.; Xu, H.; Lu, X.; Gao, M. Two-pronged intracellular co-delivery of antigen and adjuvant for synergistic cancer immunotherapy. Adv. Mater., 2022, 34(21)2202168
[http://dx.doi.org/10.1002/adma.202202168] [PMID: 35362203]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy