Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Cocrystallizing and Codelivering Complementary Drugs to Multidrugresistant Tuberculosis Bacteria in Perfecting Multidrug Therapy

Author(s): Pathik Sahoo*

Volume 23, Issue 19, 2023

Published on: 19 May, 2023

Page: [1850 - 1858] Pages: 9

DOI: 10.2174/1568026623666230504094521

Price: $65

Abstract

Bacteria cells exhibit multidrug resistance in one of two ways: by raising the genetic expression of multidrug efflux pumps or by accumulating several drug-resistant components in many genes. Multidrug-resistive tuberculosis bacteria are treated by multidrug therapy, where a few certain antibacterial drugs are administered together to kill a bacterium jointly. A major drawback of conventional multidrug therapy is that the administration never ensures the reaching of different drug molecules to a particular bacterium cell at the same time, which promotes growing drug resistivity step-wise. As a result, it enhances the treatment time. With additional tabletability and plasticity, the formation of a cocrystal of multidrug can ensure administrating the multidrug chemically together to a target bacterium cell. With properly maintaining the basic philosophy of multidrug therapy here, the synergistic effects of drug molecules can ensure killing the bacteria, even before getting the option to raise the drug resistance against them. This can minimize the treatment span, expenditure and drug resistance. A potential threat of epidemic from tuberculosis has appeared after the Covid-19 outbreak. An unwanted loop of finding molecules with the potential to kill tuberculosis, getting their corresponding drug approvals, and abandoning the drug after facing drug resistance can be suppressed here. This perspective aims to develop the universal drug regimen by postulating the principles of drug molecule selection, cocrystallization, and subsequent harmonisation within a short period to address multidrug-resistant bacteria.

Graphical Abstract

[1]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M.M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A.Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rudd, K.E.; Russell, N.; Schnall, J.; Scott, J.A.G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[2]
Virolle, C.; Goldlust, K.; Djermoun, S.; Bigot, S.; Lesterlin, C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes, 2020, 11(11), 1239.
[http://dx.doi.org/10.3390/genes11111239] [PMID: 33105635]
[3]
Schaenzer, A.J.; Wright, G.D. Antibiotic resistance by enzymatic modification of antibiotic targets. Trends Mol. Med., 2020, 26(8), 768-782.
[http://dx.doi.org/10.1016/j.molmed.2020.05.001] [PMID: 32493628]
[4]
Sahoo, P. The adverse effects of estrogenic pill driven after flexible fertility on environment in COVID-19 situation. Engineered Science, 2021, 14, 109-113.
[http://dx.doi.org/10.30919/es8d428]
[5]
Dheda, K.; Perumal, T.; Moultrie, H.; Perumal, R.; Esmail, A.; Scott, A.J.; Udwadia, Z.; Chang, K.C.; Peter, J.; Pooran, A.; von Delft, A.; von Delft, D.; Martinson, N.; Loveday, M.; Charalambous, S.; Kachingwe, E.; Jassat, W.; Cohen, C.; Tempia, S.; Fennelly, K.; Pai, M. The intersecting pandemics of tuberculosis and COVID-19: Population-level and patient-level impact, clinical presentation, and corrective interventions. Lancet Respir. Med., 2022, 10(6), 603-622.
[http://dx.doi.org/10.1016/S2213-2600(22)00092-3] [PMID: 35338841]
[6]
Dartois, V.A.; Rubin, E.J. Anti-tuberculosis treatment strategies and drug development: Challenges and priorities. Nat. Rev. Microbiol., 2022, 20(11), 685-701.
[http://dx.doi.org/10.1038/s41579-022-00731-y] [PMID: 35478222]
[7]
Tängdén, T.; Cars, O.; Melhus, Å.; Löwdin, E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: A prospective study with Swedish volunteers. Antimicrob. Agents Chemother., 2010, 54(9), 3564-3568.
[http://dx.doi.org/10.1128/AAC.00220-10] [PMID: 20547788]
[8]
Falgenhauer, L.; Schwengers, O.; Schmiedel, J.; Baars, C.; Lambrecht, O.; Heß, S.; Berendonk, T.U.; Falgenhauer, J.; Chakraborty, T.; Imirzalioglu, C. Multidrug-resistant and clinically relevant gram-negative bacteria are present in german surface waters. Front. Microbiol., 2019, 10, 2779.
[http://dx.doi.org/10.3389/fmicb.2019.02779] [PMID: 31849911]
[9]
Frickmann, H.; Podbielski, A.; Kreikemeyer, B. Resistant gram-negative bacteria and diagnostic point-of-care options for the field setting during military operations. BioMed Res. Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/9395420] [PMID: 30009178]
[10]
Fitzgerald, B.L.; Islam, M.N.; Graham, B.; Mahapatra, S.; Webb, K.; Boom, W.H.; Malherbe, S.T.; Joloba, M.L.; Johnson, J.L.; Winter, J.; Walzl, G.; Belisle, J.T. Elucidation of a human urine metabolite as a seryl-leucine glycopeptide and as a biomarker of effective anti-tuberculosis therapy. ACS Infect. Dis., 2019, 5(3), 353-364.
[http://dx.doi.org/10.1021/acsinfecdis.8b00241] [PMID: 30585483]
[11]
Chang, F.; Huang, L.; Guo, C.; Xie, G.; Li, J.; Diao, Q. Graphdiyne-based one-step DNA fluorescent sensing platform for the detection of Mycobacterium tuberculosis and its drug-resistant genes. ACS Appl. Mater. Interfaces, 2019, 11(39), 35622-35629.
[http://dx.doi.org/10.1021/acsami.9b15248] [PMID: 31502436]
[12]
Ibrahim, S.A.; Chan, Y. Fluorescent semiconductor nanorods for the solid-phase polymerase chain reaction-based, multiplexed gene detection of Mycobacterium tuberculosis. ACS Appl. Mater. Interfaces, 2021, 13(30), 35294-35305.
[http://dx.doi.org/10.1021/acsami.1c05312] [PMID: 34313114]
[13]
Babin, B.M.; Fernandez-Cuervo, G.; Sheng, J.; Green, O.; Ordonez, A.A.; Turner, M.L.; Keller, L.J.; Jain, S.K.; Shabat, D.; Bogyo, M. Chemiluminescent protease probe for rapid, sensitive, and inexpensive detection of live Mycobacterium tuberculosis. ACS Cent. Sci., 2021, 7(5), 803-814.
[http://dx.doi.org/10.1021/acscentsci.0c01345] [PMID: 34079897]
[14]
Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.; Corona, F.; Lira, F.; Alcalde-Rico, M.; Bernardini, A.; Sanchez, M.; Martinez, J. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms, 2016, 4(1), 14.
[http://dx.doi.org/10.3390/microorganisms4010014] [PMID: 27681908]
[15]
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem., 2009, 78(1), 119-146.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[16]
Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial enzymes and antibiotic resistance. Acta Nat., 2018, 10(4), 33-48.
[http://dx.doi.org/10.32607/20758251-2018-10-4-33-48] [PMID: 30713760]
[17]
Singh, A.; Gupta, A.K.; Singh, S. Molecular mechanisms of drug resistance in mycobacterium tuberculosis: role of nanoparticles against multi-drug-resistant tuberculosis (MDR-TB). NanoBioMedicine; Saxena, S.; Khurana, S; Singh, S., Ed.; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-32-9898-9_12]
[18]
Dooley, S.W.; Simone, M. The extent and management of drug-resistant tuberculosis: The American experience.Clinical tuberculosis; Chapman & Hall: London, 1994, pp. 171-189.
[19]
Fu, L.M.; Fu-Liu, C.S. Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram–negative bacterial pathogens? Tuberculosis, 2002, 82(2-3), 85-90.
[http://dx.doi.org/10.1054/tube.2002.0328] [PMID: 12356459]
[20]
LoBue, P.A.; Enarson, D.A.; Thoen, C.O. Tuberculosis in humans and animals: An overview. Int. J. Tuberc. Lung Dis., 2010, 14(9), 1075-1078. Available From https://www.ingentaconnect.com/content/iuatld/ijtld/2010/00000014/00000009/art00002#
[PMID: 20819249]
[21]
Cudahy, P.; Shenoi, S.V. Diagnostics for pulmonary tuberculosis. Postgrad. Med. J., 2016, 92(1086), 187-193.
[http://dx.doi.org/10.1136/postgradmedj-2015-133278] [PMID: 27005271]
[22]
Viganor, L.; Skerry, C.; McCann, M.; Devereux, M. Tuberculosis: An Inorganic Medicinal Chemistry Perspective. Curr. Med. Chem., 2015, 22(18), 2199-2224.
[http://dx.doi.org/10.2174/0929867322666150408112357] [PMID: 25850770]
[23]
Tangallapally, R.P.; Yendapally, R.; Daniels, A.J.; Lee, R.E.B.; Lee, R.E. Nitrofurans as novel anti-tuberculosis agents: Identification, development and evaluation. Curr. Top. Med. Chem., 2007, 7(5), 509-526.
[http://dx.doi.org/10.2174/156802607780059772]
[24]
Matsumoto, M.; Hashizume, H.; Tsubouchi, H.; Sasaki, H.; Itotani, M.; Kuroda, H.; Tomishige, T.; Kawasaki, M.; Komatsu, M. Screening for novel antituberculosis agents that are effective against multidrug-resistant Tuberculosis. Curr. Top. Med. Chem., 2007, 7(5), 499-507.
[http://dx.doi.org/10.2174/156802607780059727]
[25]
Muralikrishnan, B.; Edison, L.K.; Dusthackeer, A.; Jijimole, G.R.; Ramachandran, R.; Madhavan, A.; Kumar, R.A. Chrysomycin A inhibits the topoisomerase I of Mycobacterium tuberculosis. J. Antibiot., 2022, 75(4), 226-235.
[http://dx.doi.org/10.1038/s41429-022-00503-z] [PMID: 35136191]
[26]
Wu, F.; Zhang, J.; Song, F.; Wang, S.; Guo, H.; Wei, Q.; Dai, H.; Chen, X.; Xia, X.; Liu, X.; Zhang, L.; Yu, J.Q.; Lei, X. Chrysomycin a derivatives for the treatment of multi-drug-resistant tuberculosis. ACS Cent. Sci., 2020, 6(6), 928-938.
[http://dx.doi.org/10.1021/acscentsci.0c00122] [PMID: 32607440]
[27]
Peek, J.; Xu, J.; Wang, H.; Suryavanshi, S.; Zimmerman, M.; Russo, R.; Park, S.; Perlin, D.S.; Brady, S.F. A semisynthetic kanglemycin shows in vivo efficacy against high-burden rifampicin resistant pathogens. ACS Infect. Dis., 2020, 6(9), 2431-2440.
[http://dx.doi.org/10.1021/acsinfecdis.0c00223] [PMID: 32786275]
[28]
Azzali, E.; Girardini, M.; Annunziato, G.; Pavone, M.; Vacondio, F.; Mori, G.; Pasca, M.R.; Costantino, G.; Pieroni, M. 2-aminooxazole as a novel privileged scaffold in antitubercular medicinal chemistry. ACS Med. Chem. Lett., 2020, 11(7), 1435-1441.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00173] [PMID: 32676151]
[29]
Santoso, K.T.; Cheung, C.Y.; Hards, K.; Cook, G.M.; Stocker, B.L.; Timmer, M.S.M. Synthesis and investigation of phthalazinones as antitubercular agents. Chem. Asian J., 2019, 14(8), 1278-1285.
[http://dx.doi.org/10.1002/asia.201801805] [PMID: 30680937]
[30]
Sloan, D.; Davies, G.; Khoo, S. Recent advances in tuberculosis: New drugs and treatment regimens. Curr. Respir. Med. Rev., 2013, 9(3), 200-210.
[http://dx.doi.org/10.2174/1573398X113099990017] [PMID: 24683386]
[31]
Bag, P.P. Introduction of plasticity to change mechanical behaviour of pharmaceutical crystals by co-crystallization: a solution of long standing problem in isoniazid. Engineered Science, 2021, 15, 129-137.
[http://dx.doi.org/10.30919/es8d1501]
[32]
Gadade, D.D.; Pekamwar, S.S. Pharmaceutical cocrystals: regulatory and strategic aspects, design and development. Adv. Pharm. Bull., 2016, 6(4), 479-494.
[http://dx.doi.org/10.15171/apb.2016.062] [PMID: 28101455]
[33]
Sahoo, P.; Chakraborty, I.; Bandyopadhyaya, A. Designing supramolecular pheromone containers by crystal engineering for replacing pesticides. Engineered Science, 2022, 20, 125-133.
[http://dx.doi.org/10.30919/es8e736]
[34]
Sahoo, P.; Das, P. Moisture-catalyzed slow release of sex pheromone from microcrystals in controlling phyllophaga pests. Eng. Sci., 2021, 16, 9-18.
[http://dx.doi.org/10.30919/es8e505]
[35]
Ramón-García, S.; Ng, C.; Anderson, H.; Chao, J.D.; Zheng, X.; Pfeifer, T.; Av-Gay, Y.; Roberge, M.; Thompson, C.J. Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob. Agents Chemother., 2011, 55(8), 3861-3869.
[http://dx.doi.org/10.1128/AAC.00474-11] [PMID: 21576426]
[36]
Sahoo, P.; Sankolli, R.; Lee, H.Y.; Raghavan, S.R.; Dastidar, P. Gel sculpture: Moldable, load-bearing and self-healing non-polymeric supramolecular gel derived from a simple organic salt. Chem. Eur. J., 2012, 18(26), 8057-8063.
[http://dx.doi.org/10.1002/chem.201200986] [PMID: 22628195]
[37]
Sahoo, P.; Dastidar, P. Secondary Ammonium Dicarboxylate (SAD)-A supramolecular synthon in designing low molecular weight gelators derived from azo-dicarboxylates. Cryst. Growth Des., 2012, 12(12), 5917-5924.
[http://dx.doi.org/10.1021/cg301245c]
[38]
Sahoo, P. Designing heat-set gels for crystallizing apis at different temperatures: a crystal engineering approach. ChemEngineering, 2022, 6(5), 65.
[http://dx.doi.org/10.3390/chemengineering6050065]
[39]
Sahoo, P.; Kumar, D.K.; Raghavan, S.R.; Dastidar, P. Supramolecular synthons in designing low molecular mass gelling agents: L-amino acid methyl ester cinnamate salts and their anti-solvent-induced instant gelation. Chem. Asian J., 2011, 6(4), 1038-1047.
[http://dx.doi.org/10.1002/asia.201000560] [PMID: 20967821]
[40]
Sahoo, P.; Krishna Kumar, D.; Trivedi, D.R.; Dastidar, P. An easy access to an organometallic low molecular weight gelator: A crystal engineering approach. Tetrahedron Lett., 2008, 49(19), 3052-3055.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.060]
[41]
Saha, S.; Desiraju, G.R. Acid···amide supramolecular synthon in cocrystals: from spectroscopic detection to property engineering. J. Am. Chem. Soc., 2018, 140(20), 6361-6373.
[http://dx.doi.org/10.1021/jacs.8b02435] [PMID: 29697258]
[42]
Aakeröy, C.B.; Sinha, A.S. Chapter 1: Co-crystals: Introduction and Scope. In: Co-crystals: Preparation, Characterization and Applications; , 2018; p. 1-32.
[http://dx.doi.org/10.1039/9781788012874-00001]
[43]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[44]
Sahoo, P. Hydrogen-producing photocatalyst at sunscreen for athletes in preventing and healing muscle-nerve-skin injuries. Curr. Top. Med. Chem., 2023, 23(4), 249-256.
[http://dx.doi.org/10.2174/1568026623666221216142158] [PMID: 36529921]
[45]
Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett., 2020, 12(1), 103.
[http://dx.doi.org/10.1007/s40820-020-00423-3] [PMID: 34138099]
[46]
Ngilirabanga, J.B.; Samsodien, H. Pharmaceutical co;crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. Nano Select, 2021, 2(3), 512-526.
[http://dx.doi.org/10.1002/nano.202000201]
[47]
Hu, S.; Mishra, M.K.; Sun, C.C. Twistable pharmaceutical crystal exhibiting exceptional plasticity and tabletability. Chem. Mater., 2019, 31(10), 3818-3822.
[http://dx.doi.org/10.1021/acs.chemmater.9b00441]
[48]
Kavanagh, O.N.; Croker, D.M.; Walker, G.M.; Zaworotko, M. J. Pharmaceutical cocrystals: From serendipity to design to application. Drug Discov. Today, 2019, 24(3), 796-804.
[http://dx.doi.org/10.1016/j.drudis.2018.11.023] [PMID: 30521935]
[49]
Wang, X.; Du, S.; Zhang, R.; Jia, X.; Yang, T.; Zhang, X. Drug-drug cocrystals: Opportunities and challenges. As. J. Pharm. Sci., 2021, 16(3), 307-317.
[http://dx.doi.org/10.1016/j.ajps.2020.06.004] [PMID: 34276820]
[50]
Thakuria, R.; Sarma, B. Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: a crystal engineering approach. Crystals, 2018, 8(2), 101.
[http://dx.doi.org/10.3390/cryst8020101]
[51]
Cherukuvada, S.; Kaur, R.; Guru Row, T.N. Co-crystallization and small molecule crystal form diversity: From pharmaceutical to materials applications. CrystEngComm, 2016, 18(44), 8528-8555.
[http://dx.doi.org/10.1039/C6CE01835A]
[52]
Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des., 2018, 18(10), 6370-6387. Available From: https://pubs.acs.org/doi/pdf/10.1021/acs.cgd.8b00933
[http://dx.doi.org/10.1021/acs.cgd.8b00933]
[53]
Aitipamula, S.; Banerjee, R.; Bansal, A.K.; Biradha, K.; Cheney, M.L.; Choudhury, A.R.; Desiraju, G.R.; Dikundwar, A.G.; Dubey, R.; Duggirala, N.; Ghogale, P.P.; Ghosh, S.; Goswami, P.K.; Goud, N.R.; Jetti, R.R.K.R.; Karpinski, P.; Kaushik, P.; Kumar, D.; Kumar, V.; Moulton, B.; Mukherjee, A.; Mukherjee, G.; Myerson, A.S.; Puri, V.; Ramanan, A.; Rajamannar, T.; Reddy, C.M.; Rodriguez-Hornedo, N.; Rogers, R.D.; Row, T.N.G.; Sanphui, P.; Shan, N.; Shete, G.; Singh, A.; Sun, C.C.; Swift, J.A.; Thaimattam, R.; Thakur, T.S.; Kumar Thaper, R.; Thomas, S.P.; Tothadi, S.; Vangala, V.R.; Variankaval, N.; Vishweshwar, P.; Weyna, D.R.; Zaworotko, M.J. Polymorphs, salts, and cocrystals: What’s in a name? Cryst. Growth Des., 2012, 12(5), 2147-2152.
[http://dx.doi.org/10.1021/cg3002948]
[54]
Yang, X.; Ye, W.; Qi, Y.; Ying, Y.; Xia, Z. Overcoming multidrug resistance in bacteria through antibiotics delivery in surface-engineered nano-cargos: recent developments for future nano-antibiotics. Front. Bioeng. Biotechnol., 2021, 9, 696514.
[http://dx.doi.org/10.3389/fbioe.2021.696514] [PMID: 34307323]
[55]
Sanphui, P.; Goud, N.R.; Khandavilli, U.B.R.; Nangia, A. Fast dissolving curcumin cocrystals. Cryst. Growth Des., 2011, 11(9), 4135-4145.
[http://dx.doi.org/10.1021/cg200704s]
[56]
Friščić T.; Jones, W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst. Growth Des., 2009, 9(3), 1621-1637.
[http://dx.doi.org/10.1021/cg800764n]
[57]
Cheney, M.L.; Weyna, D.R.; Shan, N.; Hanna, M.; Wojtas, L.; Zaworotko, M.J. Coformer selection in pharmaceutical cocrystal development: A case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J. Pharm. Sci., 2011, 100(6), 2172-2181.
[http://dx.doi.org/10.1002/jps.22434] [PMID: 21491441]
[58]
Chadha, R.; Saini, A.; Arora, P.; Jain, D.S.; Dasgupta, A.; Guru Row, T.N. Multicomponent solids of lamotrigine with some selected coformers and their characterization by thermoanalytical, spectroscopic and X-ray diffraction methods. CrystEngComm, 2011, 13(20), 6271-6284.
[http://dx.doi.org/10.1039/c1ce05458a]
[59]
Luszczki, J.J.; Czuczwar, M.; Kis, J.; Krysa, J.; Pasztelan, I.; Swiader, M.; Czuczwar, S.J. Interactions of lamotrigine with topiramate and first-generation antiepileptic drugs in the maximal electroshock test in mice: An isobolographic analysis. Epilepsia, 2003, 44(8), 1003-1013.
[http://dx.doi.org/10.1046/j.1528-1157.2003.10003.x] [PMID: 12887431]
[60]
Thipparaboina, R.; Kumar, D.; Chavan, R.B.; Shastri, N.R. Multidrug co-crystals: Towards the development of effective therapeutic hybrids. Drug Discov. Today, 2016, 21(3), 481-490.
[http://dx.doi.org/10.1016/j.drudis.2016.02.001] [PMID: 26869329]
[61]
Kaur, R.; Cavanagh, K.L.; Rodríguez-Hornedo, N.; Matzger, A.J. Multidrug cocrystal of anticonvulsants: influence of strong intermolecular interactions on physiochemical properties. Cryst. Growth Des., 2017, 17(10), 5012-5016.
[http://dx.doi.org/10.1021/acs.cgd.7b00741] [PMID: 31537980]
[62]
Sharma, A.; De Rosa, M.; Singla, N.; Singh, G.; Barnwal, R.P.; Pandey, A. Tuberculosis: an overview of the immunogenic response, disease progression, and medicinal chemistry efforts in the last decade toward the development of potential drugs for extensively drug-resistant tuberculosis strains. J. Med. Chem., 2021, 64(8), 4359-4395.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01833] [PMID: 33826327]
[63]
Grzelak, E.M.; Choules, M.P.; Gao, W.; Cai, G.; Wan, B.; Wang, Y.; McAlpine, J.B.; Cheng, J.; Jin, Y.; Lee, H.; Suh, J.W.; Pauli, G.F.; Franzblau, S.G.; Jaki, B.U.; Cho, S. Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening. J. Antibiot., 2019, 72(10), 719-728.
[http://dx.doi.org/10.1038/s41429-019-0205-9] [PMID: 31292530]
[64]
(a) MacVane, S.H. Antimicrobial resistance in the intensive care unit. J. Intensive Care Med., 2017, 32(1), 25-37.
[http://dx.doi.org/10.1177/0885066615619895] [PMID: 26772199];
(b) Sader, H.S.; Castanheira, M.; Flamm, R.K. Antimicrobial activity of ceftazidime-avibactam against gram-negative bacteria isolated from patients hospitalized with pneumonia in U.S. medical centers, 2011 to 2015. Antimicrob. Agents Chemother., 2017, 61(4), e02083-16.
[http://dx.doi.org/10.1128/AAC.02083-16] [PMID: 28069649 ]
[65]
Morris, S.; Cerceo, E. Trends, epidemiology, and management of multi-drug resistant gram-negative bacterial infections in the hospitalized setting. Antibiotics, 2020, 9(4), 196.
[http://dx.doi.org/10.3390/antibiotics9040196] [PMID: 32326058]
[66]
Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; Gin, A.S.; Hoban, D.J.; Lynch, J.P., III; Karlowsky, J.A. Imipenem-relebactam and meropenem-vaborbac-tam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs, 2018, 78(1), 65-98.
[http://dx.doi.org/10.1007/s40265-017-0851-9] [PMID: 29230684]
[67]
Phillips, P.P.J.; Dooley, K.E.; Gillespie, S.H.; Heinrich, N.; Stout, J.E.; Nahid, P.; Diacon, A.H.; Aarnoutse, R.E.; Kibiki, G.S.; Boeree, M.J.; Hoelscher, M. A new trial design to accelerate tuberculosis drug development: The Phase IIC Selection Trial with Extended Post-treatment follow-up (STEP). BMC Med., 2016, 14(1), 51.
[http://dx.doi.org/10.1186/s12916-016-0597-3] [PMID: 27004726]
[68]
Davies, G.R.; Phillips, P.P.J.; Jaki, T. Adaptive clinical trials in tuberculosis: Applications, challenges and solutions. Int. J. Tuberc. Lung Dis., 2015, 19(6), 626-634.
[http://dx.doi.org/10.5588/ijtld.14.0988] [PMID: 25946350]
[69]
Lienhardt, C.; Vernon, A.A.; Cavaleri, M.; Nambiar, S.; Nahid, P. Development of new TB regimens: Harmonizing trial design, product registration requirements, and public health guidance. PLoS Med., 2019, 16(9), e1002915.
[http://dx.doi.org/10.1371/journal.pmed.1002915] [PMID: 31490921]
[70]
J. , Libardo M.D.;Boshoff, H.I.M.; Barry, C.E., III The present state of the tuberculosis drug development pipeline. Curr. Opin. Pharmacol., 2018, 42, 81-94.
[http://dx.doi.org/10.1016/j.coph.2018.08.001] [PMID: 30144650]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy