Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Nano Drug Delivery Systems: A Mini-review

Author(s): Valli Nachiyar Syam Kumar*, Swetha Sunkar, Karthick Raja Namasivayam Selvaraj and Jayshree Nellore

Volume 13, Issue 3, 2023

Published on: 05 June, 2023

Article ID: e040523216524 Pages: 14

DOI: 10.2174/2210681213666230504115152

Price: $65

Abstract

Medical nanotechnology is surfacing as a challenging arena covering new biomedical applications, such as drug delivery, treatment, nano diagnosis, controlled drug release, regenerative medicine, and disease prevention. The recent developments in the field of Nanotechnology have enabled the nanostructures to overcome the problems associated with drug delivery making them the promising agents for site-specific drug delivery with reduced side effects and the best treatment outcome. These nanodrug delivery systems are designed in such a way that they can breach the biological barrier and deliver the drug in a site-specific manner. They enhance the effectiveness of drugs by increasing the stability and water solubility of drugs and by increasing the rate at which these nano drug complexes are taken up by the cells and tissues. Dendrimers, nanocrystals, nano-polymer NPs, and liposomes are futuristic nano-based drug delivery systems. Smart polymers are future drug-delivery systems with cutting-edge precise technology that are employed in effective cellular targeting based on temperature, pH, photoresponsive, conductive and magnetic responsive smart polymers. This review provides a comprehensive view of various nanostructures and their application in drug delivery.

Graphical Abstract

[1]
Gargade, V.A. Nanotechnology in ancient India In: History of Nanotechnology; , 2019; pp. 37-55.
[http://dx.doi.org/10.1002/9781119460534.ch3]
[2]
Kokarneswaran, M.; Selvaraj, P.; Ashokan, T.; Perumal, S.; Sellappan, P.; Murugan, K.D.; Ramalingam, S.; Mohan, N.; Chandrasekaran, V. Discovery of carbon nanotubes in sixth century BC potteries from Keeladi, India. Sci. Rep., 2020, 10(1), 19786.
[http://dx.doi.org/10.1038/s41598-020-76720-z] [PMID: 33188244]
[3]
Sohail, M.F.; Hussain, S.Z.; Saeed, H.; Javed, I.; Sarwar, H.S.; Nadhman, A.; Huma, Z.; Rehman, M.; Jahan, S.; Hussain, I.; Shahnaz, G. Polymeric nanocapsules embedded with ultra-small silver nanoclusters for synergistic pharmacology and improved oral delivery of Docetaxel. Sci. Rep., 2018, 8(1), 13304.
[http://dx.doi.org/10.1038/s41598-018-30749-3] [PMID: 30190588]
[4]
Kashyap, P.L.; Rai, P.; Sharma, S.; Chakdar, H.; Kumar, S.; Pandiyan, K.; Srivastava, A.K. Nanotechnology for the Detection and Diagnosis of Plant Pathogens; Sustainable Agriculture Reviews; Springer, 2016, pp. 253-276.
[http://dx.doi.org/10.1007/978-3-319-39306-3_8]
[5]
Zhang, A.; Pan, S.; Zhang, Y.; Chang, J.; Cheng, J.; Huang, Z.; Li, T.; Zhang, C.; Fuentea, J.M.; Zhang, Q.; Cui, D. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics, 2019, 9(12), 3443-3458.
[http://dx.doi.org/10.7150/thno.33266] [PMID: 31281489]
[6]
Hu, Y.; Fine, D.H.; Tasciotti, E.; Bouamrani, A.; Ferrari, M. Nanodevices in diagnostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(1), 11-32.
[http://dx.doi.org/10.1002/wnan.82] [PMID: 20229595]
[7]
Kothamasu, P.; Kanumur, H.; Ravur, N.; Maddu, C.; Parasuramrajam, R.; Thangavel, S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts, 2012, 2(2), 71-81.
[PMID: 23678444]
[8]
Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials, 2020, 10(5), 847.
[http://dx.doi.org/10.3390/nano10050847] [PMID: 32354008]
[9]
Bazylińska, U.; Wawrzyńczyk, D.; Kulbacka, J.; Frąckowiak, R.; Cichy, B.; Bednarkiewicz, A.; Samoć, M.; Wilk, K.A. Polymeric nanocapsules with up-converting nanocrystals cargo make ideal fluorescent bioprobes. Sci. Rep., 2016, 6(1), 29746.
[http://dx.doi.org/10.1038/srep29746] [PMID: 27406954]
[10]
Honda, M.; Asai, T.; Oku, N.; Araki, Y.; Tanaka, M.; Ebihara, N. Liposomes and nanotechnology in drug development: Focus on ocular targets. Int. J. Nanomed., 2013, 8, 495-503.
[http://dx.doi.org/10.2147/IJN.S30725] [PMID: 23439842]
[11]
Salamanca-Buentello, F.; Persad, D.L.; Court, E.B.; Martin, D.K.; Daar, A.S.; Singer, P.A. Nanotechnology and the developing world. PLoS Med., 2005, 2(5)e97
[http://dx.doi.org/10.1371/journal.pmed.0020097] [PMID: 15807631]
[12]
De Souza, C.; Ma, Z.; Lindstrom, A.R.; Chatterji, B.P. Nanomaterials as potential transporters of HDAC inhibitors. Med. Drug Discov., 2020, 6100040
[http://dx.doi.org/10.1016/j.medidd.2020.100040]
[13]
Lopalco, A.; Denora, N. Nanoformulations for drug delivery: Safety, toxicity, and efficacy. Methods Mol. Biol., 2018, 1800, 347-365.
[http://dx.doi.org/10.1007/978-1-4939-7899-1_17] [PMID: 29934902]
[14]
Denora, N.; Laquintana, V.; Lopalco, A.; Iacobazzi, R.M.; Lopedota, A.; Cutrignelli, A.; Iacobellis, G.; Annese, C.; Cascione, M.; Leporatti, S.; Franco, M. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM-FITC labeled dendrimer. J. Control. Release, 2013, 172(3), 1111-1125.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.024] [PMID: 24096015]
[15]
Iacobazzi, R.M.; Porcelli, L.; Lopedota, A.A.; Laquintana, V.; Lopalco, A.; Cutrignelli, A.; Altamura, E.; Di Fonte, R.; Azzariti, A.; Franco, M.; Denora, N. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers. Int. J. Pharm., 2017, 528(1-2), 485-497.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.049] [PMID: 28624661]
[16]
Yellepeddi, V.K.; Kumar, A.; Palakurthi, S. Surface modified poly(amido)amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin. Drug Deliv., 2009, 6(8), 835-850.
[http://dx.doi.org/10.1517/17425240903061251] [PMID: 19637972]
[17]
Bugno, J.; Hsu, H.J.; Pearson, R.M.; Noh, H.; Hong, S. Size and surface charge of engineered poly(amidoamine) dendrimers modulate tumor accumulation and penetration: A model study using multicellular tumor spheroids. Mol. Pharm., 2016, 13(7), 2155-2163.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00946] [PMID: 26828309]
[18]
Jeong, W.; Bu, J.; Kubiatowicz, L.J.; Chen, S.S.; Kim, Y.; Hong, S. Peptide-nanoparticle conjugates: A next generation of diagnostic and therapeutic platforms? Nano Converg., 2018, 5(1), 38.
[http://dx.doi.org/10.1186/s40580-018-0170-1] [PMID: 30539365]
[19]
Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57(15), 2215-2237.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[20]
Hanurry, E.Y.; Mekonnen, T.W.; Andrgie, A.T.; Darge, H.F.; Birhan, Y.S.; Hsu, W.H.; Chou, H.Y.; Cheng, C.C.; Lai, J.Y.; Tsai, H.C. Biotin-decorated pamam g4.5 dendrimer nanoparticles to enhance the delivery, anti-proliferative, and apoptotic effects of chemotherapeutic drug in cancer cells. Pharmaceutics, 2020, 12(5), 443.
[http://dx.doi.org/10.3390/pharmaceutics12050443] [PMID: 32403321]
[21]
Xu, H.; Regino, C.A.S.; Koyama, Y.; Hama, Y.; Gunn, A.J.; Bernardo, M.; Kobayashi, H.; Choyke, P.L.; Brechbiel, M.W. Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjug. Chem., 2007, 18(5), 1474-1482.
[http://dx.doi.org/10.1021/bc0701085] [PMID: 17711320]
[22]
Mangold, S.L.; Morgan, J.R.; Strohmeyer, G.C.; Gronenborn, A.M.; Cloninger, M.J. Cyanovirin-N binding to Manα1-2Man functionalized dendrimers. Org. Biomol. Chem., 2005, 3(12), 2354-2358.
[http://dx.doi.org/10.1039/b417789d] [PMID: 16010372]
[23]
Majoros, I.J.; Myc, A.; Thomas, T.; Mehta, C.B.; Baker, J.R. Jr PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules, 2006, 7(2), 572-579.
[http://dx.doi.org/10.1021/bm0506142] [PMID: 16471932]
[24]
Shieh, M.J.; Peng, C.L.; Lou, P.J.; Chiu, C.H.; Tsai, T.Y.; Hsu, C.Y.; Yeh, C.Y.; Lai, P.S. Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates. J. Control. Release, 2008, 129(3), 200-206.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.024] [PMID: 18541326]
[25]
Chandrawati, R.; Chang, J.Y.H.; Reina-Torres, E.; Jumeaux, C.; Sherwood, J.M.; Stamer, W.D.; Zelikin, A.N.; Overby, D.R.; Stevens, M.M. Localized and controlled delivery of nitric oxide to the conventional outflow pathway via enzyme biocatalysis: Toward therapy for glaucoma. Adv. Mater., 2017, 29(16)1604932
[http://dx.doi.org/10.1002/adma.201604932] [PMID: 28221702]
[26]
Otis, J.B.; Zong, H.; Kotylar, A.; Yin, A.; Bhattacharjee, S.; Wang, H.; Baker, J.R., Jr; Wang, S.H. Dendrimer antibody conjugate to target and image HER-2 overexpressing cancer cells. Oncotarget, 2016, 7(24), 36002-36013.
[http://dx.doi.org/10.18632/oncotarget.9081] [PMID: 27144519]
[27]
Rostami, I.; Zhao, Z.; Wang, Z.; Zhang, W.; Zhong, Y.; Zeng, Q.; Jia, X.; Hu, Z. Peptide-conjugated PEGylated PAMAM as a highly affinitive nanocarrier towards HER2-overexpressing cancer cells. RSC Advances, 2016, 6(109), 107337-107343.
[http://dx.doi.org/10.1039/C6RA19552K]
[28]
Madaan, K.; Lather, V.; Pandita, D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv., 2016, 23(1), 254-262.
[http://dx.doi.org/10.3109/10717544.2014.910564] [PMID: 24845475]
[29]
Ljubimova, J.Y.; Holler, E. Biocompatible nanopolymers: The next generation of breast cancer treatment? Nanomedicine, 2012, 7(10), 1467-1470.
[http://dx.doi.org/10.2217/nnm.12.115] [PMID: 23148535]
[30]
Anagnostou, K.; Stylianakis, M.M.; Atsalakis, G.; Kosmidis, D.M.; Skouras, A.; Stavrou, I.J.; Petridis, K.; Kymakis, E. An extensive case study on the dispersion parameters of HI-assisted reduced graphene oxide and its graphene oxide precursor. J. Colloid Interface Sci., 2020, 580, 332-344.
[http://dx.doi.org/10.1016/j.jcis.2020.07.040] [PMID: 32688124]
[31]
Jampílek, J.; Král’ová, K. Nanoformulations: A valuable tool in the therapy of viral diseases attacking humans and animals. Nanotheranostics; Springer, 2019, pp. 137-178.
[http://dx.doi.org/10.1007/978-3-030-29768-8_7]
[32]
Pund, S.; Joshi, A. Nanoarchitectures for neglected tropical protozoal diseases: Challenges and state of the art. In: Nano- and Microscale Drug Delivery Systems Design and Fabrication; Springer, 2017; pp. 439-480.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00023-6]
[33]
Lockman, P.R.; Mumper, R.J.; Khan, M.A.; Allen, D.D. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm., 2002, 28(1), 1-13.
[http://dx.doi.org/10.1081/DDC-120001481] [PMID: 11858519]
[34]
Patel, M.P.; Patel, R.R.; Patel, J.K. Chitosan mediated targeted drug delivery system: A review. J. Pharm. Pharm. Sci., 2010, 13(4), 536-557.
[http://dx.doi.org/10.18433/J3JC7C] [PMID: 21486530]
[35]
Varshosaz, J. Dextran conjugates in drug delivery. Expert Opin. Drug Deliv., 2012, 9(5), 509-523.
[http://dx.doi.org/10.1517/17425247.2012.673580] [PMID: 22432550]
[36]
Ngwa, W.; Kumar, R.; Moreau, M.; Dabney, R.; Herman, A. Nanoparticle drones to target lung cancer with radiosensitizers and cannabinoids. Front. Oncol., 2017, 7, 208.
[http://dx.doi.org/10.3389/fonc.2017.00208] [PMID: 28971063]
[37]
Sharma, D.; Hussain, C.M. Smart nanomaterials in pharmaceutical analysis. Arab. J. Chem., 2020, 13(1), 3319-3343.
[http://dx.doi.org/10.1016/j.arabjc.2018.11.007]
[38]
Vengurlekar, S.; Chaturvedi, S.C. Nanoparticles and lung cancer; nano drug delivery strategies for the treatment of cancers; Academic Press, 2021, pp. 107-118.
[http://dx.doi.org/10.1016/B978-0-12-819793-6.00005-9]
[39]
Golan, T.; Khvalevsky, E.Z.; Hubert, A.; Gabai, R.M.; Hen, N.; Segal, A.; Domb, A.; Harari, G.; David, E.B.; Raskin, S.; Goldes, Y.; Goldin, E.; Eliakim, R.; Lahav, M.; Kopleman, Y.; Dancour, A.; Shemi, A.; Galun, E. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget, 2015, 6(27), 24560-24570.
[http://dx.doi.org/10.18632/oncotarget.4183] [PMID: 26009994]
[40]
Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; Chen, H.; Hu, H.; Zhang, Z.; Jin, Y. Recent progress in drug delivery. Acta Pharm. Sin. B, 2019, 9(6), 1145-1162.
[http://dx.doi.org/10.1016/j.apsb.2019.08.003] [PMID: 31867161]
[41]
Jaiswal, C.; Chakraborty, M.; Pant, K. K.; Chandra, V.; Porte, D. S. Nanoparticle aided tumor targeting and cancer detection J. Adv. Sci. Res., 2022, 13(09), 01-11.
[http://dx.doi.org/10.55218/JASR.202213901]
[42]
Klouda, L. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm., 2015, 97(Pt B), 338-349.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.017] [PMID: 26614556]
[43]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2001, 53(3), 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[44]
Hasnain, M.S.; Ahmad, S.A.; Hoda, M.N.; Rishishwar, S.; Rishishwar, P.; Nayak, A.K. Stimuli-responsive carbon nanotubes for targeted drug delivery. Stimuli responsive polymeric nanocarriers for drug delivery applications; Woodhead Publishing, 2019, pp. 321-344.
[http://dx.doi.org/10.1016/B978-0-08-101995-5.00015-5]
[45]
Kim, H.; Kim, K.; Lee, S.J. Nature-inspired thermo-responsive multifunctional membrane adaptively hybridized with PNIPAm and PPy. NPG Asia Mater., 2017, 9(10)e445
[http://dx.doi.org/10.1038/am.2017.168]
[46]
Akimoto, J.; Nakayama, M.; Okano, T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J. Control. Release, 2014, 193, 2-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.062] [PMID: 25037017]
[47]
Abouelmagd, S.A.; Abd Ellah, N.H.; Abd El Hamid, B.N. Temperature and pH dual-stimuli responsive polymeric carriers for drug delivery. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Woodhead Publishing, 2019, pp. 87-109.
[http://dx.doi.org/10.1016/B978-0-08-101995-5.00003-9]
[48]
Varghese, S.A.; Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J. Natural Polymers and the Hydrogels Prepared from Them; Hydrogels Based on Natural Polymers, 2020, pp. 17-47.
[http://dx.doi.org/10.1016/B978-0-12-816421-1.00002-1]
[49]
Rao, K.; Rao, K.; Ha, C.S. Stimuli responsive poly(Vinyl Caprolactam) gels for biomedical applications. Gels, 2016, 2(1), 6.
[http://dx.doi.org/10.3390/gels2010006] [PMID: 30674138]
[50]
Sanzari, I.; Buratti, E.; Huang, R.; Tusan, C.G.; Dinelli, F.; Evans, N.D.; Prodromakis, T.; Bertoldo, M. Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applications. Sci. Rep., 2020, 10(1), 6126.
[http://dx.doi.org/10.1038/s41598-020-63228-9] [PMID: 32273560]
[51]
Heskins, M.; Guillet, J.E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Chem., 1968, 2(8), 1441-1455.
[http://dx.doi.org/10.1080/10601326808051910]
[52]
Lima, L.H.; Morales, Y.; Cabral, T. Ocular biocompatibility of poly-N-Isopropylacrylamide (pNIPAM). J. Ophthalmol., 2016, 20165356371
[http://dx.doi.org/10.1155/2016/5356371] [PMID: 27882245]
[53]
Nagase, K.; Yamato, M.; Kanazawa, H.; Okano, T. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials, 2018, 153, 27-48.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.026] [PMID: 29096399]
[54]
Shakya, A.K.; Nandakumar, K.S. An update on smart biocatalysts for industrial and biomedical applications. J. R. Soc. Interface, 2018, 15(139)20180062
[http://dx.doi.org/10.1098/rsif.2018.0062] [PMID: 29491182]
[55]
Fukumori, K.; Akiyama, Y.; Kumashiro, Y.; Kobayashi, J.; Yamato, M.; Sakai, K.; Okano, T. Characterization of ultra-thin temperature-responsive polymer layer and its polymer thickness dependency on cell attachment/detachment properties. Macromol. Biosci., 2010, 10(10), 1117-1129.
[http://dx.doi.org/10.1002/mabi.201000043] [PMID: 20503196]
[56]
Maeda, T.; Kanda, T.; Yonekura, Y.; Yamamoto, K.; Aoyagi, T. Hydroxylated poly(N-isopropylacrylamide) as functional thermoresponsive materials. Biomacromolecules, 2006, 7(2), 545-549.
[http://dx.doi.org/10.1021/bm050829b] [PMID: 16471928]
[57]
Ratemi, E. pH-responsive polymers for drug delivery applications. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, 2018, 1, 121-141.
[http://dx.doi.org/10.1016/B978-0-08-101997-9.00005-9]
[58]
Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem., 2017, 8(1), 144-176.
[http://dx.doi.org/10.1039/C6PY01872F]
[59]
Aguilar, M.R.; San Román, J. Introduction to smart polymers and their applications.Smart polymers and their applications; Woodhead Publishing, 2019, pp. 1-11.
[http://dx.doi.org/10.1016/B978-0-08-102416-4.00001-6]
[60]
Laurano, R.; Boffito, M. Thermosensitive Micellar Hydrogels as Vehicles to Deliver Drugs With Different Wettability. Front. Bioeng. Biotechnol., 2020, 8, 708.
[http://dx.doi.org/10.3389/fbioe.2020.00708] [PMID: 32766216]
[61]
Jin, Q.; Liu, G.; Ji, J. Micelles and reverse micelles with a photo and thermo double-responsive block copolymer. J. Polym. Sci. A Polym. Chem., 2010, 48(13), 2855-2861.
[http://dx.doi.org/10.1002/pola.24062]
[62]
Zhu, D.; Wang, F.; Gao, C.; Xu, Z. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation. Front. Chem. Eng. China, 2008, 2(3), 253-256.
[http://dx.doi.org/10.1007/s11705-008-0049-5]
[63]
Fuhrmann, G.; Chandrawati, R.; Parmar, P.A.; Keane, T.J.; Maynard, S.A.; Bertazzo, S.; Stevens, M.M. Engineering extracellular vesicles with the tools of enzyme prodrug therapy. Adv. Mater., 2018, 30(15)1706616
[http://dx.doi.org/10.1002/adma.201706616] [PMID: 29473230]
[64]
Shivakumar, H.G.; Satish, C.S.; Satish, K.P. Hydrogels as controlled drug delivery systems: Synthesis, crosslinking, water and drug transport mechanism. Indian J. Pharm. Sci., 2006, 68(2), 133.
[http://dx.doi.org/10.4103/0250-474X.25706]
[65]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[66]
Emam, H.E.; Shaheen, T.I. Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release. Carbohydr. Polym., 2022, 278118925
[http://dx.doi.org/10.1016/j.carbpol.2021.118925] [PMID: 34973743]
[67]
Zhao, W.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A.C. In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules, 2015, 16(8), 2522-2528.
[http://dx.doi.org/10.1021/acs.biomac.5b00801] [PMID: 26196600]
[68]
Thévenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev., 2013, 42(17), 7099-7116.
[http://dx.doi.org/10.1039/c3cs60058k] [PMID: 23636413]
[69]
Nedyalkova, M.; Donkova, B.; Romanova, J.; Tzvetkov, G.; Madurga, S.; Simeonov, V. Iron oxide nanoparticles - in vivo/in vitro biomedical applications and in silico studies. Adv. Colloid Interface Sci., 2017, 249, 192-212.
[http://dx.doi.org/10.1016/j.cis.2017.05.003] [PMID: 28499604]
[70]
García-Jimeno, S.; Ortega-Palacios, R.; Cepeda-Rubio, M.; Vera, A.; Leija, L.; Estelrich, J. Improved thermal ablation efficacy using magnetic nanoparticles: A study in tumor phantoms. Electromagn. waves, 2012, 128, 229-248.
[http://dx.doi.org/10.2528/PIER12020108]
[71]
Ansari, M.O.; Ahmad, M.F.; Shadab, G.G.H.A.; Siddique, H.R. Superparamagnetic iron oxide nanoparticles based cancer theranostics: A double edge sword to fight against cancer. J. Drug Deliv. Sci. Technol., 2018, 45, 177-183.
[http://dx.doi.org/10.1016/j.jddst.2018.03.017]
[72]
Xiong, X.; del Campo, A.; Cui, J. Smart Polymers and Their Applications; Photoresponsive Polymers, 2019, pp. 87-153.
[http://dx.doi.org/10.1016/B978-0-08-102416-4.00004-1]
[73]
Purkait, M.K.; Sinha, M.K.; Mondal, P.; Singh, R. Photoresponsive membranes. Interface Sci. Technol., 2018, 25, 115-144.
[http://dx.doi.org/10.1016/B978-0-12-813961-5.00004-8]
[74]
Karlsson, J.; Vaughan, H.J.; Green, J.J. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu. Rev. Chem. Biomol. Eng., 2018, 9(1), 105-127.
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-084055] [PMID: 29579402]
[75]
Li, H.; Yang, X.; Zhou, Z.; Wang, K.; Li, C.; Qiao, H.; Oupicky, D.; Sun, M. Near-infrared light-triggered drug release from a multiple lipid carrier complex using an all-in-one strategy. J. Control. Release, 2017, 261, 126-137.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.029] [PMID: 28666728]
[76]
Pais-Silva, C.; de Melo-Diogo, D.; Correia, I.J. IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur. J. Pharm. Biopharm., 2017, 113, 108-117.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.002] [PMID: 28087376]
[77]
Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397.
[http://dx.doi.org/10.3390/polym12061397] [PMID: 32580366]
[78]
Kumar, B.; Noor, N.; Thakur, S.; Pan, N.; Narayana, H.; Yan, S.; Wang, F.; Shah, P. Shape memory polyurethane-based smart polymer substrates for physiologically responsive, dynamic pressure (Re)distribution. ACS Omega, 2019, 4(13), 15348-15358.
[http://dx.doi.org/10.1021/acsomega.9b01167] [PMID: 31572833]
[79]
Chaudhuri, S.; Wu, C.M. Switchable wettability of poly(NIPAAm-co-HEMA-co-NMA) coated PET fabric for moisture management. Polymers, 2020, 12(1), 100.
[http://dx.doi.org/10.3390/polym12010100] [PMID: 31947945]
[80]
Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater., 2014, 10(6), 2341-2353.
[http://dx.doi.org/10.1016/j.actbio.2014.02.015] [PMID: 24556448]
[81]
Liu, X.; Gilmore, K.J.; Moulton, S.E.; Wallace, G.G. Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. J. Neural Eng., 2009, 6(6)065002
[http://dx.doi.org/10.1088/1741-2560/6/6/065002] [PMID: 19850977]
[82]
Green, R.; Abidian, M.R. Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater., 2015, 27(46), 7620-7637.
[http://dx.doi.org/10.1002/adma.201501810] [PMID: 26414302]
[83]
Ryu, M.; Yang, J.H.; Ahn, Y.; Sim, M.; Lee, K.H.; Kim, K.; Lee, T.; Yoo, S.J.; Kim, S.Y.; Moon, C.; Je, M.; Choi, J.W.; Lee, Y.; Jang, J.E. Enhancement of interface characteristics of neural probe based on graphene, ZnO nanowires, and conducting polymer PEDOT. ACS Appl. Mater. Interfaces, 2017, 9(12), 10577-10586.
[http://dx.doi.org/10.1021/acsami.7b02975] [PMID: 28266832]
[84]
Peramo, A.; Urbanchek, M.G.; Spanninga, S.A.; Povlich, L.K.; Cederna, P.; Martin, D.C. In situ polymerization of a conductive polymer in acellular muscle tissue constructs. Tissue Eng. Part A, 2008, 14(3), 423-432.
[http://dx.doi.org/10.1089/tea.2007.0123] [PMID: 18333794]
[85]
Xu, C-H.; Ye, P-J.; Zhou, Y-C.; He, D-X.; Yu, C-Y.; Wei, H. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta. Bio. Mater., 2020, 1051-14.
[http://dx.doi.org/10.2139/ssrn.3485134]
[86]
Ning, S.; Dai, X.; Tang, W.; Guo, Q.; Lyu, M.; Zhu, D.; Zhang, W.; Qian, H.; Yao, X.; Wang, X. Cancer cell membrane-coated C-TiO2 hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy. Acta Biomater., 2022, 152, 562-574.
[http://dx.doi.org/10.1016/j.actbio.2022.08.067] [PMID: 36067874]
[87]
Guo, W.; Wang, T.; Huang, C.; Ning, S.; Guo, Q.; Zhang, W.; Yang, H.; Zhu, D.; Huang, Q.; Qian, H.; Wang, X. Platelet membrane-coated C-TiO2 hollow nanospheres for combined sonodynamic and alkyl-radical cancer therapy. Nano Res., 2023, 16, 782-791.
[http://dx.doi.org/10.1007/s12274-022-4646-2]
[88]
Chen, Y.; Wei, C.; Lyu, Y.; Chen, H.; Jiang, G.; Gao, X. Biomimetic drug-delivery systems for the management of brain diseases. Biomater. Sci., 2020, 8(4), 1073-1088.
[http://dx.doi.org/10.1039/C9BM01395D] [PMID: 31728485]
[89]
Yang, Y.; Yin, N.; Gu, Z.; Zhao, Y.; Liu, C.; Zhou, T.; Zhang, K.; Zhang, Z.; Liu, J.; Shi, J. Engineered biomimetic drug-delivery systems for ischemic stroke therapy. Med. Drug Discov., 2022, 15100129
[http://dx.doi.org/10.1016/j.medidd.2022.100129]
[90]
Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers, 2019, 11(5), 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[91]
Jin, Y.J.; Ubonvan, T.; Kim, D.D. Hyaluronic acid in drug delivery systems. J. Pharm. Investig., 2010, 40, 33-43.
[http://dx.doi.org/10.4333/KPS.2010.40.S.033]
[92]
Frisch, B.; Carrière, M.; Largeau, C.; Mathey, F.; Masson, C.; Schuber, F.; Scherman, D.; Escriou, V. A new triantennary galactose-targeted PEGylated gene carrier, characterization of its complex with DNA, and transfection of hepatoma cells. Bioconjug. Chem., 2004, 15(4), 754-764.
[http://dx.doi.org/10.1021/bc049971k] [PMID: 15264862]
[93]
Oh, E.J.; Park, K.; Kim, K.S.; Kim, J.; Yang, J.A.; Kong, J.H.; Lee, M.Y.; Hoffman, A.S.; Hahn, S.K. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J. Control. Release, 2010, 141(1), 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.010] [PMID: 19758573]
[94]
Feng, J.; Xu, M.; Wang, J.; Zhou, S.; Liu, Y.; Liu, S.; Huang, Y.; Chen, Y.; Chen, L.; Song, Q.; Gong, J.; Lu, H.; Gao, X.; Chen, J. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials, 2020, 241119907
[http://dx.doi.org/10.1016/j.biomaterials.2020.119907] [PMID: 32120315]
[95]
Wang, M.; Zhao, T.; Liu, Y.; Wang, Q.; Xing, S.; Li, L.; Wang, L.; Liu, L.; Gao, D. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy. Mater. Sci. Eng. C, 2017, 71, 1231-1240.
[http://dx.doi.org/10.1016/j.msec.2016.11.014] [PMID: 27987679]
[96]
De Oliveira, H.; Thevenot, J.; Lecommandoux, S. Smart polymersomes for therapy and diagnosis: Fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(5), 525-546.
[http://dx.doi.org/10.1002/wnan.1183] [PMID: 22761061]
[97]
Roncato, F.; Rruga, F.; Porcù, E.; Casarin, E.; Ronca, R.; Maccarinelli, F.; Realdon, N.; Basso, G.; Alon, R.; Viola, G.; Morpurgo, M. Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the Avidin-Nucleic-Acid-Nano-Assemblies. Nat. Commun., 2018, 9(1), 4070.
[http://dx.doi.org/10.1038/s41467-018-06602-6] [PMID: 30287819]
[98]
Chia, H.N.; Wu, B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng., 2015, 9(1), 4.
[http://dx.doi.org/10.1186/s13036-015-0001-4] [PMID: 25866560]
[99]
Liaw, C.Y.; Guvendiren, M. Current and emerging applications of 3D printing in medicine. Biofabrication, 2017, 9(2)024102
[http://dx.doi.org/10.1088/1758-5090/aa7279] [PMID: 28589921]
[100]
Prasad, L.K.; Smyth, H. 3D Printing technologies for drug delivery: A review. Drug Dev. Ind. Pharm., 2016, 42(7), 1019-1031.
[http://dx.doi.org/10.3109/03639045.2015.1120743] [PMID: 26625986]
[101]
Kotta, S.; Nair, A.; Alsabeelah, N. 3D printing technology in drug delivery: Recent progress and application. Curr. Pharm. Des., 2019, 24(42), 5039-5048.
[http://dx.doi.org/10.2174/1381612825666181206123828] [PMID: 30520368]
[102]
Jamróz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm. Res., 2018, 35(9), 176.
[http://dx.doi.org/10.1007/s11095-018-2454-x] [PMID: 29998405]
[103]
Norman, J.; Madurawe, R.D.; Moore, C.M.V.; Khan, M.A.; Khairuzzaman, A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev., 2017, 108, 39-50.
[http://dx.doi.org/10.1016/j.addr.2016.03.001] [PMID: 27001902]
[104]
Mohapatra, S.; Kar, R.K.; Biswal, P.K.; Bindhani, S. Approaches of 3D printing in current drug delivery. Sensors International, 2022, 3100146
[http://dx.doi.org/10.1016/j.sintl.2021.100146]
[105]
Liu, Y.; Xie, P.; Zhang, D.; Zhang, Q. A mini review of nanosuspensions development. J. Drug Target., 2012, 20(3), 209-223.
[http://dx.doi.org/10.3109/1061186X.2011.645161] [PMID: 22192053]
[106]
Noyes, A.A.; Whitney, W.R. The rate of solution of Solid Substances in their own solutions. J. Am. Chem. Soc., 1897, 19(12), 930-934.
[http://dx.doi.org/10.1021/ja02086a003]
[107]
Uchegbu, I. Emulsions and Nanosuspensions for the Formulation of Poorly Soluble Drugs, Edited by R.H. Muller, S. Benita, B. Bohm, Medpharm Scientific Publishers, Stuttgart, 1998. ISBN 3-88763-069-6. Int. J. Pharm., 2001, 212(1), 143-144.
[http://dx.doi.org/10.1016/S0378-5173(00)00604-9]
[108]
Müller, R. Junghanns, Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 295, 295.
[http://dx.doi.org/10.2147/IJN.S595]
[109]
Cobley, C.M.; Au, L.; Chen, J.; Xia, Y. Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin. Drug Deliv., 2010, 7(5), 577-587.
[http://dx.doi.org/10.1517/17425240903571614] [PMID: 20345327]
[110]
Prausnitz, M.R. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin. Annu. Rev. Chem. Biomol. Eng., 2017, 8(1), 177-200.
[http://dx.doi.org/10.1146/annurev-chembioeng-060816-101514] [PMID: 28375775]
[111]
Dharadhar, S.; Majumdar, A.; Dhoble, S.; Patravale, V. Microneedles for transdermal drug delivery: A systematic review. Drug Dev. Ind. Pharm., 2019, 45(2), 188-201.
[http://dx.doi.org/10.1080/03639045.2018.1539497] [PMID: 30348022]
[112]
Hao, Y.; Li, W.; Zhou, X.; Yang, F.; Qian, Z. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol., 2017, 13(12), 1581-1597.
[http://dx.doi.org/10.1166/jbn.2017.2474] [PMID: 29490749]
[113]
Haj-Ahmad, R.; Khan, H.; Arshad, M.; Rasekh, M.; Hussain, A.; Walsh, S.; Li, X.; Chang, M.W.; Ahmad, Z. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics, 2015, 7(4), 486-502.
[http://dx.doi.org/10.3390/pharmaceutics7040486] [PMID: 26556364]
[114]
Al Sulaiman, D.; Chang, J.Y.H.; Bennett, N.R.; Topouzi, H.; Higgins, C.A.; Irvine, D.J.; Ladame, S. Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano, 2019, 13(8), 9620-9628.
[http://dx.doi.org/10.1021/acsnano.9b04783] [PMID: 31411871]
[115]
Jung, J.H.; Jin, S.G. Microneedle for transdermal drug delivery: Current trends and fabrication. J. Pharm. Investig., 2021, 51(5), 503-517.
[http://dx.doi.org/10.1007/s40005-021-00512-4] [PMID: 33686358]
[116]
Yang, B.; Gao, J.; Pei, Q.; Xu, H.; Yu, H. Engineering prodrug nanomedicine for cancer immunotherapy. Adv. Sci., 2020, 7(23)2002365
[http://dx.doi.org/10.1002/advs.202002365] [PMID: 33304763]
[117]
Lin, M.H.; Hung, C.F.; Hsu, C.Y.; Lin, Z.C.; Fang, J.Y. Prodrugs in combination with nanocarriers as a strategy for promoting antitumoral efficiency. Future Med. Chem., 2019, 11(16), 2131-2150.
[http://dx.doi.org/10.4155/fmc-2018-0388] [PMID: 31538520]
[118]
Albini, A.; Sporn, M.B. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer, 2007, 7(2), 139-147.
[http://dx.doi.org/10.1038/nrc2067] [PMID: 17218951]
[119]
Alven, S.; Nqoro, X.; Buyana, B.; Aderibigbe, B.A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer. Pharmaceutics, 2020, 12(5), 406.
[http://dx.doi.org/10.3390/pharmaceutics12050406] [PMID: 32365495]
[120]
Cai, H.; Wang, X.; Zhang, H.; Sun, L.; Pan, D.; Gong, Q.; Gu, Z.; Luo, K. Enzyme-sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Appl. Mater. Today, 2018, 11, 207-218.
[http://dx.doi.org/10.1016/j.apmt.2018.02.003]
[121]
Kumar, A.; Lale, S.V.; Aji Alex, M.R.; Choudhary, V.; Koul, V. Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: In-vitro and in-vivo studies. Colloids Surf. B Biointerfaces, 2017, 149, 369-378.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.044] [PMID: 27846450]
[122]
Zhou, H.; Lv, S.; Zhang, D.; Deng, M.; Zhang, X.; Tang, Z.; Chen, X. A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity. Acta Biomater., 2018, 73, 388-399.
[http://dx.doi.org/10.1016/j.actbio.2018.04.016] [PMID: 29694920]
[123]
Ndamase, A.S.; Aderibigbe, B.A.; Sadiku, E.R.; Labuschagne, P.; Lemmer, Y.; Ray, S.S.; Nwamadi, M. Synthesis, characterization and in vitro cytotoxicity evaluation of polyamidoamine conjugate containing pamidronate and platinum drug. J. Drug Deliv. Sci. Technol., 2018, 43, 267-273.
[http://dx.doi.org/10.1016/j.jddst.2017.10.011]
[124]
Kuai, R.; Ochyl, L.J.; Bahjat, K.S.; Schwendeman, A.; Moon, J.J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater., 2017, 16(4), 489-496.
[http://dx.doi.org/10.1038/nmat4822] [PMID: 28024156]
[125]
Reshetnyak, Y.K.; Segala, M.; Andreev, O.A.; Engelman, D.M. A monomeric membrane peptide that lives in three worlds: In solution, attached to, and inserted across lipid bilayers. Biophys. J., 2007, 93(7), 2363-2372.
[http://dx.doi.org/10.1529/biophysj.107.109967] [PMID: 17557792]
[126]
Urry, D.W.; Pattanaik, A. Elastic protein-based materials in tissue reconstruction. Ann. N. Y. Acad. Sci., 1997, 831(1), 32-46.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb52182.x] [PMID: 9616700]
[127]
Zhang, W.; Yu, L.; Ji, T.; Wang, C. Tumor microenvironment-responsive peptide-based supramolecular drug delivery system. Front Chem., 2020, 8, 549.
[http://dx.doi.org/10.3389/fchem.2020.00549] [PMID: 32775317]
[128]
Acebes-Fernández, V.; Landeira-Viñuela, A.; Juanes-Velasco, P.; Hernández, A.P.; Otazo-Perez, A.; Manzano-Román, R.; Gongora, R.; Fuentes, M. Nanomedicine and onco-immunotherapy: From the bench to bedside to biomarkers. Nanomaterials, 2020, 10(7), 1274.
[http://dx.doi.org/10.3390/nano10071274] [PMID: 32610601]
[129]
Hagan, C.T., IV; Mi, Y.; Knape, N.M.; Wang, A.Z. Enhancing combined immunotherapy and radiotherapy through nanomedicine. Bioconjug. Chem., 2020, 31(12), 2668-2678.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00520] [PMID: 33251789]
[130]
Wang, F.; Xu, D.; Su, H.; Zhang, W.; Sun, X.; Monroe, M.K.; Chakroun, R.W.; Wang, Z.; Dai, W.; Oh, R.; Wang, H.; Fan, Q.; Wan, F.; Cui, H. Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker-based immunotherapy. Sci. Adv., 2020, 6(18)eaaz8985
[http://dx.doi.org/10.1126/sciadv.aaz8985] [PMID: 32490201]
[131]
Ashton, S.; Song, Y.H.; Nolan, J.; Cadogan, E.; Murray, J.; Odedra, R.; Foster, J.; Hall, P.A.; Low, S.; Taylor, P.; Ellston, R.; Polanska, U.M.; Wilson, J.; Howes, C.; Smith, A.; Goodwin, R.J.A.; Swales, J.G.; Strittmatter, N.; Takáts, Z.; Nilsson, A.; Andren, P.; Trueman, D.; Walker, M.; Reimer, C.L.; Troiano, G.; Parsons, D.; De Witt, D.; Ashford, M.; Hrkach, J.; Zale, S.; Jewsbury, P.J.; Barry, S.T. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci. Transl. Med., 2016, 8(325)325ra17
[http://dx.doi.org/10.1126/scitranslmed.aad2355] [PMID: 26865565]
[132]
Schmid, D.; Park, C.G.; Hartl, C.A.; Subedi, N.; Cartwright, A.N.; Puerto, R.B.; Zheng, Y.; Maiarana, J.; Freeman, G.J.; Wucherpfennig, K.W.; Irvine, D.J.; Goldberg, M.S. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun., 2017, 8(1), 1747.
[http://dx.doi.org/10.1038/s41467-017-01830-8] [PMID: 29170511]
[133]
Weiner, G.J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer, 2015, 15(6), 361-370.
[http://dx.doi.org/10.1038/nrc3930] [PMID: 25998715]
[134]
Erel-Akbaba, G.; Carvalho, L.A.; Tian, T.; Zinter, M.; Akbaba, H.; Obeid, P.J.; Chiocca, E.A.; Weissleder, R.; Kantarci, A.G.; Tannous, B.A. Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano, 2019, 13(4), 4028-4040.
[http://dx.doi.org/10.1021/acsnano.8b08177] [PMID: 30916923]
[135]
Mi, Y.; Smith, C.C.; Yang, F.; Qi, Y.; Roche, K.C.; Serody, J.S.; Vincent, B.G.; Wang, A.Z. A dual immunotherapy nanoparticle improves t‐cell activation and cancer immunotherapy. Adv. Mater., 2018, 30(25)1706098
[http://dx.doi.org/10.1002/adma.201706098] [PMID: 29691900]
[136]
Kosmides, A.K.; Sidhom, J.W.; Fraser, A.; Bessell, C.A.; Schneck, J.P. Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano, 2017, 11(6), 5417-5429.
[http://dx.doi.org/10.1021/acsnano.6b08152] [PMID: 28589725]
[137]
Pandita, D.; Munjal, A.; Godara, S.; Lather, V. Nanocarriers in drug and gene delivery. In: Advances in Animal Biotechnology and its Applications; Springer, 2018; pp. 71-102.
[http://dx.doi.org/10.1007/978-981-10-4702-2_6]
[138]
Yu, X.; Pu, X.; Xie, C.; Song, Y.; He, H.; Li, H.; Lu, W.; Fu, D.; Jin, C.; Di, Y. An in vitro and in vivo study of gemcitabine-loaded albumin nanoparticles in a pancreatic cancer cell line. Int. J. Nanomed., 2015, 10, 6825-6834.
[http://dx.doi.org/10.2147/IJN.S93835] [PMID: 26586944]
[139]
Sershen, S.R.; Westcott, S.L.; Halas, N.J.; West, J.L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res., 2000, 51(3), 293-298.
[http://dx.doi.org/10.1002/1097-4636(20000905)51:3<293:AID-JBM1>3.0.CO;2-T] [PMID: 10880069]
[140]
Jin, S.; Ye, K. Nanoparticle-mediated drug delivery and gene therapy. Biotechnol. Prog., 2007, 23(1), 32-41.
[http://dx.doi.org/10.1021/bp060348j] [PMID: 17269667]
[141]
Chan, K.P.; Chao, S.H.; Kah, J.C.Y. Universal mRNA translation enhancement with gold nanoparticles conjugated to oligonucleotides with a poly(T) sequence. ACS Appl. Mater. Interfaces, 2018, 10(6), 5203-5212.
[http://dx.doi.org/10.1021/acsami.7b16390] [PMID: 29363938]
[142]
Gupta, N.; Rai, D.B.; Jangid, A.K.; Pooja, D.; Kulhari, H. Nanomaterials-based SiRNA delivery: Routes of administration, hurdles and role of nanocarriers. In: Nanotechnology in Modern Animal Biotechnology; Recent Trends and Future Perspectives, 2019; pp. 67-114.
[http://dx.doi.org/10.1007/978-981-13-6004-6_3]
[143]
Conde, J.; Doria, G.; Baptista, P. Noble metal nanoparticles applications in cancer. J. Drug Deliv., 2012, 2012751075
[http://dx.doi.org/10.1155/2012/751075] [PMID: 22007307]
[144]
Xiao, Y.; Shi, K.; Qu, Y.; Chu, B.; Qian, Z. Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol. Ther. Methods Clin. Dev., 2019, 12, 1-18.
[http://dx.doi.org/10.1016/j.omtm.2018.09.002] [PMID: 30364598]
[145]
Zuckerman, J.E.; Davis, M.E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov., 2015, 14(12), 843-856.
[http://dx.doi.org/10.1038/nrd4685] [PMID: 26567702]
[146]
Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol., 2010, 624, 343-357.
[http://dx.doi.org/10.1007/978-1-60761-609-2_23] [PMID: 20217607]
[147]
Sahandi Zangabad, P.; Karimi, M.; Mehdizadeh, F.; Malekzad, H.; Ghasemi, A.; Bahrami, S.; Zare, H.; Moghoofei, M.; Hekmatmanesh, A.; Hamblin, M.R. Nanocaged platforms: Modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale, 2017, 9(4), 1356-1392.
[http://dx.doi.org/10.1039/C6NR07315H] [PMID: 28067384]
[148]
Ferreira, D.; Fontinha, D.; Martins, C.; Pires, D.; Fernandes, A.R.; Baptista, P.V. Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics. Molecules, 2020, 25(15), 3489.
[http://dx.doi.org/10.3390/molecules25153489] [PMID: 32751935]
[149]
Huschka, R.; Barhoumi, A.; Liu, Q.; Roth, J.A.; Ji, L.; Halas, N.J. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano, 2012, 6(9), 7681-7691.
[http://dx.doi.org/10.1021/nn301135w] [PMID: 22862291]
[150]
Huo, S.; Gong, N.; Jiang, Y.; Chen, F.; Guo, H.; Gan, Y.; Wang, Z.; Herrmann, A.; Liang, X.J. Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. Sci. Adv., 2019, 5(10)eaaw6264
[http://dx.doi.org/10.1126/sciadv.aaw6264] [PMID: 31616782]
[151]
Emadi, F.; Amini, A.; Gholami, A.; Ghasemi, Y. Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci. Rep., 2017, 7(1), 42258.
[http://dx.doi.org/10.1038/srep42258] [PMID: 28186169]
[152]
Han, X.M.; Zheng, K.W.; Wang, R.L.; Yue, S.F.; Chen, J.; Zhao, Z.W.; Song, F.; Su, Y.; Ma, Q. Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery. Am. J. Transl. Res., 2020, 12(5), 1515-1534.
[PMID: 32509159]
[153]
Zhao, Y.; Huang, L. Lipid nanoparticles for gene delivery. Adv. Genet., 2014, 88, 13-36.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00002-X] [PMID: 25409602]
[154]
Fàbregas, A.; Prieto-Sánchez, S.; Suñé-Pou, M.; Boyero-Corral, S.; Ticó, J.R.; García-Montoya, E.; Pérez-Lozano, P.; Miñarro, M.; Suñé-Negre, J.M.; Hernández-Munain, C.; Suñé, C. Improved formulation of cationic solid lipid nanoparticles displays cellular uptake and biological activity of nucleic acids. Int. J. Pharm., 2017, 516(1-2), 39-44.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.026] [PMID: 27840160]
[155]
Zhang, R.; Men, K.; Zhang, X.; Huang, R.; Tian, Y.; Zhou, B.; Yu, C.; Wang, Y.; Ji, X.; Hu, Q.; Yang, L. Delivery of a modified mRNA encoding IL-22 binding protein (IL-22BP) for colon cancer gene therapy. J. Biomed. Nanotechnol., 2018, 14(7), 1239-1251.
[http://dx.doi.org/10.1166/jbn.2018.2577] [PMID: 29944098]
[156]
Sun, S.L.; Lo, Y.L.; Chen, H.Y.; Wang, L.F. Hybrid polyethylenimine and polyacrylic acid-bound iron oxide as a magnetoplex for gene delivery. Langmuir, 2012, 28(7), 3542-3552.
[http://dx.doi.org/10.1021/la204529u] [PMID: 22242960]
[157]
Son, S.; Kim, N.; You, D.G.; Yoon, H.Y.; Yhee, J.Y.; Kim, K.; Kwon, I.C.; Kim, S.H. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation. Theranostics, 2017, 7(1), 9-22.
[http://dx.doi.org/10.7150/thno.16042] [PMID: 28042312]
[158]
Chen, J.; Gao, P.; Yuan, S.; Li, R.; Ni, A.; Chu, L.; Ding, L.; Sun, Y.; Liu, X.Y.; Duan, Y. Oncolytic adenovirus complexes coated with lipids and calcium phosphate for cancer gene therapy. ACS Nano, 2016, 10(12), 11548-11560.
[http://dx.doi.org/10.1021/acsnano.6b06182] [PMID: 27977128]
[159]
Yi, Y.; Kim, H.J.; Mi, P.; Zheng, M.; Takemoto, H.; Toh, K.; Kim, B.S.; Hayashi, K.; Naito, M.; Matsumoto, Y.; Miyata, K.; Kataoka, K. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles. J. Control. Release, 2016, 244(Pt B), 247-256.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.041] [PMID: 27590214]
[160]
Patel, A.; Patel, M.; Yang, X.; Mitra, A. Recent advances in protein and Peptide drug delivery: A special emphasis on polymeric nanoparticles. Protein Pept. Lett., 2014, 21(11), 1102-1120.
[http://dx.doi.org/10.2174/0929866521666140807114240] [PMID: 25106908]
[161]
Khodadadi Yazdi, M.; Taghizadeh, A.; Taghizadeh, M.; Stadler, F.J.; Farokhi, M.; Mottaghitalab, F.; Zarrintaj, P.; Ramsey, J.D.; Seidi, F.; Saeb, M.R.; Mozafari, M. Agarose-based biomaterials for advanced drug delivery. J. Control. Release, 2020, 326, 523-543.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.028] [PMID: 32702391]
[162]
Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm. Res., 1996, 13(12), 1838-1845.
[http://dx.doi.org/10.1023/A:1016085108889] [PMID: 8987081]
[163]
Cao, S.; Xu, S.; Wang, H.; Ling, Y.; Dong, J.; Xia, R.; Sun, X. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech, 2019, 20(5), 190.
[http://dx.doi.org/10.1208/s12249-019-1325-z] [PMID: 31111296]
[164]
Abascal, N.C.; Regan, L. The past, present and future of protein-based materials. Open Biol., 2018, 8(10)180113
[http://dx.doi.org/10.1098/rsob.180113] [PMID: 30381364]
[165]
DeFrates, K.; Moore, R.; Borgesi, J.; Lin, G.; Mulderig, T.; Beachley, V.; Hu, X. Protein-based fiber materials in medicine: A review. Nanomaterials, 2018, 8(7), 457.
[http://dx.doi.org/10.3390/nano8070457] [PMID: 29932123]
[166]
Pandey, V.; Haider, T.; Jain, P.; Gupta, P.N.; Soni, V. Silk as a leading-edge biological macromolecule for improved drug delivery. J. Drug Deliv. Sci. Technol., 2020, 55101294
[http://dx.doi.org/10.1016/j.jddst.2019.101294]
[167]
Malekzad, H.; Mirshekari, H.; Sahandi, Z.P.; Moosavi, B.S.M.; Baniasadi, F.; Sharifi, A.M.; Karimi, M.; Hamblin, M.R. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit. Rev. Biotechnol., 2018, 38(1), 47-67.
[http://dx.doi.org/10.1080/07388551.2017.1312267] [PMID: 28434263]
[168]
Tay, A.; Melosh, N. Nanostructured materials for intracellular cargo delivery. Acc. Chem. Res., 2019, 52(9), 2462-2471.
[http://dx.doi.org/10.1021/acs.accounts.9b00272] [PMID: 31465200]
[169]
Sarafraz-Yazdi, E.; Mumin, S.; Cheung, D.; Fridman, D.; Lin, B.; Wong, L.; Rosal, R.; Rudolph, R.; Frenkel, M.; Thadi, A.; Morano, W.F.; Bowne, W.B.; Pincus, M.R.; Michl, J. PNC-27, a Chimeric p53-penetratin peptide binds to HDM-2 in a p53 peptide-like structure, induces selective membrane-pore formation and leads to cancer cell lysis. Biomedicines, 2022, 10(5), 945.
[http://dx.doi.org/10.3390/biomedicines10050945] [PMID: 35625682]
[170]
Silva, R.F.; Araújo, D.R.; Silva, E.R.; Ando, R.A.; Alves, W.A. L-diphenylalanine microtubes as a potential drug-delivery system: Characterization, release kinetics, and cytotoxicity. Langmuir, 2013, 29(32), 10205-10212.
[http://dx.doi.org/10.1021/la4019162] [PMID: 23879638]
[171]
Chen, J.; Zhang, B.; Xia, F.; Xie, Y.; Jiang, S.; Su, R.; Lu, Y.; Wu, W. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes. Nanoscale, 2016, 8(13), 7127-7136.
[http://dx.doi.org/10.1039/C5NR06804E] [PMID: 26964879]
[172]
Patel, S.G.; Sayers, E.J.; He, L.; Narayan, R.; Williams, T.L.; Mills, E.M.; Allemann, R.K.; Luk, L.Y.P.; Jones, A.T.; Tsai, Y.H. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep., 2019, 9(1), 6298.
[http://dx.doi.org/10.1038/s41598-019-42456-8] [PMID: 31000738]
[173]
Zhang, J.; Jin, W.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol. Pharm., 2010, 7(4), 1159-1168.
[http://dx.doi.org/10.1021/mp1000235] [PMID: 20524673]
[174]
Niu, Z.; Samaridou, E.; Jaumain, E.; Coëne, J.; Ullio, G.; Shrestha, N.; Garcia, J.; Durán-Lobato, M.; Tovar, S.; Santander-Ortega, M.J.; Lozano, M.V.; Arroyo-Jimenez, M.M.; Ramos-Membrive, R.; Peñuelas, I.; Mabondzo, A.; Préat, V.; Teixidó, M.; Giralt, E.; Alonso, M.J. PEG-PGA enveloped octaarginine-peptide nanocomplexes: An oral peptide delivery strategy. J. Control. Release, 2018, 276, 125-139.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.004] [PMID: 29518466]
[175]
Liu, Z.; Wang, F.; Chen, X. Integrin α v β 3 -targeted cancer therapy. Drug Dev. Res., 2008, 69(6), 329-339.
[http://dx.doi.org/10.1002/ddr.20265] [PMID: 20628538]
[176]
Hsieh, W.H.; Liaw, J. Applications of cyclic peptide nanotubes (cPNTs). J. Food Drug Anal., 2019, 27(1), 32-47.
[http://dx.doi.org/10.1016/j.jfda.2018.09.004] [PMID: 30648586]
[177]
Gagliardi, A.; Paolino, D.; Iannone, M.; Palma, E.; Fresta, M.; Cosco, D. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system. Int. J. Nanomed., 2018, 13, 601-614.
[http://dx.doi.org/10.2147/IJN.S156930] [PMID: 29430179]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy