Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis, and Anti-tumor Activity of Novel 2-Aryl Benzimidazole Compounds

Author(s): Haimiti Xiaohelaiti, Wenping Wu, Yiting Gao, Sisi Li and Cheng Ma*

Volume 23, Issue 14, 2023

Published on: 15 May, 2023

Page: [1644 - 1651] Pages: 8

DOI: 10.2174/1871520623666230411152115

Price: $65

Abstract

Background: Combretastatin A-4 (CA-4) is a natural product isolated from the bark of the South African bush willow tree Combretum caffrum, which exerts tubulin inhibition, but its clinical application is limited due to poor stability and water solubility. 2-aryl benzimidazoles are excellent pharmacological skeletons with many activities, especially in tumor inhibition, and better pharmacokinetic properties. Several scaffold CA-4 analogs have been synthesized to date possessing antitumor activities.

Objective: The benzimidazole was applied as the core moiety to replace the B ring and unstable linkage of CA-4, and the 5-aryl acetenyl group was introduced to improve the antitumor activity. MCF-7, A549, Caco-2, Siha, and Eca-109 tumor cell lines were used to study inhibition by these agents in vitro.

Methods: The benzimidazole structure was constructed from the oxidation of o-nitroaniline and aldehyde and the following schemes, and the structural characterization was carried out. The antitumor effects were evaluated in vitro through MTT assay, cell cycle arrest, and apoptosis assay. Molecular docking with tubulin (Protein ID: 1SA0) was analyzed for the structure-activity relationship.

Results: Among these derivatives, 4a-4h series (with 6-methoxy group) compounds inhibited the tumor cell lines much stronger than the CA-4 and cisplatin, especially compound 4f showed prominently inhibitory activity in Siha cell with IC50 value as 0.61 μmol/L. The further assay showed that the cell cycle was arrested at the G0/G1 phase as well verified in apoptosis assay. Molecular docking indicated that 4f had stronger affinity energy and hydrogen bond than CA-4.

Conclusion: The compound 4f has the potency to be used as an anti-tubulin agent and the 2-trimethoxyphenyl benzimidazole skeleton deserves further study as an antitumor structure.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Chung, W.P.; Huang, W.L.; Lee, C.H.; Hsu, H.P.; Huang, W.L.; Liu, Y.Y.; Su, W.C. PI3K inhibitors in trastuzumab-resistant HER2-positive breast cancer cells with PI3K pathway alterations. Am. J. Cancer Res., 2022, 12(7), 3067-3082.
[http://dx.doi.org/10.1159/000520793] [PMID: 35968355]
[3]
Jiang, Q.; Huang, J.; Zhang, B.; Li, X.; Chen, X.; Cui, B.; Li, S.; Guo, G. Efficacy and safety of anti-PD1/PDL1 in advanced biliary tract cancer: A systematic review and meta-analysis. Front. Immunol., 2022, 13801909
[http://dx.doi.org/10.3389/fimmu.2022.801909] [PMID: 35309350]
[4]
Bhogal, T.; Cameron, D.; Palmieri, C. Central nervous system disease in phase III studies for advanced HER2 positive breast cancer: A review. Breast, 2022, 63, 85-100.
[http://dx.doi.org/10.1016/j.breast.2022.03.013] [PMID: 35344688]
[5]
Du, R.; Wang, X.; Ma, L.; Larcher, L.M.; Tang, H.; Zhou, H.; Chen, C.; Wang, T. Adverse reactions of targeted therapy in cancer patients: A retrospective study of hospital medical data in China. BMC Cancer, 2021, 21(1), 206-219.
[http://dx.doi.org/10.1186/s12885-021-07946-x] [PMID: 33639888]
[6]
Liu, Y.; Xu, Y.; Cheng, X.; Lin, Y.; Jiang, S.; Yu, H.; Zhang, Z.; Lu, L.; Zhang, X. Research trends and most influential clinical studies on Anti-PD1/PDL1 immunotherapy for cancers: A bibliometric analysis. Front. Immunol., 2022, 13862084
[http://dx.doi.org/10.3389/fimmu.2022.862084] [PMID: 35493449]
[7]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[8]
Shuai, W.; Wang, G.; Zhang, Y.; Bu, F.; Zhang, S.; Miller, D.D.; Li, W.; Ouyang, L.; Wang, Y. Recent progress on tubulin inhibitors with dual targeting capabilities for cancer therapy. J. Med. Chem., 2021, 64(12), 7963-7990.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00100] [PMID: 34101463]
[9]
Turner, N.; Dent, R.A.; O’Shaughnessy, J.; Kim, S.B.; Isakoff, S.J.; Barrios, C.; Saji, S.; Bondarenko, I.; Nowecki, Z.; Lian, Q.; Reilly, S.J.; Hinton, H.; Wongchenko, M.J.; Kovic, B.; Mani, A.; Oliveira, M. Ipatasertib plus paclitaxel for PIK3CA/AKT1/PTEN-altered hormone receptor-positive HER2-negative advanced breast cancer: Primary results from cohort B of the IPATunity130 randomized phase 3 trial. Breast Cancer Res. Treat., 2022, 191(3), 565-576.
[http://dx.doi.org/10.1007/s10549-021-06450-x] [PMID: 34860318]
[10]
Ren, S.; Chen, J.; Xu, X.; Jiang, T.; Cheng, Y.; Chen, G.; Pan, Y.; Fang, Y.; Wang, Q.; Huang, Y.; Yao, W.; Wang, R.; Li, X.; Zhang, W.; Zhang, Y.; Hu, S.; Guo, R.; Shi, J.; Wang, Z.; Cao, P.; Wang, D.; Fang, J.; Luo, H.; Geng, Y.; Xing, C.; Lv, D.; Zhang, Y.; Yu, J.; Cang, S.; Yang, Z.; Shi, W.; Zou, J.; Zhou, C. CameL-sq Study Group. Camrelizumab plus carboplatin and paclitaxel as first-line treatment for advanced squamous NSCLC (CameL-Sq): A phase 3 trial. J. Thorac. Oncol., 2022, 17(4), 544-557.
[http://dx.doi.org/10.1016/j.jtho.2021.11.018] [PMID: 34923163]
[11]
Paidakula, S.; Nerella, S.; Kankala, S.; Kankala, R.K. Recent trends in tubulin-binding combretastatin A-4 analogs for anticancer drug development. Curr. Med. Chem., 2022, 29(21), 3748-3773.
[http://dx.doi.org/10.2174/0929867328666211202101641] [PMID: 34856892]
[12]
Pettit, G.R.; Minardi, M.D.; Hogan, F.; Price, P.M. An efficient synthetic strategy for obtaining 4-methoxy carbon isotope labeled combretastatin A-4 phosphate and other Z-combretastatins. J. Nat. Prod., 2010, 73(3), 399-403.
[http://dx.doi.org/10.1021/np9004486] [PMID: 20028026]
[13]
Nik, M.E.; Momtazi-Borojeni, A.A.; Zamani, P.; Navashenaq, J.G.; Iranshahi, M.; Jaafari, M.R.; Malaekeh-Nikouei, B. Targeted-nanoliposomal combretastatin A4 (CA-4) as an efficient antivascular candidate in the metastatic cancer treatment. J. Cell. Physiol., 2019, 234(9), 14721-14733.
[http://dx.doi.org/10.1002/jcp.28230] [PMID: 30697744]
[14]
Baytas, S.N. Recent advances in combretastatin A-4 inspired inhibitors of tubulin polymerization: An update. Curr. Med. Chem., 2022, 29(20), 3557-3585.
[http://dx.doi.org/10.2174/1871526522666220105114437] [PMID: 34986762]
[15]
Karatoprak, G. Ş.; Küpeli Akkol, E.; Genç, Y.; Bardakcı, H.; Yücel, Ç.; Sobarzo-Sánchez, E. Combretastatins: An overview of structure, probable mechanisms of action and potential applications. Molecules, 2020, 25(11), 2560.
[http://dx.doi.org/10.3390/molecules25112560] [PMID: 32486408]
[16]
Reipsch, F.; Biersack, B.; Lucas, H.; Schobert, R.; Mueller, T. Imidazole analogs of vascular-disrupting Combretastatin A-4 with pleiotropic efficacy against resistant colorectal cancer models. Int. J. Mol. Sci., 2021, 22(23), 13082.
[http://dx.doi.org/10.3390/ijms222313082]
[17]
Liu, X.; Pang, X.J.; Liu, Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Zhang, Y.B.; Song, J.; Zhang, S.Y. Discovery of novel diarylamide N-Containing heterocyclic derivatives as new tubulin polymerization inhibitors with anti-cancer activity. Molecules, 2021, 26(13), 4047.
[http://dx.doi.org/10.3390/molecules26134047]
[18]
Hamze, A.; Alami, M.; Provot, O. Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. Eur. J. Med. Chem., 2020, 190112110
[http://dx.doi.org/10.1016/j.ejmech.2020.112110] [PMID: 32061961]
[19]
Romagnoli, R.; Oliva, P.; Salvador, M.K.; Camacho, M.E.; Padroni, C.; Brancale, A.; Ferla, S.; Hamel, E.; Ronca, R.; Grillo, E.; Bortolozzi, R.; Rruga, F.; Mariotto, E.; Viola, G. Design, synthesis and biological evaluation of novel vicinal diaryl-substituted 1H-Pyrazole analogues of combretastatin A-4 as highly potent tubulin polymerization inhibitors. Eur. J. Med. Chem., 2019, 181111577
[http://dx.doi.org/10.1016/j.ejmech.2019.111577] [PMID: 31400707]
[20]
Yang, J.H.; Yu, Y.M.; Li, Y.; Yan, W.; Ye, H.Y.; Niu, L.; Tang, M.H.; Wang, Z.F.; Yang, Z.H.; Pei, H.Y.; Wei, H.C.; Zhao, M.; Wen, J.L.; Yang, L.Y.; Ouyang, L.; Wei, Y.Q.; Chen, Q.; Li, W.M.; Chen, L.J. Cevipabulin-tubulin complex reveals a novel agent binding site on α-tubulin with tubulin degradation effect. Sci. Adv., 2021, 7(21)eabg4168
[http://dx.doi.org/10.1126/sciadv.abg4168]
[21]
Yang, X.; Cheng, B.; Xiao, Y.; Xue, M.; Liu, T.; Cao, H.; Chen, J. Discovery of novel CA-4 analogs as dual inhibitors of tubulin polymerization and PD-1/PD-L1 interaction for cancer treatment. Eur. J. Med. Chem., 2021, 213113058
[http://dx.doi.org/10.1016/j.ejmech.2020.113058] [PMID: 33280898]
[22]
Wu, K.; Peng, X.; Chen, M.; Li, Y.; Tang, G.; Peng, J.; Peng, Y.; Cao, X. Recent progress of research on anti-tumor agents using benzimidazole as the structure unit. Chem. Biol. Drug Des., 2022, 99(5), 736-757.
[http://dx.doi.org/10.1111/cbdd.14022] [PMID: 35064629]
[23]
Vasava, M.S.; Bhoi, M.N.; Rathwa, S.K.; Jethava, D.J.; Acharya, P.T.; Patel, D.B.; Patel, H.D. Benzimidazole: A milestone in the field of medicinal chemistry. Mini Rev. Med. Chem., 2020, 20(7), 532-565.
[http://dx.doi.org/10.2174/1389557519666191122125453] [PMID: 31755386]
[24]
Fan, Y.; Luo, Y.; Ma, C. Synthesis and cytotoxic evaluation of combretastatin A-4 analogues of benzo[b]furans. Monatsh. Chem., 2017, 148(10), 1823-1832.
[http://dx.doi.org/10.1007/s00706-017-2001-1]
[25]
Gao, Y.T.; Ma, C.; Xiaohelaiti, H.M.T. BF12, a novel benzofuran, exhibits anti-tumor activity by inhibiting microtubules and thePI3K/Akt/mTOR signaling pathway in human cervical cancer cells. Chem. Biodivers., 2020, 17(3)e1900622
[http://dx.doi.org/10.1002/cbdv.201900622]
[26]
Feng, L.S.; Su, W.Q.; Cheng, J.B.; Xiao, T.; Li, H.Z.; Chen, D.A.; Zhang, Z.L. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure–activity relationship, and mechanisms of action (2019–2021). Arch. Pharm., 2022, 355(6)2200051
[http://dx.doi.org/10.1002/ardp.202200051] [PMID: 35385159]
[27]
Gilfillan, L.; Blair, A.; Morris, B.J.; Pratt, J.A.; Schweiger, L.; Pimlott, S.; Sutherland, A. Synthesis and biological evaluation of novel 2,3-dihydro-1H-1,5-benzodiazepin-2-ones; potential imaging agents of the metabotropic glutamate 2 receptor. MedChemComm, 2013, 4(7), 1118-1123.
[http://dx.doi.org/10.1039/C3MD00110E]
[28]
Won, D.I.; Lee, J.S.; Ji, J.M.; Jung, W.J.; Son, H.J.; Pac, C.; Kang, S.O. Highly robust hybrid photocatalyst for carbon dioxide reduction: Tuning and optimization of catalytic activities of Dye/TiO 2/Re(I) organic–inorganic ternary systems. J. Am. Chem. Soc., 2015, 137(42), 13679-13690.
[http://dx.doi.org/10.1021/jacs.5b08890] [PMID: 26456369]
[29]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[30]
PyMOL Molecular Graphics System, version 1.7.4; Schrodinger: LLC, New York, 2015. Available from: http://www.pymol.org

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy