Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Carbon Nanotubes in Breast Cancer Treatment: An Insight into Properties, Functionalization, and Toxicity

Author(s): Neha Srivastava, Yachana Mishra, Vijay Mishra*, Abhigyan Ranjan and Murtaza M. Tambuwala

Volume 23, Issue 14, 2023

Published on: 05 June, 2023

Page: [1606 - 1617] Pages: 12

DOI: 10.2174/1871520623666230510094850

Price: $65

Abstract

Breast cancer is the most common cancer among women worldwide. It is the main reason why women die from cancer. Early diagnosis due to increased public awareness and better screening helps to tackle the disease through surgical resection and curative therapies. Chemotherapies are frequently used for cancer treatment, but these have severe adverse effects due to a lack of target specificity. Formulation development scientists and clinicians are now particularly concerned with developing safe and efficient drug delivery systems for breast cancer treatment. Potentially relevant literature to get the latest developments and updated information related to properties, functionalization, toxicity and application of carbon nanotubes in breast cancer treatment has been obtained from Web of Science, Scopus, and PubMed portals. Nanomedicine has emerged as a novel tool for target-specific delivery systems and other biomedical applications. Carbon nanotubes (CNTs) are gaining popularity due to their unique mechanical and physiochemical properties for the diagnosis and treatment of cancer. It is a promising carrier that can deliver micro and macromolecules to the cancer cell. CNTs can be functionalized at the surface with different functional groups, which helps in targeting the drugs to target cancer cells. The present review has elaborated on different functionalization approaches and toxicity aspects of CNTs.

Graphical Abstract

[1]
Khan, R.; Arshad, F.; Hassan, I.U.; Naikoo, G.A.; Pedram, M.Z.; Zedegan, M.S.; Pourfarzad, H.; Aljabali, A.A.A.; Serrano-Aroca, Á.; Haggag, Y.; Mishra, V.; Mishra, Y.; Birkett, M.; Tambuwala, M.M. Advances in nanomaterial-based immunosensors for prostate cancer screening. Biomed. Pharmacother., 2022, 155, 113649.
[http://dx.doi.org/10.1016/j.biopha.2022.113649] [PMID: 36108389]
[2]
Gupta, M.; Mishra, Y.; Mishra, V.; Tambuwala, M.M. Current update on anticancer effects of icariin: A journey of the last ten years. EXCLI J., 2022, 21, 680-686.
[PMID: 35721576]
[3]
Mishra, Y.; Amin, H.I.M.; Mishra, V.; Vyas, M.; Prabhakar, P.K.; Gupta, M.; Kanday, R.; Sudhakar, K.; Saini, S. Hromić-Jahjefendić A.; Aljabali, A.A.A.; El-Tanani, M.; Serrano-Aroca, Ã.; Bakshi, H.; Tambuwala, M.M. Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon. Biomed. Pharmacother., 2022, 153, 113413.
[http://dx.doi.org/10.1016/j.biopha.2022.113413] [PMID: 36076482]
[4]
Damasco, J.A.; Ravi, S.; Perez, J.D.; Hagaman, D.E.; Melancon, M.P. Understanding nanoparticle toxicity to direct a safe-by-design approach in cancer nanomedicine. Nanomaterials, 2020, 10(11), 2186.
[http://dx.doi.org/10.3390/nano10112186] [PMID: 33147800]
[5]
Mishra, Y.; Mishra, V.; Tambuwala, M.M. Tumor adhesion molecule targeting for breast cancer nanomedicine.In: Targeted Nanomedicine for Breast Cancer Therapy; Academic Press, Elsevier Science B.V: Amsterdam, 2022, pp. 257-280.
[http://dx.doi.org/10.1016/B978-0-12-824476-0.00011-5]
[6]
Seidi, F.; Jenjob, R.; Phakkeeree, T.; Crespy, D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J. Control. Release, 2018, 284, 188-212.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.026] [PMID: 29940204]
[7]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[8]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[9]
Rompicherla, N.C.; Joshi, P.; Shetty, A.; Sudhakar, K.; Amin, H.I.M.; Mishra, Y.; Mishra, V.; Albutti, A.; Alhumeed, N. Design, formulation, and evaluation of aloe vera gel-based capsaicin transemulgel for osteoarthritis. Pharmaceutics, 2022, 14(9), 1812.
[http://dx.doi.org/10.3390/pharmaceutics14091812] [PMID: 36145560]
[10]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[11]
Mirza, Z.; Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol., 2021, 69, 226-237.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.020] [PMID: 31704145]
[12]
Shoukat, R.; Khan, M.I. Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst. Technol., 2021, 27(12), 4183-4192.
[http://dx.doi.org/10.1007/s00542-021-05211-6]
[13]
Mishra, V.; Kesharwani, P.; Jain, N.K. Biomedical applications and toxicological aspects of functionalized carbon nanotubes. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(4), 293-330.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018014419] [PMID: 29972680]
[14]
Kesharwani, P.; Mishra, V.; Jain, N.K. Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discov. Today, 2015, 20(9), 1049-1060.
[http://dx.doi.org/10.1016/j.drudis.2015.05.004] [PMID: 25997997]
[15]
Mehra, N.K.; Mishra, V.; Jain, N.K. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35(4), 1267-1283.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.032] [PMID: 24210872]
[16]
Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B, 2021, 268(3), 115095.
[http://dx.doi.org/10.1016/j.mseb.2021.115095]
[17]
Bahreyni, A.; Mohamud, Y.; Luo, H. Emerging nanomedicines for effective breast cancer immunotherapy. J. Nanobiotechnology, 2020, 18(1), 180.
[http://dx.doi.org/10.1186/s12951-020-00741-z] [PMID: 33298099]
[18]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[19]
El-Tanani, M.; Platt-Higgins, A.; Lee, Y.F.; Al Khatib, A.O.; Haggag, Y.; Sutherland, M.; Zhang, S.D.; Aljabali, A.A.A.; Mishra, V.; Serrano-Aroca, Á.; Tambuwala, M.M.; Rudland, P.S. Matrix metalloproteinase 2 is a target of the RAN-GTP pathway and mediates migration, invasion and metastasis in human breast cancer. Life Sci., 2022, 310, 121046.
[http://dx.doi.org/10.1016/j.lfs.2022.121046] [PMID: 36209829]
[20]
Sheikh-Hosseini, M.; Larijani, B.; Gholipoor Kakroodi, Z.; Shokoohi, M.; Moarefzadeh, M.; Sayahpour, F.A.; Goodarzi, P.; Arjmand, B. Gene therapy as an emerging therapeutic approach to breast cancer: New Developments and Challenges. Hum. Gene Ther., 2021, 32(21-22), hum.2020.199.
[http://dx.doi.org/10.1089/hum.2020.199] [PMID: 33307949]
[21]
Liu, D.; Zhang, W.; Liu, X.; Qiu, R. Precise engineering of hybrid molecules-loaded macromolecular nanoparticles shows in vitro and in vivo antitumor efficacy toward the treatment of nasopharyngeal cancer cells. Drug Deliv., 2021, 28(1), 776-786.
[http://dx.doi.org/10.1080/10717544.2021.1902022] [PMID: 33866910]
[22]
Wang, L. Early diagnosis of breast cancer. Sensors, 2017, 17(7), 1572, 1-20.
[http://dx.doi.org/10.3390/s17071572]
[23]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[24]
Ma, J.; Jemal, A.; Fedewa, S.A.; Islami, F.; Lichtenfeld, J.L.; Wender, R.C.; Cullen, K.J.; Brawley, O.W. The American Cancer Society 2035 challenge goal on cancer mortality reduction. CA Cancer J. Clin., 2019, 69(5), 351-362.
[http://dx.doi.org/10.3322/caac.21564] [PMID: 31066919]
[25]
Hosnedlova, B.; Kepinska, M.; Fernandez, C.; Peng, Q.; Ruttkay-Nedecky, B.; Milnerowicz, H.; Kizek, R. Carbon nanomaterials for targeted cancer therapy drugs: A critical review. Chem. Rec., 2019, 19(2-3), 502-522.
[http://dx.doi.org/10.1002/tcr.201800038] [PMID: 30156367]
[26]
Aqel, A.; El-Nour, K.M.M.A.; Ammar, R.A.A.; Al-Warthan, A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem., 2012, 5(1), 1-23.
[http://dx.doi.org/10.1016/j.arabjc.2010.08.022]
[27]
Madannejad, R.; Shoaie, N.; Jahanpeyma, F.; Darvishi, M.H.; Azimzadeh, M.; Javadi, H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact., 2019, 307, 206-222.
[http://dx.doi.org/10.1016/j.cbi.2019.04.036] [PMID: 31054282]
[28]
Foldvari, M.; Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine, 2008, 4(3), 173-182.
[http://dx.doi.org/10.1016/j.nano.2008.04.002] [PMID: 18550451]
[29]
Pandey, P.; Dahiya, M. Carbon nanotubes: Types, methods of preparation and applications. Int. J. Pharm. Sci. Res., 2016, 1(4), 15-21.
[30]
Abdallah, B.; Elhissi, A.M.; Ahmed, W.; Najlah, M. Carbon nanotubes drug delivery system for cancer treatment.In: Advances in Medical and Surgical Engineering; Ahmed, W., Ed.; Elsevier Science B.V: Amsterdam, 2020, pp. 313-332.
[http://dx.doi.org/10.1016/B978-0-12-819712-7.00016-4]
[31]
Karimi, M.; Solati, N.; Ghasemi, A.; Estiar, M.A.; Hashemkhani, M.; Kiani, P.; Mohamed, E.; Saeidi, A.; Taheri, M.; Avci, P.; Aref, A.R.; Amiri, M.; Baniasadi, F.; Hamblin, M.R. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv., 2015, 12(7), 1089-1105.
[http://dx.doi.org/10.1517/17425247.2015.1004309] [PMID: 25613837]
[32]
Kushwaha, S.K.S.; Ghoshal, S.; Rai, A.K.; Singh, S.; Singh, S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: A review. Braz. J. Pharm. Sci., 2013, 49(4), 629-643.
[http://dx.doi.org/10.1590/S1984-82502013000400002]
[33]
Krishnegowda, J.; Shivanna, S.; Kullaiah, B.; Lingaraju, S.; Mavinakere, A.R. Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition. J. Nanomater., 2015, 2015, 6.
[34]
Badea, M.; Prodana, M.; Dinischiotu, A.; Crihana, C.; Ionita, D.; Balas, M. Cisplatin loaded multi-walled carbon nanotubes induce resistance in triple negative breast cancer cells. Pharmaceutics, 2018, 10(4), 228.
[http://dx.doi.org/10.3390/pharmaceutics10040228] [PMID: 30428555]
[35]
Yang, F.; Wang, M.; Zhang, D.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev., 2020, 120(5), 2693-2758.
[http://dx.doi.org/10.1021/acs.chemrev.9b00835] [PMID: 32039585]
[36]
Wu, Q.; Lv, H.; Zhao, L. Applications of carbon nanomaterials in chiral separation. TrAC -. Trends Analyt. Chem., 2020, 129(115941), 1-48.
[37]
Skandani, A.A.; Zeineldin, R.; Al-Haik, M. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes. Langmuir, 2012, 28(20), 7872-7879.
[http://dx.doi.org/10.1021/la3011162] [PMID: 22545729]
[38]
Contreras, M.L.; Torres, C.; Villarroel, I.; Rozas, R. Molecular dynamics assessment of doxorubicin–carbon nanotubes molecular interactions for the design of drug delivery systems. Struct. Chem., 2019, 30(1), 369-384.
[http://dx.doi.org/10.1007/s11224-018-1210-5]
[39]
Vardharajula, S.; Ali, S.Z.; Tiwari, P.M. Eroğlu, E.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized carbon nanotubes: Biomedical applications. Int. J. Nanomedicine, 2012, 7(5361), 5361-5374.
[PMID: 23091380]
[40]
Kharissova, O.V.; Kharisov, B.I.; de Casas Ortiz, E.G. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Advances, 2013, 3(47), 24812-24852.
[http://dx.doi.org/10.1039/c3ra43852j]
[41]
Tayyab, S.; Naqvi, R.; Rasheed, T.; Hussain, D.; Najam, M.; Majeed, S.; Ahmed, N.; Nawaz, R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J. Mol. Liq., 2019, 297, 111919.
[42]
Jackman, H.; Jackman, H. Mechanical properties of carbon nanotubes and nanofibers; Karlstad University Studies, 2012, pp. 1-71.
[43]
Singh, I.; Rehni, A.K.; Kumar, P. Fullerenes, carbon nanotubes : Synthesis, properties and pharmaceutical applications. Fuller nanotub Car N., 2013, 17(4), 361-377.
[44]
Raval, J.P.; Joshi, P.; Chejara, D.R. Carbon nanotube for targeted drug delivery. In: Woodhead Publishing Series in Biomaterials, Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing: Sawston, Cambridge, 2018, pp. 203-216.
[45]
Kumar, S.P.; Gunasundari, E. Nanocomposites: Recent trends and engineering applications. Nano Hybrids and Composites, 2018, 20, 65-80.
[http://dx.doi.org/10.4028/www.scientific.net/NHC.20.65]
[46]
Mallakpour, S.; Soltanian, S. RSC Advances Fabrication and Applications. RSC Advances, 2016, (111), 109916-109935.
[http://dx.doi.org/10.1039/C6RA24522F]
[47]
Saka, C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Crit. Rev. Anal. Chem., 2018, 48(1), 1-14.
[http://dx.doi.org/10.1080/10408347.2017.1356699] [PMID: 28722465]
[48]
Huang, Z.; Xi, L.; Subhani, Q.; Yan, W.; Guo, W.; Zhu, Y. Covalent functionalization of multi-walled carbon nanotubes with quaternary ammonium groups and its application in ion chromatography. Carbon, 2013, 62, 127-134.
[http://dx.doi.org/10.1016/j.carbon.2013.06.004]
[49]
Sadegh, H.; Shahryari-ghoshekandi, R.; Kazemi, M. Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int. Nano Lett., 2014, 4(4), 129-135.
[http://dx.doi.org/10.1007/s40089-014-0128-1]
[50]
Meng, L.; Fu, C.; Lu, Q. Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci., 2009, 19(7), 801-810.
[http://dx.doi.org/10.1016/j.pnsc.2008.08.011]
[51]
Li, Z.; de Barros, A.L.B.; Soares, D.C.F.; Moss, S.N.; Alisaraie, L.; Nicole, S.; Alisaraie, L. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int. J. Pharm., 2017, 524(1-2), 41-54.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.017] [PMID: 28300630]
[52]
Sharma, S.; Kumar, P.; Chandra, R. Mechanical and thermal properties of graphene–carbon nanotube-reinforced metal matrix composites: A molecular dynamics study. J. Compos. Mater., 2017, 51(23), 3299-3313.
[http://dx.doi.org/10.1177/0021998316682363]
[53]
Wulan, P.P.D.K.; Ulwani, S.H.; Wulandari, H.; Purwanto, W.W.; Mulia, K. The effect of hydrochloric acid addition to increase carbon nanotubes dispersibility as drug delivery system by covalent functionalization. In IOP conference series. Mater. Sci. Eng. C, 2018, 1, 012013.
[54]
Hashemzadeh, H.; Raissi, H. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: A molecular dynamics simulation study. J. Mol. Model., 2017, 23(8), 222.
[http://dx.doi.org/10.1007/s00894-017-3391-z] [PMID: 28702805]
[55]
Zhou, Y.; Fang, Y.; Ramasamy, R. Non-covalent functionalization of carbon nanotubes for electrochemical. Sensors, 2019, 19(2), 392.
[http://dx.doi.org/10.3390/s19020392] [PMID: 30669367]
[56]
Gao, C.; Guo, Z.; Liu, J.H.; Huang, X.J. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale, 2012, 4(6), 1948-1963.
[http://dx.doi.org/10.1039/c2nr11757f] [PMID: 22337209]
[57]
Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors, 2019, 19(2), 392.
[http://dx.doi.org/10.3390/s19020392]
[58]
Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.027] [PMID: 29997043]
[59]
Sharma, S.; Naskar, S.; Kuotsu, K. Metronomic chemotherapy of carboplatin-loaded PEGylated MWCNTs: Synthesis, characterization and in vitro toxicity in human breast cancer. Carbon Lett., 2020, 30(4), 435-447.
[http://dx.doi.org/10.1007/s42823-019-00113-0]
[60]
Yu, S.; Zhang, Y.; Chen, L.; Li, Q.; Du, J.; Gao, Y.; Zhang, L.; Yang, Y. Antitumor effects of carbon nanotube-drug complex against human breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1103-1110.
[http://dx.doi.org/10.3892/etm.2016.3444] [PMID: 30116361]
[61]
Mehra, N.K.; Jain, N.K. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol. Pharm., 2015, 12(2), 630-643.
[http://dx.doi.org/10.1021/mp500720a] [PMID: 25517904]
[62]
Yang, S.; Wang, Z.; Ping, Y.; Miao, Y.; Xiao, Y.; Qu, L.; Zhang, L.; Hu, Y.; Wang, J. PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: Synthesis, characterization, and in vitro evaluation. Beilstein J. Nanotechnol., 2020, 11(1), 1728-1741.
[http://dx.doi.org/10.3762/bjnano.11.155] [PMID: 33224703]
[63]
Mehra, N.K.; Jain, N.K. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J. Drug Target., 2013, 21(8), 745-758.
[http://dx.doi.org/10.3109/1061186X.2013.813028] [PMID: 23822734]
[64]
Cao, X.; Du, X.; Jiao, H.; An, Q.; Chen, R.; Fang, P.; Wang, J.; Yu, B. Carbohydrate-based drugs launched during 2000-2021. Acta Pharm. Sin. B, 2022, 12(10), 3783-3821.
[http://dx.doi.org/10.1016/j.apsb.2022.05.020] [PMID: 36213536]
[65]
Gim, S.; Zhu, H.; Seeberger, P.H.; Delbianco, M. Carbohydrate-based nanomaterials for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(5), e1558.
[http://dx.doi.org/10.1002/wnan.1558]
[66]
Al-Sawaftah, N.M.; Abusamra, R.H.; Husseini, G.A. Carbohydrate-functionalized liposomes in cancer therapy. Curr. Cancer Ther. Rev., 2021, 17(1), 4-20.
[http://dx.doi.org/10.2174/1573394716999200626144921]
[67]
Apostol, C.R.; Hay, M.; Polt, R. Glycopeptide drugs: A pharmacological dimension between “Small Molecules” and “Biologics”. Peptides, 2020, 131(170369), 170369.
[http://dx.doi.org/10.1016/j.peptides.2020.170369] [PMID: 32673700]
[68]
Khan, H.; Mirzaei, H.R.; Amiri, A.; Akkol, K.E.; Ashhad Halimi, S.M.; Mirzaei, H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin. Cancer Biol., 2021, 69, 24-42.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.004] [PMID: 31870939]
[69]
Chen, F.; Huang, G.; Huang, H. Sugar ligand-mediated drug delivery. Future Med. Chem., 2020, 12(2), 161-171.
[http://dx.doi.org/10.4155/fmc-2019-0114] [PMID: 31718289]
[70]
Gao, H.; Huang, G. Synthesis, anticancer activity and cytotoxicity of galactosylated epothilone B. Bioorg. Med. Chem., 2018, 26(20), 5578-5581.
[http://dx.doi.org/10.1016/j.bmc.2018.10.005] [PMID: 30318441]
[71]
Gadekar, A.; Bhowmick, S.; Pandit, A. A glycotherapeutic approach to functionalize biomaterials-based systems. Adv. Funct. Mater., 2020, 30(44), 1910031.
[http://dx.doi.org/10.1002/adfm.201910031]
[72]
Cai, L.; Gu, Z.; Zhong, J.; Wen, D.; Chen, G.; He, L.; Wu, J.; Gu, Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov., 2018, 23(5), 1126-1138.
[PMID: 29501708]
[73]
Mosaiab, T.; Farr, D.C.; Kiefel, M.J.; Houston, T.A. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv. Drug Deliv. Rev., 2019, 151-152, 94-129.
[http://dx.doi.org/10.1016/j.addr.2019.09.002] [PMID: 31513827]
[74]
Liu, R.; Li, H.; Gao, X.; Mi, Q.; Zhao, H.; Gao, Q. Mannose-conjugated platinum complexes reveals effective tumor targeting mediated by glucose transporter 1. Biochem. Biophys. Res. Commun., 2017, 487(1), 34-40.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.004] [PMID: 28385528]
[75]
Fahrenholtz, C.D.; Hadimani, M.; King, S.B.; Torti, S.V.; Singh, R. Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine, 2015, 10(16), 2481-2497.
[http://dx.doi.org/10.2217/nnm.15.90] [PMID: 26296098]
[76]
Dong, Z.; Wang, Q.; Huo, M.; Zhang, N.; Li, B.; Li, H.; Xu, Y.; Chen, M.; Hong, H.; Wang, Y. Mannose-modified multi-walled carbon nanotubes as a delivery nanovector optimizing the antigen presentation of dendritic cells. ChemistryOpen, 2019, 8(7), 915-921.
[http://dx.doi.org/10.1002/open.201900126] [PMID: 31338275]
[77]
Sharma, P.; Jain, K.; Jain, N.K.; Mehra, N.K. Ex vivo and in vivo performance of anti-cancer drug loaded carbon nanotubes. J. Drug Deliv. Sci. Technol., 2017, 41, 134-143.
[http://dx.doi.org/10.1016/j.jddst.2017.07.011]
[78]
Ozgen, P.S.O.; Atasoy, S.; Kurt, B.Z.; Durmus, Z.; Yigit, G.; Dag, A. Glycopolymer decorated multi-walled carbon nanotubes for dual-targeted breast cancer therapy. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(15), 3123-3137.
[79]
Passi, A.; Vigetti, D. Hyaluronan as tunable drug delivery system. Adv. Drug Deliv. Rev., 2019, 146, 83-96.
[http://dx.doi.org/10.1016/j.addr.2019.08.006] [PMID: 31421148]
[80]
Tripodo, G.; Trapani, A.; Torre, M.L.; Giammona, G.; Trapani, G.; Mandracchia, D. Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. Eur. J. Pharm. Biopharm., 2015, 97(Pt B), 400-416.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.032] [PMID: 26614559]
[81]
Gallo, N.; Nasser, H.; Salvatore, L.; Natali, M.L.; Campa, L.; Mahmoud, M.; Capobianco, L.; Sannino, A.; Madaghiele, M. Hyaluronic acid for advanced therapies: Promises and challenges. Eur. Polym. J., 2019, 117, 134-147.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.007]
[82]
Prajapati, S.K.; Jain, A.; Shrivastava, C.; Jain, A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol., 2019, 123, 691-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.116] [PMID: 30445095]
[83]
Liu, D.; Zhang, Q.; Wang, J.; Fan, L.; Zhu, W.; Cai, D. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie, 2019, 74(2), 83-90.
[PMID: 30782256]
[84]
Singhai, N.J.; Maheshwari, R.; Ramteke, S. CD44 receptor targeted ‘smart’multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interface Sci. Commun., 2020, 35(100235), 1-12.
[85]
Arpicco, S.; Bartkowski, M.; Barge, A.; Zonari, D.; Serpe, L.; Milla, P.; Dosio, F.; Stella, B.; Giordani, S. Effects of the molecular weight of hyaluronic acid in a carbon nanotube drug delivery conjugate. Front Chem., 2020, 8(1164), 578008.
[http://dx.doi.org/10.3389/fchem.2020.578008] [PMID: 33381490]
[86]
Zhao, L.P.; Yang, G.; Zhang, X.M.; Qu, F. Development of aptamer screening against proteins and its applications. Chin. J. Anal. Chem., 2020, 48(5), 560-572.
[http://dx.doi.org/10.1016/S1872-2040(20)60012-3]
[87]
Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem., 2017, 1(10), 0076.
[http://dx.doi.org/10.1038/s41570-017-0076]
[88]
Vahed, Z.S.; Fathi, N.; Samiei, M.; Dizaj, M.S.; Sharifi, S. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J. Drug Target., 2019, 27(3), 292-299.
[http://dx.doi.org/10.1080/1061186X.2018.1491978] [PMID: 29929413]
[89]
Gu, F.; Hu, C.; Xia, Q.; Gong, C.; Gao, S.; Chen, Z. Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J. Nanopart. Res., 2018, 20(11), 303.
[http://dx.doi.org/10.1007/s11051-018-4407-z] [PMID: 30524190]
[90]
Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm., 2015, 485(1-2), 50-60.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.031] [PMID: 25712164]
[91]
Taghavi, S. HashemNia, A.; Mosaffa, F.; Askarian, S.; Abnous, K.; Ramezani, M. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf. B Biointerfaces, 2016, 140, 28-39.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.021] [PMID: 26731195]
[92]
Dutt, T.S.; Saxena, R.K. Uptake of carboxylated fluorescent nano-diamonds by resting and activated T and B lymphocytes and comparison with carbon nanotube uptake. Int. J. Nano. Med. Eng., 2019, 4(7), 61-68.
[93]
Suo, X.; Eldridge, B.N.; Zhang, H.; Mao, C.; Min, Y.; Sun, Y.; Singh, R.; Ming, X. P-Glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces, 2018, 10(39), 33464-33473.
[http://dx.doi.org/10.1021/acsami.8b11974] [PMID: 30188117]
[94]
Kohshour, O.M.; Mirzaie, S.; Zeinali, M.; Amin, M.; Said Hakhamaneshi, M.; Jalaili, A.; Mosaveri, N.; Jamalan, M. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate. Chem. Biol. Drug Des., 2014, 83(3), 259-265.
[http://dx.doi.org/10.1111/cbdd.12244] [PMID: 24118702]
[95]
Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397.
[http://dx.doi.org/10.3390/polym12061397]
[96]
Bafkary, R.; Khoee, S. Carbon nanotube-based stimuli-responsive nanocarriers for drug delivery. RSC Advances, 2016, 6(86), 82553-82565.
[http://dx.doi.org/10.1039/C6RA12463A]
[97]
Wei, X.; Wang, L.; Sun, W.; Zhang, M.; Ma, H.; Zhang, Y.; Zhang, X.; Li, S. C-type lectin B (SpCTL-B) regulates the expression of antimicrobial peptides and promotes phagocytosis in mud crab Scylla paramamosain. Dev. Comp. Immunol., 2018, 84, 213-229.
[http://dx.doi.org/10.1016/j.dci.2018.02.016] [PMID: 29476770]
[98]
Boncel, S.; Müller, K.H.; Skepper, J.N.; Walczak, K.Z.; Koziol, K.K.K. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials, 2011, 32(30), 7677-7686.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.055] [PMID: 21764122]
[99]
Joshi, M.; Kumar, P.; Kumar, R.; Sharma, G.; Singh, B.; Katare, O.P.; Raza, K. Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells. Mater. Sci. Eng. C, 2017, 75, 1376-1388.
[http://dx.doi.org/10.1016/j.msec.2017.03.057] [PMID: 28415429]
[100]
Narei, H.; Ghasempour, R.; Akhavan, O. Toxicity and Safety Issues of Carbon Nanotubes.In: Carbon nanotube-reinforced polymers; Elsevier Science B.V: Amsterdam, 2018.
[101]
Poulsen, S.S.; Jackson, P.; Kling, K.; Knudsen, K.B.; Skaug, V.; Kyjovska, Z.O.; Thomsen, B.L.; Clausen, P.A.; Atluri, R.; Berthing, T.; Bengtson, S.; Wolff, H.; Jensen, K.A.; Wallin, H.; Vogel, U. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology, 2016, 10(9), 1263-1275.
[http://dx.doi.org/10.1080/17435390.2016.1202351] [PMID: 27323647]
[102]
Taylor-Just, A.J.; Ihrie, M.D.; Duke, K.S.; Lee, H.Y.; You, D.J.; Hussain, S.; Kodali, V.K.; Ziemann, C.; Creutzenberg, O.; Vulpoi, A.; Turcu, F.; Potara, M.; Todea, M.; van den Brule, S.; Lison, D.; Bonner, J.C. The pulmonary toxicity of carboxylated or aminated multi-walled carbon nanotubes in mice is determined by the prior purification method. Part. Fibre Toxicol., 2020, 17(1), 60.
[http://dx.doi.org/10.1186/s12989-020-00390-y] [PMID: 31900181]
[103]
Zhou, L.; Forman, H.J.; Ge, Y.; Lunec, J. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicol. In Vitro, 2017, 42, 292-298.
[http://dx.doi.org/10.1016/j.tiv.2017.04.027] [PMID: 28483489]
[104]
Mohanta, D.; Patnaik, S.; Sood, S.; Das, N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J. Pharm. Anal., 2019, 9(5), 293-300.
[http://dx.doi.org/10.1016/j.jpha.2019.04.003] [PMID: 31929938]
[105]
Wang, L.; Zhang, M.; Zhang, N.; Shi, J.; Zhang, H.; Zhang, Z.; Wang, L. Li, Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int. J. Nanomedicine, 2011, 6, 2641-2652.
[http://dx.doi.org/10.2147/IJN.S24167] [PMID: 22114495]
[106]
Ghosh, S.; Dutta, S.; Sarkar, A.; Kundu, M.; Sil, P.C. Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf. B Biointerfaces, 2021, 197, 111404.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111404] [PMID: 33142257]
[107]
Zhang, X.L.X. Preparation method of carbon nanotube-chitosanphycocyanin nanoparticles. Patent 02274510A, 2012.
[108]
Chen, J.; Liu, H. Polymer and method for using the polymer for solubilizing nanotubes. Patent US20077244407 2007.
[109]
Ford, W.E.; Wessels, J.; Yasuda, A. Method and apparatus for producing carbon nanotubes. Patent US20060014375, 2006.
[110]
Naumov, A.V. System and method for antibiotic delivery using single-walled carbon nanotubes. Patent 16366007, 2021.
[111]
Scheinberg, D.A.; McDevitt, M.R.; Villa, C.H.; Mulvey, J.J. Targeted self-assembly of functionalized carbon nanotubes on tumors. Patent US9976137B2, 2021.
[112]
Hongjuan, Y.; Yingge, Z.; Yan, L. A drug delivery system comprising a cancer stem cell-targeted carbon nanotube, preparation and use thereof. Canadian Patent Application, CA2957805A1, 2016.
[113]
Altadena, M.G.; Aria, A. Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface. United States Patent Application Publication, US20150238742A1, 2015.
[114]
Chen, W.R. Immunologically modified carbon nanotubes for cancer treatment. United States Patent, US8664198B2, 2014.
[115]
Mohapatra, S.S.; Kumar, A. Method of drug delivery by carbon nanotube-chitosan nanocomplexes. United States Patent, US8536324B2, 2013.
[116]
Harrison, R.J., Jr; Resasco, D.E.; Neves, L.F.F. Compositions and methods for cancer treatment using targeted carbon nanotubes. United States Patent, US8518870B2, 2013.
[117]
Kang, D.W.N.T.H. Carbon nanotube polymer composite coating film which suppresses toxicity and inflammation and has improved biocompatibility and adjusted surface strength. Patent WO2012060592A3, 2013.
[118]
Dongwoo, K.T.N., Jr; Lee, S.K.S. Method for preparing a highly dispersive carbon nanotube for reducing in vivo immunotoxicity. Patent WO2012057511A2, 2012.
[119]
Dai, H.; Sunnyvale, C.A.; Chen, R.J. Non-covalent sidewall functionalization of carbon nanotubes. United State Patent, US8029734B2, 2011.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy