[1]
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 2021; 143(8): e254-743.
[2]
Timmis A, Vardas P, Townsend N, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J 2022; 43(8): 716-99.
[3]
Kelli HM, Kassas I, Lattouf OM. Cardio metabolic syndrome: a global epidemic. J Diabetes Metab 2015; (6): 3.
[4]
Wong ND, Budoff MJ, Ferdinand K, et al. Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement. Am J Prev Cardiol 2022; 10: 100335.
[5]
Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 140(11): e596-646.
[6]
Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42(34): 3227-337.
[7]
Redekop WK, Mladsi D. The faces of personalized medicine: a framework for understanding its meaning and scope. Value Health 2013; 16(6 Suppl): S4-9.
[8]
Hadley TD, Agha AM, Ballantyne CM. How do we incorporate polygenic risk scores in cardiovascular disease risk assessment and management? Curr Atheroscler Rep 2021; 23(6): 28.
[9]
Khera AV, Chaffin M, Wade KH, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 2019; 177(3): 587-96 e9.
[10]
Natarajan P, Young R, Stitziel NO, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 2017; 135(22): 2091-101.
[11]
Sanchez-Soriano C, Pearson ER, Reynolds RM. The role of genetics in fetal programming of adult cardiometabolic disease. J Dev Orig Health Dis 2022; 13(3): 292-9.
[12]
Hoffman DJ, Reynolds RM, Hardy DB. Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr Rev 2017; 75(12): 951-70.
[13]
Godfrey KM, Reynolds RM, Prescott SL, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol 2017; 5(1): 53-64.
[14]
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and metabolic syndrome: a comprehensive review. Int J Mol Sci 2021; 22(9): 5041.
[15]
Dai Y, Chen D, Xu T. DNA methylation aberrant in atherosclerosis. Front Pharmacol 2022; 13: 815977.
[16]
Regan JA, Shah SH. Obesity genomics and metabolomics: a nexus of cardiometabolic risk. Curr Cardiol Rep 2020; 22(12): 174.
[17]
North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res 2012; 110(8): 1097-108.
[18]
Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes 2012; 61(6): 1315-22.
[19]
Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 2015; 350(6265): 1193-8.
[20]
Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics 2016; 8: 64.
[21]
Lu AT, Seeboth A, Tsai PC, et al. DNA methylation-based estimator of telomere length. Aging (Albany NY) 2019; 11(16): 5895-923.
[22]
Brittain HK, Scott R, Thomas E. The rise of the genome and personalised medicine. Clin Med (Lond) 2017; 17(6): 545-51.
[23]
Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association studies. Nat Rev Methods Primer 2021; 1: 59.
[24]
Angelakopoulou A, Shah T, Sofat R, et al. Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration. Eur Heart J 2012; 33(3): 393-407.
[25]
Horne BD, Anderson JL, Carlquist JF, et al. Generating genetic risk scores from intermediate phenotypes for use in association studies of clinically significant endpoints. Ann Hum Genet 2005; 69(Pt 2): 176-86.
[26]
Nierenberg JL, Anderson AH, He J, et al. association of blood pressure genetic risk score with cardiovascular disease and CKD progression: findings from the CRIC study. Kidney360 2021; 2(8): 1251-60.
[27]
Lu X, Liu Z, Cui Q, et al. A polygenic risk score improves risk stratification of coronary artery disease: a large-scale prospective Chinese cohort study. Eur Heart J 2022; 43(18): 1702-11.
[28]
Trinder M, Uddin MM, Finneran P, Aragam KG, Natarajan P. Clinical utility of lipoprotein(a) and lpa genetic risk score in risk prediction of incident atherosclerotic cardiovascular disease. JAMA Cardiol 2020; 6(3): 1-9.
[29]
Miranda-Lora AL, Vilchis-Gil J, Juarez-Comboni DB, Cruz M, Klunder-Klunder M. A genetic risk score improves the prediction of type 2 diabetes mellitus in Mexican youths but has lower predictive utility compared with non-genetic factors. Front Endocrinol (Lausanne) 2021; 12: 647864.
[30]
Hodgson S, Huang QQ, Sallah N, et al. Integrating polygenic risk scores in the prediction of type 2 diabetes risk and subtypes in British Pakistanis and Bangladeshis: a population-based cohort study. PLoS Med 2022; 19(5): e1003981.
[31]
Tremblay J, Haloui M, Attaoua R, et al. Polygenic risk scores predict diabetes complications and their response to intensive blood pressure and glucose control. Diabetologia 2021; 64(9): 2012-25.
[32]
Weale ME, Riveros-Mckay F, Selzam S, Seth P, et al. Validation of an integrated risk tool, including polygenic risk score, for atherosclerotic cardiovascular disease in multiple ethnicities and ancestries. Am J Cardiol 2021; 148: 157-64.
[33]
Knowles JW, Zarafshar S, Pavlovic A, et al. Impact of a genetic risk score for coronary artery disease on reducing cardiovascular risk: a pilot randomized controlled study. Front Cardiovasc Med 2017; 4: 53.
[34]
Marston NA, Kamanu FK, Nordio F, et al. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. Circulation 2020; 141(8): 616-23.
[35]
Chen JX, He S, Wang YJ, et al. Comprehensive analysis of mRNA expression profiling and identification of potential diagnostic biomarkers in coronary artery disease. ACS Omega 2021; 6(37): 24016-26.
[36]
Lv B, Bao X, Li P, et al. Transcriptome sequencing analysis of peripheral blood of type 2 diabetes mellitus patients with thirst and fatigue. Front Endocrinol (Lausanne) 2020; 11: 558344.
[37]
Fan Z, Peng W, Wang Z, Zhang L, Liu K. Identification of biomarkers associated with metabolic cardiovascular disease using mRNA-SNP-miRNA regulatory network analysis. BMC Cardiovasc Disord 2021; 21(1): 351.
[38]
Wilson PC, Wu H, Kirita Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A 2019; 116(39): 19619-25.
[39]
Saxena A, Tiwari P, Wahi N, et al. Transcriptome profiling reveals association of peripheral adipose tissue pathology with type-2 diabetes in Asian Indians. Adipocyte 2019; 8(1): 125-36.
[40]
Heidecker B, Kasper EK, Wittstein IS, et al. Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation 2008; 118(3): 238-46.
[41]
Guzonjić A, Sopić M, Ostanek B, Kotur-Stevuljević J. Telomere length as a biomarker of aging and diseases. Arh farm 2022; 72: 105-26.
[42]
Gorenjak V, Akbar S, Stathopoulou MG, Visvikis-Siest S. The future of telomere length in personalized medicine. Front Biosci (Landmark Ed) 2018; 23(9): 1628-54.
[43]
Banach M, Mazidi M, Mikhailidis DP, et al. Association between phenotypic familial hypercholesterolaemia and telomere length in US adults: results from a multi-ethnic survey. Eur Heart J 2018; 39(40): 3635-40.
[44]
Yeh JK, Lin MH, Wang CY. Telomeres as therapeutic targets in heart disease. JACC Basic Transl Sci 2019; 4(7): 855-65.
[45]
Leri A, Franco S, Zacheo A, et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 2003; 22(1): 131-9.
[46]
Tran PT, Meeker AK, Platz EA. Association between statin drug use and peripheral blood leukocyte telomere length in the National Health and Nutrition Examination Survey 1999-2002: a cross-sectional study. Ann Epidemiol 2018; 28(8): 529-34.
[47]
Boccardi V, Barbieri M, Rizzo MR, et al. A new pleiotropic effect of statins in elderly: modulation of telomerase activity. FASEB J 2013; 27(9): 3879-85.
[48]
Werner C, Gensch C, Poss J, Haendeler J, Bohm M, Laufs U. Pioglitazone activates aortic telomerase and prevents stress-induced endothelial apoptosis. Atherosclerosis 2011; 216(1): 23-34.
[49]
Denham J, O’Brien BJ, Charchar FJ. Telomere length maintenance and cardio-metabolic disease prevention through exercise training. Sports Med 2016; 46(9): 1213-37.
[50]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[51]
Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010; 70: 27-56.
[52]
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14(10): R115.
[53]
Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A 2014; 111(43): 15538-43.
[54]
Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 2015; 16: 25.
[55]
Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics 2019; 11(1): 62.
[56]
Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 2019; 11(2): 303-27.
[57]
Kim K, Joyce BT, Zheng Y, et al. DNA methylation GrimAge and incident diabetes: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Diabetes 2021; 70(6): 1404-13.
[58]
Baccarelli A, Rienstra M, Benjamin EJ. Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet 2010; 3(6): 567-73.
[59]
Friso S, Pizzolo F, Choi SW, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis 2008; 199(2): 323-7.
[60]
Turunen MP, Aavik E, Yla-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta 2009; 1790(9): 886-91.
[61]
Smolarek I, Wyszko E, Barciszewska AM, et al. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit 2010; 16(3): CR149-55.
[62]
Xia Y, Brewer A, Bell JT. DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies. Clin Epigenetics 2021; 13(1): 186.
[63]
Westerman K, Fernandez-Sanles A, Patil P, et al. Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics. J Am Heart Assoc 2020; 9(8): e015299.
[64]
Sae-Lee C, Corsi S, Barrow TM, et al. Dietary intervention modifies DNA methylation age assessed by the epigenetic clock. Mol Nutr Food Res 2018; 62(23): e1800092.
[65]
de Rie D, Abugessaisa I, Alam T, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35(9): 872-8.
[66]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[67]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[68]
Ahluwalia TS, Allin KH, Sandholt CH, et al. Discovery of coding genetic variants influencing diabetes-related serum biomarkers and their impact on risk of type 2 diabetes. J Clin Endocrinol Metab 2015; 100(4): E664-71.
[69]
Liang H, Huang L, Cao J, Zen K, Chen X, Zhang CY. Regulation of mammalian gene expression by exogenous microRNAs. Wiley Interdiscip Rev RNA 2012; 3(5): 733-42.
[70]
Santulli G. MicroRNAs distinctively regulate vascular smooth muscle and endothelial cells: functional implications in angiogenesis, atherosclerosis, and in-stent restenosis. Adv Exp Med Biol 2015; 887: 53-77.
[71]
Czajka P, Fitas A, Jakubik D, et al. MicroRNA as potential biomarkers of platelet function on antiplatelet therapy: a review. Front Physiol 2021; 12: 652579.
[72]
Sonkoly E, Pivarcsi A. MicroRNAs in inflammation. Int Rev Immunol 2009; 28(6): 535-61.
[73]
Nejad C, Stunden HJ, Gantier MP. A guide to miRNAs in inflammation and innate immune responses. FEBS J 2018; 285(20): 3695-716.
[74]
Churov A, Summerhill V, Grechko A, Orekhova V, Orekhov A. MicroRNAs as potential biomarkers in atherosclerosis. Int J Mol Sci 2019; 20(22)
[75]
Xu H, Ni YQ, Liu YS. Mechanisms of action of miRNAs and lncRNAs in extracellular vesicle in atherosclerosis. Front Cardiovasc Med 2021; 8: 733985.
[76]
Peters LJF, Biessen EAL, Hohl M, Weber C, van der Vorst EPC, Santovito D. Small things matter: relevance of nicroRNAs in cardiovascular disease. Front Physiol 2020; 11: 793.
[77]
Parahuleva MS, Lipps C, Parviz B, et al. MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Sci Rep 2018; 8(1): 7823.
[78]
Goedeke L, Rotllan N, Canfran-Duque A, et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 2015; 21(11): 1280-9.
[79]
Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 2013; 19(7): 892-900.
[80]
Vickers KC, Sethupathy P, Baran-Gale J, Remaley AT. Complexity of microRNA function and the role of isomiRs in lipid homeostasis. J Lipid Res 2013; 54(5): 1182-91.
[81]
Sedgeman LR, Michell DL, Vickers KC. Integrative roles of microRNAs in lipid metabolism and dyslipidemia. Curr Opin Lipidol 2019; 30(3): 165-71.
[82]
Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet 2017; 62(2): 141-50.
[83]
He X, Kuang G, Wu Y, Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med 2021; 11(6): e468.
[84]
Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and microvascular complications of diabetes. Int J Endocrinol 2018; 2018: 6890501.
[85]
Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 2007; 3(6): 853-76.
[86]
Klisic A, Vujacic IR, Munjas J, Ninic A, Kotur-Stevuljevic J. Micro ribonucleic acids modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus-a review article. Arch Med Sci 2022; 18: 4.
[87]
Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38(9): e159-70.
[88]
Petković A, Erceg S, Munjas J, Ninić A, Sopić M. Circulating non-coding RNAs as biomarkers in coronary artery disease. Arh farm 2022; 72: 149-65.
[89]
Munjas J, Sopic M, Stefanovic A, et al. Non-Coding RNAs in preeclampsia-molecular mechanisms and diagnostic potential. Int J Mol Sci 2021; 22(19)
[90]
Mitchell AJ, Gray WD, Hayek SS, et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep 2016; 6: 32651.
[91]
Nayor M, Brown KJ, Vasan RS. The molecular basis of predicting atherosclerotic cardiovascular disease risk. Circ Res 2021; 128(2): 287-303.
[92]
McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res 2018; 122(9): 1238-58.
[93]
Castelli FA, Rosati G, Moguet C, et al. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal Bioanal Chem 2022; 414(2): 759-89.
[94]
Jin Q, Ma RCW. Metabolomics in diabetes and diabetic complications: insights from epidemiological studies. Cells 2021; 10(11)
[95]
Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted metabolomics.Curr Protoc Mol Biol. 2012. Chapter 30: Unit 30 2 1-24: 2832.
[96]
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016; 17(7): 451-9.
[97]
Damiani C, Gaglio D, Sacco E, Alberghina L, Vanoni M. Systems metabolomics: from metabolomic snapshots to design principles. Curr Opin Biotechnol 2020; 63: 190-9.
[98]
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6(3): 456-80.
[99]
Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab 2017; 25(1): 43-56.
[100]
Guasch-Ferre M, Hruby A, Toledo E, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 2016; 39(5): 833-46.
[101]
AM A. The metabolic signatures of cardiometabolic diseases: does the shared metabotype offer new therapeutic targets? Lifestyle Med 2021; 2.
[102]
Liu X, Yu J, Zhao J, Guo J, Zhang M, Liu L. Glucose challenge metabolomics implicates the change of organic acid profiles in hyperlipidemic subjects. Biomed Chromatogr 2020; 34(6): e4815.
[103]
Ma Q, Li Y, Wang M, Tang Z, et al. Progress in metabonomics of type 2 diabetes mellitus. Molecules 2018; 23(7): 1834.
[104]
Hinder LM, Vivekanandan-Giri A, McLean LL, Pennathur S, Feldman EL. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes. J Endocrinol 2013; 216(1): 1-11.
[105]
Kubacka J, Cembrowska P, Sypniewska G, Stefanska A. The association between branched-chain amino acids (BCAAs) and cardiometabolic risk factors in middle-aged caucasian women stratified according to glycemic status. Nutrients 2021; 13(10)
[106]
Yoon MS. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients 2016; 8(7)
[107]
Zhou M, Shao J, Wu CY, et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes 2019; 68(9): 1730-46.
[108]
Cuomo P, Capparelli R, Iannelli A, Iannelli D. Role of branched-chain amino acid metabolism in type 2 diabetes, obesity, cardiovascular disease and non-alcoholic fatty liver disease. Int J Mol Sci 2022; 23(8): 4325.
[109]
Kadakia R, Nodzenski M, Talbot O, et al. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperin-sulinaemia across ancestries. Diabetologia 2019; 62(3): 473-84.
[110]
Wang Y, Huang K, Liu F, Lu X, Huang J, Gu D. Association of circulating branched-chain amino acids with risk of cardiovascular disease: a systematic review and meta-analysis. Atherosclerosis 2022; 350: 90-6.
[111]
Deelen J, Kettunen J, Fischer K, et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun 2019; 10(1): 3346.
[112]
Zhao S, Feng XF, Huang T, et al. The association between acylcarnitine metabolites and cardiovascular disease in chinese patients with type 2 diabetes mellitus. Front Endocrinol 2020; 11: 212.
[113]
Kukharenko A, Brito A, Kozhevnikova MV, et al. Relationship between the plasma acylcarnitine profile and cardiometabolic risk factors in adults diagnosed with cardiovascular diseases. Clin Chim Acta 2020; 507: 250-6.
[114]
Deda O, Panteris E, Meikopoulos T, et al. Correlation of serum acylcarnitines with clinical presentation and severity of coronary artery disease. Biomolecules 2022; 12(3): 354.
[115]
Guasch-Ferré M, Ruiz-Canela M, Li J, et al. Plasma acylcarnitines and risk of type 2 diabetes in a Mediterranean population at high cardiovascular risk. J Clin Endocrinol Metab 2019; 104(5): 1508-19.
[116]
Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martínez-González MA, Hu FB. Comprehensive metabolomic profiling and incident cardiovascular disease: a systematic review. J Am Heart Assoc 2017; 6(10): e005705.
[117]
Tabassum R, Ripatti S. Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases. Cell Mol Life Sci 2021; 78(6): 2565-84.
[118]
Haus JM, Kashyap SR, Kasumov T, et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009; 58(2): 337-43.
[119]
Summers SA. Could ceramides become the new cholesterol? Cell Metab 2018; 27(2): 276-80.
[120]
Mantovani A, Dugo C. Ceramides and risk of major adverse cardiovascular events: A meta-analysis of longitudinal studies. J Clin Lipidol 2020; 14(2): 176-85.
[121]
Meeusen JW, Donato LJ, Jaffe AS. Lipid biomarkers for risk assessment in acute coronary syndromes. Curr Cardiol Rep 2017; 19(6): 48.
[122]
Cao R, Fang Z, Li S, et al. Circulating ceramide: s new cardiometabolic biomarker in patients with comorbid acute coronary syndrome and type 2 diabetes mellitus. Front Physiol 2020; 11: 1104.
[123]
Hilvo M, Meikle PJ, Pedersen ER, et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur Heart J 2020; 41(3): 371-80.
[124]
Sigruener A, Kleber ME, Heimerl S, Liebisch G, Schmitz G, Maerz W. Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS One 2014; 9(1): e85724.
[125]
Paynter NP, Balasubramanian R, Giulianini F, et al. Metabolic predictors of incident coronary heart disease in women. Circulation 2018; 137(8): 841-53.
[126]
Wurtz P, Havulinna AS, Soininen P, et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 2015; 131(9): 774-85.
[127]
Yang WS, Chen YY, Chen PC, et al. Association between plasma N-6 polyunsaturated fatty acids levels and the risk of cardiovascular disease in a community-based cohort study. Sci Rep 2019; 9(1): 19298.
[128]
Forouhi NG, Imamura F, Sharp SJ, et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: the EPIC-InterAct case-cohort study. PLoS Med 2016; 13(7): e1002094.
[129]
Gojkovic T, Vladimirov S, Spasojevic-Kalimanovska V, et al. Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response? Clin Chem Lab Med 2017; 55(3): 447-57.
[130]
Antonic TD, Ardalic DC, Vladimirov SS, et al. Cholesterol homeostasis is dysregulated in women with preeclampsia. Pol Arch Intern Med 2021; 131(12)
[131]
Christinat N, Masoodi M. Comprehensive lipoprotein characterization using lipidomics analysis of human plasma. J Proteome Res 2017; 16(8): 2947-53.
[132]
Kostara CE, Papathanasiou A, Psychogios N, et al. NMR-based lipidomic analysis of blood lipoproteins differentiates the progression of coronary heart disease. J Proteome Res 2014; 13(5): 2585-98.
[133]
Kostara CE, Tsimihodimos V, Elisaf MS, Bairaktari ET. NMR-based lipid profiling of high density lipoprotein particles in healthy subjects with low, normal, and elevated HDL-cholesterol. J Proteome Res 2017; 16(4): 1605-16.
[134]
Cardner M, Yalcinkaya M, Goetze S, et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 2020; 5(1): e131491.
[135]
Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 2018; 9(5): 416-31.
[136]
Liu H, Chen X, Hu X, et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 2019; 7(1): 68.
[137]
Hu X, Li H, Zhao X, et al. Multi-omics study reveals that statin therapy is associated with restoration of gut microbiota homeostasis and improvement in outcomes in patients with acute coronary syndrome. Theranostics 2021; 11(12): 5778-93.
[138]
Talmor-Barkan Y, Bar N, Shaul AA, et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med 2022; 28(2): 295-302.
[139]
Fromentin S, Forslund SK, Chechi K, et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat Med 2022; 28(2): 303-14.
[140]
Wilmanski T, Rappaport N, Earls JC, et al. Blood metabolome predicts gut microbiome alpha-diversity in humans. Nat Biotechnol 2019; 37(10): 1217-28.
[141]
Dona AC, Coffey S, Figtree G. Translational and emerging clinical applications of metabolomics in cardiovascular disease diagnosis and treatment. Eur J Prev Cardiol 2016; 23(15): 1578-89.
[142]
Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 2015; 113: 108-20.
[143]
Barupal DK, Fan S, Fiehn O. Integrating bioinformatics approaches for a comprehensive interpretation of metabolomics datasets. Curr Opin Biotechnol 2018; 54: 1-9.
[144]
Marston NA, Pirruccello JP, Melloni GEM, et al. Predictive utility of a coronary artery disease polygenic risk score in primary prevention. JAMA Cardiol 2023; 8(2): 130-7.
[145]
Mega JL, Stitziel NO, Smith JG, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet 2015; 385(9984): 2264-71.
[146]
Oni-Orisan A, Haldar T, Cayabyab MAS, et al. Polygenic risk score and statin relative risk reduction for primary prevention of myocardial infarction in a real-world population. Clin Pharmacol Ther 2022; 112(5): 1070-8.
[147]
Costantino S, Mohammed SA, Ambrosini S, Paneni F. Epigenetic processing in cardiometabolic disease. Atherosclerosis 2019; 28: 150-8.
[148]
Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7(1): 200.
[149]
Heerboth S, Lapinska K, Snyder N, et al. Use of epigenetic drugs in disease: an overview. Genet Epigenet 2014; 6: 9-19.
[150]
He B, Zhao Z, Cai Q, et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020; 16(14): 2628-47.
[151]
Koturbash I, Tolleson WH, Guo L, et al. MicroRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 2015; 9(11): 1153-76.
[152]
Täubel J, Hauke W, Rump S, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J 2021; 42(2): 178-88.
[153]
Pang H, Jia W, Hu Z. Emerging applications of metabolomics in clinical pharmacology. Clin Pharmacol Ther 2019; 106(3): 544-56.
[154]
Rahman MM, Islam F. Or-Rashid MH, et al. The gut microbiota (microbiome) in cardiovascular disease and its therapeutic regulation. Front Cell Infect Microbiol 2022; 12: 903570.
[155]
Cheng H, Sewda A, Marquez-Luna C, et al. Genetic architecture of cardiometabolic risks in people living with HIV. BMC Med 2020; 18(1): 288.
[156]
Chen Y, Zhang Y, Li S, et al. Cardiometabolic diseases, polygenic risk score, APOE genotype, and risk of incident dementia: A population-based prospective cohort study. Arch Gerontol Geriatr 2023; 105: 104853.
[157]
Xiao B, Edwards DR, Lucas A, et al. Inference of causal relationships between genetic risk factors for cardiometabolic phenotypes and female-specific health conditions. J Am Heart Assoc 2023; 12(5): e026561.
[158]
Corica D, Oreto L, Pepe P, et al. Precocious preclinical cardiovascular sonographic markers in metabolically healthy and unhealthy childhood obesity. Front Endocrinol 2020; 11: 56.
[159]
Freisling H, Viallon V, Lennonet H, et al. Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. BMC Med 2020; 18(1): 5.
[160]
Jia Y, Guo D, Sun L, et al. Self-reported daytime napping, daytime sleepiness, and other sleep phenotypes in the development of cardiometabolic diseases: a Mendelian randomization study. Eur J Prev Cardiol 2022; 29(15): 1982-91.
[161]
Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol 2018; 71(23): 2668-79.
[162]
Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 2017; 15: 104-16.
[163]
Micó V, San-Cristobal R, Martín R, et al. Morbid liver manifestations are intrinsically bound to metabolic syndrome and nutrient intake based on a machine learning cluster analysis. Front Endocrinol 2022; 13: 936956.
[164]
Schuppelius B, Peters B, Ottawa A, Pivovarova-Ramich O. Time restricted eating: a dietary strategy to prevent and treat metabolic disturbances. Front Endocrinol 2021; 12: 683140.
[165]
Prodan Zitnik I, Cerne D, Mancini I, et al. Personalized laboratory medicine: a patient centered future approach. Clin Chem Lab Med 2018; 56(12): 1981-91.
[166]
Vekic J, Zeljkovic A, Al Rasadi K, et al. a new look at novel cardiovascular risk biomarkers: the role of atherogenic lipoproteins and innovative antidiabetic therapies. Metabolites 2022; 12(2): 108.