Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Fundamental Uses of Peptides as a New Model in Both Treatment and Diagnosis

Author(s): Hend Okasha*

Volume 18, Issue 2, 2024

Published on: 09 June, 2023

Page: [110 - 127] Pages: 18

DOI: 10.2174/1872208317666230512143508

Price: $65

Abstract

An amino acid short chain is known as a peptide. Peptide bonds are the connections that hold the amino acids of a peptide together in a particular order. Characteristically, the shorter length of peptides helps to identify them from proteins. Different ways are used to classify peptides, including chain length, source of peptides, or their biological functions. The fact that peptides serve several purposes suggests that there is a foundation for improvement in peptide production and structure to enhance action. In addition, many patents on peptides for therapeutic and diagnostic approaches have been obtained. This review aims to give an overview of peptides used recently in treatment and diagnosis.

Next »
Graphical Abstract

[1]
Hou W, Zhang X, Liu CF. Progress in chemical synthesis of peptides and proteins. Trans Tianjin Univ 2017; 23: 401-19.
[http://dx.doi.org/10.1007/s12209-017-0068-8]
[2]
Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: Science and market. Drug Discov Today 2010; 15(1-2): 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[3]
Xiao YF, Jie MM, Li BS, et al. Peptide-based treatment: A promising cancer therapy. J Immunol Res 2015; 2015: 1-13.
[http://dx.doi.org/10.1155/2015/761820] [PMID: 26568964]
[4]
Fosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today 2015; 20(1): 122-8.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[5]
Hruby VJ, Qiu W, Okayama T, Soloshonok VA. Design of nonpeptides from peptide ligands for peptide receptors. Methods Enzymol 2002; 343: 91-123.
[http://dx.doi.org/10.1016/S0076-6879(02)43129-1] [PMID: 11665597]
[6]
Recio C, Maione F, Iqbal AJ, Mascolo N, De Feo V. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Front Pharmacol 2016; 7: 526.
[7]
Wucherpfennig KW, Franz B, May KF. DranoffF G Jr., Hodi S, Harvey C. Therapeutic peptides. Patent US20140004112A1,, 2013.
[8]
Kangawa K, Kojima M, Hosoda HTM, et al. Novel peptides Patent EP1197496A1, 2000.
[9]
Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 2008; 12(3): 292.
[http://dx.doi.org/10.1016/j.cbpa.2008.03.009]
[10]
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based design of inhibitors of protein-protein interactions: Mimicking peptide binding epitopes. (International edition.). Angewandte Chemie 2015; p. 54.
[11]
Xie M, Liu D, Yang Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol 2020; 10(7): 200004.
[http://dx.doi.org/10.1098/rsob.200004] [PMID: 32692959]
[12]
Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol 2018; 9: 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[13]
Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H. Cancer incidence in Egypt: Results of the national population-based cancer registry program. J Cancer Epidemiol 2014; 2014: 437971.
[14]
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 2019; 394(10207): 1467-80.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[15]
Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol Res 2015; 3(5): 436-43.
[16]
Shoombuatong W, Schaduangrat N, Nantasenamat C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J 2018; 17: 734-52.
[PMID: 30190664]
[17]
Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012; 2012: 1-13.
[http://dx.doi.org/10.1155/2012/967347] [PMID: 23316341]
[18]
Al Musaimi O, Al Shaer D, Albericio F, de la Torre BG. FDA TIDES (peptides and oligonucleotides) harvest. Vol. 14. Pharmaceuticals 2020; 15(2): 222.
[19]
de la Torre BG, Albericio F. Peptide therapeutics 2.0. Molecules 2020; 25(10): 2293.
[http://dx.doi.org/10.3390/molecules25102293]
[20]
Zhong C, Zhang L, Yu L, Huang J, Huang S, Yao Y. A review for antimicrobial peptides with anticancer properties: Re-purposing of potential anticancer agents. BIO Integr 2020; 1(4): 156-67.
[21]
Brogden KA. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3(3): 238-50.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[22]
Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD. Tumor cell membrane-targeting cationic antimicrobial peptides: Novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 2017; 74(20): 3809-25.
[http://dx.doi.org/10.1007/s00018-017-2604-z] [PMID: 28770291]
[23]
Elmore S. Apoptosis: A review of programmed cell death.In: Toxicologic pathology NIH Public Access. 2007; 35: pp. 495-516.
[24]
Okasha H, Samir S, Nasr SM. Purified recombinant human Chromogranin A N46 peptide with remarkable anticancer effect on human colon cancer cells. Bioorg Chem 2021; 115: 105266.
[http://dx.doi.org/10.1016/j.bioorg.2021.105266] [PMID: 34449322]
[25]
Wolf JS, Li G, Varadhachary A, et al. Oral lactoferrin results in T cell-dependent tumor inhibition of head and neck squamous cell carcinoma in vivo. Clin Cancer Res 2007; 13(5): 1601-10.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2008] [PMID: 17332307]
[26]
Li X, Meng Y, Plotnikoff NP, et al. Methionine Enkephalin (MENK) Inhibits tumor growth through regulating CD4+Foxp3+ Regulatory T cells (Tregs) in mice. Cancer Biol Ther 2015; 16(3): 450-9.
[http://dx.doi.org/10.1080/15384047.2014.1003006] [PMID: 25701137]
[27]
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol 2020; 11: 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[28]
Nielsen SD, Beverly RL, Qu Y, Dallas DC. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem 2017; 232: 673-82.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.056] [PMID: 28490127]
[29]
Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 2017; 6(1): 47.
[http://dx.doi.org/10.1186/s13756-017-0208-x] [PMID: 28515903]
[30]
Irajie C, Mohkam M, Vakili B, Nezafat N. Computational elucidation of phylogenetic, functional and structural features of methioninase from Pseudomonas, Escherichia, Clostridium and Citrobacter strains. Recent Pat Biotechnol 2021; 15(4): 286-301.
[http://dx.doi.org/10.2174/1872208315666210910091438] [PMID: 34515017]
[31]
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial peptides: An update on classifications and databases. Vol. 22. Int J Mol Sci 2021; 22(21): 11691.
[http://dx.doi.org/10.3390/ijms222111691] [PMID: 34769122]
[32]
Spänig S, Heider D. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min 2019; 12(1): 7.
[http://dx.doi.org/10.1186/s13040-019-0196-x] [PMID: 30867681]
[33]
Gschwandtner M, Zhong S, Tschachler A, et al. Fetal human keratinocytes produce large amounts of antimicrobial peptides: Involvement of histone-methylation processes. J Invest Dermatol 2014; 134(8): 2192-201.
[http://dx.doi.org/10.1038/jid.2014.165] [PMID: 24694903]
[34]
Okasha H, Samir S. Synthesis and molecular cloning of antimicrobial peptide chromogranin A N-46 gene using conventional PCR. Gene Rep 2020; 18: 100571.
[http://dx.doi.org/10.1016/j.genrep.2019.100571]
[35]
Rollins-Smith LA. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta Biomembr 2009; 1788(8): 1593-9.
[http://dx.doi.org/10.1016/j.bbamem.2009.03.008]
[36]
Vilcinskas A. Evolutionary plasticity of insect immunity. J Insect Physiol 2013; 59(2): 123-9.
[http://dx.doi.org/10.1016/j.jinsphys.2012.08.018] [PMID: 22985862]
[37]
Lewies A, Du Plessis LH, Wentzel JF. The cytotoxic, antimicrobial and anticancer properties of the antimicrobial peptide nisin Z alone and in combination with conventional treatments.In: Cytotoxicity intechopen. 2017.
[38]
Ramachander Turaga VN. Peptaibols: Antimicrobial peptides from fungi.In: Bioactive Natural Products in Drug Discovery. Springer: Singapore 2020; pp. 713-30.
[39]
Zaky AA, Simal-Gandara J, Eun JB, Shim JH, Abd El-Aty AM. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front Nutr 2021; 8: 815640.
[40]
Li C, Zhu C, Ren B, et al. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur J Med Chem 2019; 183: 111686.
[http://dx.doi.org/10.1016/j.ejmech.2019.111686] [PMID: 31520928]
[41]
Jang WJ, Jung SK, Vo TTL, Jeong CH. Anticancer activity of paroxetine in human colon cancer cells: Involvement of MET and ERBB3. J Cell Mol Med 2019; 23(2): 1106-15.
[http://dx.doi.org/10.1111/jcmm.14011] [PMID: 30421568]
[42]
Ashkenazi A, Wexler-Cohen Y, Shai Y. Multifaceted action of Fuzeon as virus-cell membrane fusion inhibitor. Biochim Biophys Acta Biomembr 2011; 1808(10): 2352-8.
[http://dx.doi.org/10.1016/j.bbamem.2011.06.020]
[43]
Muhialdin BJ, Algboory HL, Kadum H, et al. Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control 2020; 109: 106898.
[http://dx.doi.org/10.1016/j.foodcont.2019.106898]
[44]
Shwaiki LN, Arendt EK, Lynch KM. Anti-yeast activity and characterisation of synthetic radish peptides Rs-AFP1 and Rs-AFP2 against food spoilage yeast: Synthetic radish peptides against food spoilage yeast. Food Control 2020; 113.
[45]
Wait LF, Dobson AP, Graham AL. Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine 2020; 38(35): 5582-90.
[http://dx.doi.org/10.1016/j.vaccine.2020.06.064] [PMID: 32616328]
[46]
Huang HN, Chuang CM, Chen JY, Chieh-Yu P. Epinecidin-1: A marine fish antimicrobial peptide with therapeutic potential against Trichomonas vaginalis infection in mice. Peptides 2019; 112: 139-48.
[http://dx.doi.org/10.1016/j.peptides.2018.12.004] [PMID: 30552913]
[47]
Zahedifard F, Lee H, No JH, et al. Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite. Exp Parasitol 2020; 209: 107823.
[http://dx.doi.org/10.1016/j.exppara.2019.107823] [PMID: 31862270]
[48]
Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta Biomembr 2008; 1778(2): 357-75.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[49]
Dadar M, Shahali Y, Chakraborty S, et al. Antiinflammatory peptides: Current knowledge and promising prospects. Inflamm Res 2019; 68(2): 125-45.
[http://dx.doi.org/10.1007/s00011-018-1208-x] [PMID: 30560372]
[50]
Khatun MS, Hasan MM, Kurata H. PreAIP: Computational prediction of anti-inflammatory peptides by integrating multiple complementary features. Front Genet 2019; 10: 129.
[http://dx.doi.org/10.3389/fgene.2019.00129] [PMID: 30891059]
[51]
Rivero-Pino F, Espejo-Carpio FJ, Pérez-Gálvez R, Guadix A, Guadix EM. Effect of ultrasound pretreatment and sequential hydrolysis on the production of Tenebrio molitor antidiabetic peptides. Food Bioprod Process 2020; 123: 217-24.
[http://dx.doi.org/10.1016/j.fbp.2020.07.003]
[52]
Ismail R, Csóka I. Novel strategies in the oral delivery of antidiabetic peptide drugs - Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm 2017; 115: 257-67.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.015] [PMID: 28336368]
[53]
Runti G, Lopez RMDL, Stoilova T, Hussain R, Jennions M, Choudhury HG. Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1-35). J Bacteriol 2013; 195(23): 5343.
[54]
Mishra A, Choi J, Moon E, Baek KH. Tryptophan-rich and proline-rich antimicrobial peptides. Vol. 23. Molecules 2018; 23(4): 815.
[http://dx.doi.org/10.3390/molecules23040815] [PMID: 29614844]
[55]
Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim Biophys Acta Biomembr 2006; 1758(9): 1184-202.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.006]
[56]
Velkov T, Gallardo-Godoy A, Swarbrick JD, et al. Structure, function, and biosynthetic origin of octapeptin antibiotics active against extensively drug-resistant gram-negative bacteria. Cell Chem Biol 2018; 25(4): 380-391.e5.
[http://dx.doi.org/10.1016/j.chembiol.2018.01.005] [PMID: 29396290]
[57]
Kacprzyk L, Rydengård V, Mörgelin M, et al. Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochim Biophys Acta Biomembr 2007; 1768(11): 2667-80.
[http://dx.doi.org/10.1016/j.bbamem.2007.06.020] [PMID: 17655823]
[58]
Dong N, Wang C, Zhang T, et al. Bioactivity and bactericidal mechanism of histidine-rich β-hairpin peptide against gram-negative bacteria. Int J Mol Sci 2019; 20(16): 3954.
[http://dx.doi.org/10.3390/ijms20163954] [PMID: 31416220]
[59]
D’Este F, Benincasa M, Cannone G, et al. Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from Salmonid cathelicidins. Fish Shellfish Immunol 2016; 59: 456-68.
[http://dx.doi.org/10.1016/j.fsi.2016.11.004] [PMID: 27818338]
[60]
de Jesus Oliveira T, Oliveira UC, da Silva Junior PI. Serrulin: A glycine-rich bioactive peptide from the hemolymph of the yellow tityus serrulatus scorpion. Toxins 2019; 11(9): 517.
[http://dx.doi.org/10.3390/toxins11090517] [PMID: 31489876]
[61]
Mardirossian M, Pérébaskine N, Benincasa M, et al. The dolphin proline-rich antimicrobial peptide tur1a inhibits protein synthesis by targeting the bacterial ribosome. Cell Chem Biol 2018; 25(5): 530-539.e7.
[http://dx.doi.org/10.1016/j.chembiol.2018.02.004] [PMID: 29526712]
[62]
Mardirossian M, Grzela R, Giglione C, et al. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 2014; 21(12): 1639-47.
[http://dx.doi.org/10.1016/j.chembiol.2014.10.009] [PMID: 25455857]
[63]
Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 1998; 160(1): 91-6.
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.x] [PMID: 9495018]
[64]
Shu-Wen H, Jian Z, Ning-Qiu L, et al. A TFPI-1 peptide that induces degradation of bacterial nucleic acids, and inhibits bacterial and viral infection in half-smooth tongue sole, Cynoglossus semilaevis. Fish Shellfish Immunol 2017; 60: 466-73.
[65]
Shu G, Chen Y, Liu T, Ren S, Kong Y. Antimicrobial peptide cathelicidin-bf inhibits platelet aggregation by blocking protease-activated receptor 4. Int J Pept Res Ther 2019; 25(1): 349-58.
[http://dx.doi.org/10.1007/s10989-018-9677-x]
[66]
Hu Z, Lutkenhaus J. Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol Cell 2001; 7(6): 1337-43.
[http://dx.doi.org/10.1016/S1097-2765(01)00273-8] [PMID: 11430835]
[67]
Li L, Sun J, Xia S, Tian X, Cheserek MJ, Le G. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Appl Microbiol Biotechnol 2016; 100(7): 3245-53.
[http://dx.doi.org/10.1007/s00253-015-7265-y] [PMID: 26743655]
[68]
Pandey S, Malviya G, Chottova DM. Role of peptides in diagnostics. Int J Mol Sci 2021; 22(16): 8828.
[http://dx.doi.org/10.3390/ijms22168828] [PMID: 34445532]
[69]
Graciano RCD, Ribeiro JAT, Macêdo AKS, et al. Recent patents applications in red biotechnology: A mini-review. Recent Pat Biotechnol 2019; 13(3): 170-86.
[70]
Geysen HM, Rodda SJ, Mason TJ, Tribbick G, Schoofs PG. Strategies for epitope analysis using peptide synthesis. J Immunol Methods 1987; 102(2): 259-74.
[http://dx.doi.org/10.1016/0022-1759(87)90085-8] [PMID: 2443575]
[71]
Carter JM. Epitope mapping of a protein using the Geysen (PEPSCAN) procedure. Vol. 36. Methods Mol Biol 1994; 36: 207-23.
[72]
Andresen H, Bier FF. Peptide microarrays for serum antibody diagnostics. Methods Mol Biol 2009; 509: 123-34.
[http://dx.doi.org/10.1007/978-1-59745-372-1_8]
[73]
Velumani S, Ho HT, He F, Musthaq S, Prabakaran M, Kwang J. A novel peptide ELISA for universal detection of antibodies to human H5N1 influenza viruses. PLoS One 2011; 6(6): e20737.
[http://dx.doi.org/10.1371/journal.pone.0020737] [PMID: 21695200]
[74]
Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015; 72: 4-15.
[http://dx.doi.org/10.1016/j.peptides.2015.04.012] [PMID: 25908411]
[75]
Ma F, Zhang L, Wang Y, et al. Development of a peptide ELISA for the diagnosis of Aleutian mink disease. PLoS One 2016; 11(11): e0165793.
[http://dx.doi.org/10.1371/journal.pone.0165793] [PMID: 27802320]
[76]
Moni SS, Bakkari MA, Sultan MH, Madkhali OA. Monoclonal antibodies and their target specificity against SARS-CoV-2 infections: Perspectives and challenges. Recent Pat Biotechnol 2022; 16(1): 64-78.
[http://dx.doi.org/10.2174/1872208316666220106110014] [PMID: 34994337]
[77]
Ibrahim AM, Gamal N, Abo-El-Azaem M, Mohamed A, Abd-El A, Ghaith A. Evaluation of some available HCV antibody detection tests (ELISA, Chemiluminescence, Immune Assay) and RT-PCR assay in the diagnosis of Hepatitis C virus infection. Vol. 72. Egypt J Hosp Med 2018.
[78]
Saleh EM, Gouda AE, Medhat AM, Ahmed HO, Shemis MA. Expression of HCV genotype-4 core antigen in prokaryotic E. coli system for diagnosis of HCV infection in Egypt. Protein Expr Purif 2021; 188: 105965.
[http://dx.doi.org/10.1016/j.pep.2021.105965] [PMID: 34461217]
[79]
Karim MR. ELISA: History, types and applications. Nova Science Publishers: Hauppauge, New York 2018.
[80]
Lee JE, Seo JH, Kim CS, et al. A comparative study on antibody immobilization strategies onto solid surface. Korean J Chem Eng 2013; 30(10): 1934-8.
[http://dx.doi.org/10.1007/s11814-013-0117-5]
[81]
Angenendt P. Progress in protein and antibody microarray technology. Drug Discov Today 2005; 10(7): 503-11.
[http://dx.doi.org/10.1016/S1359-6446(05)03392-1] [PMID: 15809196]
[82]
Delfani P, Dexlin ML, Nordström M, et al. Technical advances of the recombinant antibody microarray technology platform for clinical immunoproteomics. PLoS One 2016; 11(7): e0159138.
[http://dx.doi.org/10.1371/journal.pone.0159138] [PMID: 27414037]
[83]
Fallahi H, Zhang J, Phan HP, Nguyen NT. Flexible microfluidics: Fundamentals, recent developments, and applications. Vol. 10. Micromachines 2019; 10(12): 830.
[http://dx.doi.org/10.3390/mi10120830] [PMID: 31795397]
[84]
Raj MK, Chakraborty S. PDMS microfluidics: A mini review. J Appl Polym Sci 2020; 137(27): 48958.
[http://dx.doi.org/10.1002/app.48958]
[85]
Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem 2016; 60(1): 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[86]
Liu Q, Wang J, Boyd BJ. Peptide-based biosensors. Talanta 2015; 136: 114-27.
[http://dx.doi.org/10.1016/j.talanta.2014.12.020] [PMID: 25702993]
[87]
Ghantasala S, Pai MGJ, Biswas D, et al. Multiple reaction monitoring-based targeted assays for the validation of protein biomarkers in brain tumors. Front Oncol 2021; 11: 548243.
[http://dx.doi.org/10.3389/fonc.2021.548243] [PMID: 34055594]
[88]
Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877(13): 1229-39.
[http://dx.doi.org/10.1016/j.jchromb.2008.11.013] [PMID: 19041286]
[89]
Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med 2021; 83.
[90]
Cherkupally P, Acosta GA, Ramesh S, et al. Solid-phase peptide synthesis (SPPS), C-terminal vs. side-chain anchoring: A reality or a myth. Amino Acids 2014; 46(8): 1827-38.
[http://dx.doi.org/10.1007/s00726-014-1746-7] [PMID: 24770904]
[91]
Wegner K, Barnes D, Manzor K, Jardine A, Moran D. Evaluation of greener solvents for solid-phase peptide synthesis. Green Chem Lett Rev 2021; 14(1): 153-64.
[http://dx.doi.org/10.1080/17518253.2021.1877363]
[92]
Takahashi D, Yamamoto T. Development of an efficient liquid-phase peptide synthesis protocol using a novel fluorene-derived anchor support compound with Fmoc chemistry; AJIPHASE®. Tetrahedron Lett 2012; 53(15): 1936-9.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.006]
[93]
Fischer PM, Zheleva DI. Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: Application of PEGylated peptides in biochemical assays. J Pept Sci 2002; 8(9): 529-42.
[http://dx.doi.org/10.1002/psc.413] [PMID: 12371706]
[94]
Kamionka M. Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 2011; 12(2): 268-74.
[http://dx.doi.org/10.2174/138920111794295693] [PMID: 21050165]
[95]
Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. (4th ed.), Cold Spring Harbor Laboratory Press: long Island, New York 2001.
[96]
Rydlo T, Miltz J, Mor A. Eukaryotic antimicrobial peptides: Promises and premises in food safety. Vol. 71. J Food Sci 2006; 71(9): R125-35.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00175.x]
[97]
Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expr Purif 2011; 80(2): 260-7.
[http://dx.doi.org/10.1016/j.pep.2011.08.001] [PMID: 21843642]
[98]
Zorko M, Jerala R. Production of recombinant antimicrobial peptides in bacteria. Methods Mol Biol 2010; 618: 61-76.
[http://dx.doi.org/10.1007/978-1-60761-594-1_5] [PMID: 20094858]
[99]
Krahulec J, Hyršová M, Pepeliaev S, Jílková J, Černý Z, Machálková J. High level expression and purification of anti-microbial human cathelicidin LL-37 in Escherichia coli. Appl Microbiol Biotechnol 2010; 88(1): 167-75.
[http://dx.doi.org/10.1007/s00253-010-2736-7] [PMID: 20625720]
[100]
Kaur N, Dilawari R, Kaur A, Sahni G, Rishi P. Recombinant expression, purification and PEGylation of Paneth cell peptide (cryptdin-2) with value added attributes against Staphylococcus aureus. Sci Rep 2020; 10(1): 12164.
[http://dx.doi.org/10.1038/s41598-020-69039-2] [PMID: 32699335]
[101]
Okasha H, Nasr SM, Samir S. Recombinant expression of Cec-B peptide in Escherichia coli with a significant anticancer effect on hepatocellular carcinoma. Curr Pharm Biotechnol 2021; 22(9): 1235-45.
[http://dx.doi.org/10.2174/1389201022666210104121709] [PMID: 33397234]
[102]
Traxlmayr MW, Obinger C. Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 2012; 526(2): 174-80.
[http://dx.doi.org/10.1016/j.abb.2012.04.022] [PMID: 22575387]
[103]
Baghban R, Farajnia S, Rajabibazl M, et al. Yeast expression systems: Overview and recent advances. Mol Biotechnol 2019; 61(5): 365-84.
[http://dx.doi.org/10.1007/s12033-019-00164-8] [PMID: 30805909]
[104]
Herbel V, Schäfer H, Wink M. Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. Coli and analysis of its bioactivity. Molecules 2015; 20(8): 14889-901.
[http://dx.doi.org/10.3390/molecules200814889] [PMID: 26287145]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy