Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natural Products as Antifungal Agents against Invasive Fungi

Author(s): Fang-Rui Dong, Lu Gao, Liang Wang, Yuan-Ying Jiang* and Yong-Sheng Jin*

Volume 23, Issue 19, 2023

Published on: 19 May, 2023

Page: [1859 - 1917] Pages: 59

DOI: 10.2174/1568026623666230417105227

Price: $65

Abstract

Background: Invasive fungal infections (IFIs) are primarily caused by Candida spp., Cryptococcus neoformans, Aspergillus spp., Mucor spp., Sporothrix spp., and Pneumocystis spp., which attack human organs with a strong pathogenicity and exhibit drug resistance against commonly used chemical drugs. Therefore, the search for alternative drugs with high efficacy, low resistance rates, few side effects, and synergistic antifungal effects remains a major challenge. The characteristics of natural products with structural and bioactive diversity, lower drug resistance, and rich resources make them a major focus of the development of antifungal drugs.

Objectives: This review attempts to summarize the origin, structure, and antifungal activity of natural products and their derivatives with MIC ≤ 20 μg/mL or 100 μM, focusing on their MoA and SAR.

Methods: All pertinent literature databases were searched. The search keywords were antifungal or antifungals, terpenoids, steroidal saponins, alkaloid, phenols, lignans, flavonoids, quinones, macrolide, peptide, tetramic acid glycoside, polyene, polyketide, bithiazole, natural product, and derivatives. All the related literature (covering the past 20 years, 2001-2022) was evaluated.

Results: In total, 340 natural products and 34 synthesized derivatives with antifungal activity from 301 studies were included in this review. These compounds were derived from terrestrial plants, ocean life, and microorganisms and exhibited in vitro and in vivo potent antifungal activity alone or in combination. The MoA and SARs of reported compounds were summarized whenever applicable.

Conclusion: In this review, we attempted to review the available literature on natural antifungal products and their derivatives. Most of the studied compounds showed potent activity against Candida species, Aspergillus species, or Cryptococcus species. Some of the studied compounds also demonstrated the ability to impair the cell membrane and cell wall, inhibit hypha and biofilms, and cause mitochondrial dysfunction. Although the MoAs of these compounds are not well understood yet, they can be used as lead components for the development of new, effective, and safe antifungal agents through their novel mechanisms.

« Previous
Graphical Abstract

[1]
Fairlamb, A.H.; Gow, N.A.; Matthews, K.R.; Waters, A.P. Stop neglecting fungi. Nat. Microbiol., 2017, 2(8), 17120.
[http://dx.doi.org/10.1038/nmicrobiol.2017.120] [PMID: 28741610]
[2]
Denning, D.W.; Bromley, M.J. How to bolster the antifungal pipeline. Science, 2015, 347(6229), 1414-1416.
[http://dx.doi.org/10.1126/science.aaa6097] [PMID: 25814567]
[3]
Liao, Y.; Chen, M.; Hartmann, T.; Yang, R.Y.; Liao, W.Q. Epidemiology of opportunistic invasive fungal infections in China: Review of literature. Chin. Med. J., 2013, 126(2), 361-368.
[PMID: 23324290]
[4]
Pianalto, K.; Alspaugh, J. New Horizons in Antifungal Therapy. J. Fungi, 2016, 2(4), 26.
[http://dx.doi.org/10.3390/jof2040026] [PMID: 29376943]
[5]
Tian, H.; Qu, S.; Wang, Y.; Lu, Z.; Zhang, M.; Gan, Y.; Zhang, P.; Tian, J. Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans. Appl. Microbiol. Biotechnol., 2017, 101(8), 3335-3345.
[http://dx.doi.org/10.1007/s00253-017-8146-3] [PMID: 28224196]
[6]
Belanger, J.T. Perillyl alcohol: Applications in oncology. Altern. Med. Rev., 1998, 3(6), 448-457.
[PMID: 9855569]
[7]
Food Additives Permitted For Direct Addition To Food For Human Consumption; US Food and Drug Administration: USA, 2022, p. 172.
[8]
Singh, D.; Sharma, U.; Kumar, P.; Gupta, Y.K.; Dobhal, M.P.; Singh, S. Antifungal activity of plumericin and isoplumericin. Nat. Prod. Commun., 2011, 6(11), 1934578X1100601.
[http://dx.doi.org/10.1177/1934578X1100601101] [PMID: 22224260]
[9]
Kamatou, G.P.P.; Viljoen, A.M. A Review of the Application and Pharmacological Properties of α ‐Bisabolol and α ‐Bisabolol‐. Rich Oils. J. Am. Oil Chem. Soc., 2010, 87(1), 1-7.
[http://dx.doi.org/10.1007/s11746-009-1483-3] [PMID: 21350591]
[10]
Jahanshiri, Z. Shams-Ghahfarokhi, M.; Asghari-Paskiabi, F.; Saghiri, R.; Razzaghi-Abyaneh, M. α-Bisabolol inhibits Aspergillus fumigatus Af239 growth via affecting microsomal ∆24-sterol methyltransferase as a crucial enzyme in ergosterol biosynthesis pathway. World J. Microbiol. Biotechnol., 2017, 33(3), 55.
[http://dx.doi.org/10.1007/s11274-017-2214-9] [PMID: 28224386]
[11]
Wang, H.; Wang, Y.; Liu, P.; Wang, W.; Fan, Y.; Zhu, W. Purpurides B and C, two new sesquiterpene esters from the aciduric fungus Penicillium purpurogenum JS03-21. Chem. Biodivers., 2013, 10(7), 1185-1192.
[http://dx.doi.org/10.1002/cbdv.201200175] [PMID: 23847064]
[12]
Yu, X.Q.; He, W.F.; Liu, D.Q.; Feng, M.T.; Fang, Y.; Wang, B.; Feng, L.H.; Guo, Y.W.; Mao, S.C. A seco -laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry, 2014, 103, 162-170.
[http://dx.doi.org/10.1016/j.phytochem.2014.03.021] [PMID: 24731260]
[13]
Li, S.; Shi, H.; Chang, W.; Li, Y.; Zhang, M.; Qiao, Y.; Lou, H. Eudesmane sesquiterpenes from Chinese liverwort are substrates of Cdrs and display antifungal activity by targeting Erg6 and Erg11 of Candida albicans. Bioorg. Med. Chem., 2017, 25(20), 5764-5771.
[http://dx.doi.org/10.1016/j.bmc.2017.09.001] [PMID: 28935182]
[14]
Qiao, Y.N.; Jin, X.Y.; Zhou, J.C.; Zhang, J.Z.; Chang, W.Q.; Li, Y.; Chen, W.; Ren, Z.J.; Zhang, C.Y.; Yuan, S.Z.; Lou, H.X. Terpenoids from the liverwort Plagiochila fruticosa and their antivirulence activity against Candida albicans. J. Nat. Prod., 2020, 83(6), 1766-1777.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00895] [PMID: 32479076]
[15]
Alarif, W.M.; Al-Footy, K.O.; Zubair, M.S.; Halid, P.H.M.; Ghandourah, M.A.; Basaif, S.A.; Al-Lihaibi, S.S.; Ayyad, S.E.N.; Badria, F.A. The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal–antitumour agents. Nat. Prod. Res., 2016, 30(10), 1150-1155.
[http://dx.doi.org/10.1080/14786419.2015.1046378] [PMID: 26181888]
[16]
Lin, J.; Wang, R.; Xu, G.; Ding, Z.; Zhu, X.; Liu, X.; Zou, J.; Chen, G.; Li, L.; Liu, L. New cadinane sesquiterpenoids from the basidiomycetous fungus Pholiota sp. RSC Advances, 2016, 6(113), 112527-112533.
[http://dx.doi.org/10.1039/C6RA22448B]
[17]
Perveen, S.; Alqahtani, J.; Orfali, R.; Aati, H.Y.; Al-Taweel, A.M.; Ibrahim, T.A.; Khan, A.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Taglialatela-Scafati, O. Antibacterial and antifungal sesquiterpenoids from aerial parts of Anvillea garcinii. Molecules, 2020, 25(7), 1730.
[http://dx.doi.org/10.3390/molecules25071730] [PMID: 32283756]
[18]
Rukachaisirikul, V.; Chinpha, S.; Phongpaichit, S.; Saikhwan, N.; Sakayaroj, J.; Preedanon, S. Sesquiterpene and monoterpene derivatives from the soil-derived fungus Trichoderma reesei PSU-SPSF013. Phytochem. Lett., 2019, 30, 124-129.
[http://dx.doi.org/10.1016/j.phytol.2019.01.023]
[19]
Yamazaki, H.; Yagi, A.; Takahashi, O.; Yamaguchi, Y.; Saito, A.; Namikoshi, M.; Uchida, R. Antifungal trichothecene sesquiterpenes obtained from the culture broth of marine-derived Trichoderma cf. brevicompactum and their structure-activity relationship. Bioorg. Med. Chem. Lett., 2020, 30(17), 127375.
[http://dx.doi.org/10.1016/j.bmcl.2020.127375] [PMID: 32739000]
[20]
Xu, Y.J.; Tang, C.P.; Ke, C.Q.; Zhang, J.B.; Weiss, H.C.; Gesing, E.R.; Ye, Y. Mono- and Di-sesquiterpenoids from Chloranthus spicatus. J. Nat. Prod., 2007, 70(12), 1987-1990.
[http://dx.doi.org/10.1021/np070433g] [PMID: 18044839]
[21]
Ravu, R.R.; Jacob, M.R.; Jeffries, C.; Tu, Y.; Khan, S.I.; Agarwal, A.K.; Guy, R.K.; Walker, L.A.; Clark, A.M.; Li, X.C. LC-MS- and 1 H NMR spectroscopy-guided identification of antifungal diterpenoids from Sagittaria latifolia. J. Nat. Prod., 2015, 78(9), 2255-2259.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00470] [PMID: 26371504]
[22]
Lee, S.H.; Jeon, J.; Ahn, C.H.; Chung, S.C.; Shin, J.; Oh, K.B. Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp. Appl. Microbiol. Biotechnol., 2013, 97(7), 3141-3148.
[http://dx.doi.org/10.1007/s00253-012-4549-3] [PMID: 23229567]
[23]
Bhattacharya, A.K.; Chand, H.R.; John, J.; Deshpande, M.V. Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula. Eur. J. Med. Chem., 2015, 94, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.054] [PMID: 25747495]
[24]
Guo, N.; Ling, G.; Liang, X.; Jin, J.; Fan, J.; Qiu, J.; Song, Y.; Huang, N.; Wu, X.; Wang, X.; Deng, X.; Deng, X.; Yu, L. In vitro synergy of pseudolaric acid B and fluconazole against clinical isolates of Candida albicans. Mycoses, 2011, 54(5), e400-e406.
[http://dx.doi.org/10.1111/j.1439-0507.2010.01935.x] [PMID: 21910756]
[25]
Pu, D.; Li, X.; Lin, J.; Zhang, R.; Luo, T.; Wang, Y.; Gao, J.; Zeb, M.A.; Zhang, X.; Li, X.; Wang, R.; Xiao, W. Triterpenoids from Ganoderma gibbosum: A class of sensitizers of FLC-resistant Candida albicans to fluconazole. J. Nat. Prod., 2019, 82(8), 2067-2077.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00148] [PMID: 31310122]
[26]
Shai, L.J.; McGaw, L.J.; Aderogba, M.A.; Mdee, L.K.; Eloff, J.N. Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) C.A. Sm. leaves. J. Ethnopharmacol., 2008, 119(2), 238-244.
[http://dx.doi.org/10.1016/j.jep.2008.06.036] [PMID: 18662765]
[27]
Zhang, Z.; ElSohly, H.N.; Jacob, M.R.; Pasco, D.S.; Walker, L.A.; Clark, A.M. Natural products inhibiting Candida albicans secreted aspartic proteases from Lycopodium cernuum. J. Nat. Prod., 2002, 65(7), 979-985.
[http://dx.doi.org/10.1021/np0200616] [PMID: 12141856]
[28]
Harley, B.K.; Neglo, D.; Tawiah, P.; Pipim, M.A.; Mireku-Gyimah, N.A.; Tettey, C.O.; Amengor, C.D.; Fleischer, T.C.; Waikhom, S.D. Bioactive triterpenoids from Solanum torvum fruits with antifungal, resistance modulatory and anti-biofilm formation activities against fluconazole-resistant candida albicans strains. PLoS One, 2021, 16(12), e0260956.
[http://dx.doi.org/10.1371/journal.pone.0260956] [PMID: 34962953]
[29]
Amoussa, A.M.O.; Lagnika, L.; Bourjot, M.; Vonthron-Senecheau, C.; Sanni, A. Triterpenoids from Acacia ataxacantha DC: Antimicrobial and antioxidant activities. BMC Complement. Altern. Med., 2016, 16, 284-281.
[http://dx.doi.org/10.1186/s12906-016-1266-y]
[30]
Njateng, G.S.S.; Du, Z.; Gatsing, D.; Donfack, A.R.N.; Talla, M.F.; Wabo, H.K.; Tane, P.; Mouokeu, R.S.; Luo, X.; Kuiate, J-R. Antifungal properties of a new terpernoid saponin and other compounds from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement. Altern. Med., 2015, 15, 25-21.
[31]
Iqbal, M.; Bilal, M.; Iqbal, R.; Akram, M.; Baloch, I.B.; Baloch, M.K. New bioactive oleanane type compounds from Coriandrum sativum Linn. J. Chem., 2014, 2014, 396436.
[32]
Ngankeu Pagning, A.L.; Tamokou, J.D.; Lateef, M.; Tapondjou, L.A.; Kuiate, J.R.; Ngnokam, D.; Ali, M.S. New triterpene and new flavone glucoside from Rhynchospora corymbosa (Cyperaceae) with their antimicrobial, tyrosinase and butyrylcholinesterase inhibitory activities. Phytochem. Lett., 2016, 16, 121-128.
[http://dx.doi.org/10.1016/j.phytol.2016.03.011]
[33]
Polatoglu, K.; Gören, N. Ulubelenolide: A New triterpene lactone from Tanacetum chiliophyllum (Fisch. & Mey.) var. monocephalum Grierson. Rec. Nat. Prod., 2015, 9, 3-2015.
[34]
Polatoğlu, K.; Yücel, Y.Y.; Nalbantsoy, A.; Yalçin, H.T.; Gören, N. Cytotoxic, antimicrobial activities, AChE and BChE inhibitory effects of compounds from Tanacetum chiliophyllum (Fisch. & Mey.) Schultz Bip. var. oligocephalum (D.C.) Sosn. and T. chiliophyllum (Fisch. & Mey.) Schultz Bip. var. monocephalum Grierson. Phytochem. Lett., 2017, 22, 199-204.
[http://dx.doi.org/10.1016/j.phytol.2017.10.011]
[35]
Seo, W.D.; Lee, D.Y.; Park, K.H.; Kim, J.H. Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids. J. Appl. Biol. Chem., 2016, 59(4), 281-284.
[http://dx.doi.org/10.3839/jabc.2016.048]
[36]
Hu, Q.; Chen, Y.Y.; Jiao, Q.Y.; Khan, A.; Li, F.; Han, D.F.; Cao, G.D.; Lou, H.X. Triterpenoid saponins from the pulp of Sapindus mukorossi and their antifungal activities. Phytochemistry, 2018, 147, 1-8.
[http://dx.doi.org/10.1016/j.phytochem.2017.12.004] [PMID: 29257999]
[37]
Vediyappan, G.; Dumontet, V.; Pelissier, F.; d’Enfert, C. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One, 2013, 8(9), e74189.
[http://dx.doi.org/10.1371/journal.pone.0074189] [PMID: 24040201]
[38]
Wang, Z.; Zhang, H.; Yuan, W.; Gong, W.; Tang, H.; Liu, B.; Krohn, K.; Li, L.; Yi, Y.; Zhang, W. Antifungal nortriterpene and triterpene glycosides from the sea cucumber Apostichopus japonicus Selenka. Food Chem., 2012, 132(1), 295-300.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.080] [PMID: 26434293]
[39]
Sun, L.; Sun, S.; Cheng, A.; Wu, X.; Zhang, Y.; Lou, H. In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Candida albicans. Antimicrob. Agents Chemother., 2009, 53(4), 1586-1591.
[http://dx.doi.org/10.1128/AAC.00940-08] [PMID: 19171796]
[40]
Chang, W.Q.; Wu, X.Z.; Cheng, A.X.; Zhang, L.; Ji, M.; Lou, H.X. Retigeric acid B exerts antifungal effect through enhanced reactive oxygen species and decreased cAMP. BBA - Gen Subjects, 2011, 1810(5), 569-576.
[41]
Sun, L.M.; Cheng, A.X.; Wu, X.Z.; Zhang, H.J.; Lou, H.X. Synergistic mechanisms of retigeric acid B and azoles against Candida albicans. J. Appl. Microbiol., 2010, 108(1), 341-348.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04429.x] [PMID: 20002912]
[42]
Chang, W.; Li, Y.; Zhang, L.; Cheng, A.; Liu, Y.; Lou, H. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans. Biol. Pharm. Bull., 2012, 35(10), 1794-1801.
[http://dx.doi.org/10.1248/bpb.b12-00511] [PMID: 22863995]
[43]
Xu, W.; Tan, J.; Mu, Y.; Zheng, D.; Huang, X.; Li, L. New antimicrobial terpenoids and phloroglucinol glucosides from Syzygium szemaoense. Bioorg. Chem., 2020, 103, 104242.
[http://dx.doi.org/10.1016/j.bioorg.2020.104242] [PMID: 32916541]
[44]
Zhang, D.; Fu, Y.; Yang, J.; Li, X.N.; San, M.M.; Oo, T.N.; Wang, Y.; Yang, X. Triterpenoids and their glycosides from Glinus oppositifolius with antifungal activities against Microsporum gypseum and Trichophyton rubrum. Molecules, 2019, 24(12), 2206.
[http://dx.doi.org/10.3390/molecules24122206] [PMID: 31212847]
[45]
Favre-Godal, Q.; Dorsaz, S.; Marcourt, L.; Bertini, V.; Dormia, E.; Michellod, E.; Voinesco, F.; Gupta, M.; Gindro, K.; Sanglard, D.; Queiroz, E.F.; Wolfender, J-L. Identification of triterpenoids from Schefflera systyla, Odontadenia puncticulosa and Conostegia speciosa and in depth investigation of their in vitro and in vivo antifungal activities. J. Braz. Chem. Soc., 2017, 28(3S), 443-454.
[46]
Li, Y.; Shan, M.; Zhu, Y.; Yao, H.; Li, H.; Gu, B.; Zhu, Z. Kalopanaxsaponin A induces reactive oxygen species mediated mitochondrial dysfunction and cell membrane destruction in Candida albicans. PLoS One, 2020, 15(11), e0243066.
[http://dx.doi.org/10.1371/journal.pone.0243066] [PMID: 33253287]
[47]
Li, Y.; Shan, M.; Yan, M.; Yao, H.; Wang, Y.; Gu, B.; Zhu, Z.; Li, H. Anticandidal activity of kalopanaxsaponin A: Effect on proliferation, cell morphology, and key virulence attributes of candida albicans. Front. Microbiol., 2019, 10, 2844.
[http://dx.doi.org/10.3389/fmicb.2019.02844] [PMID: 31849923]
[48]
Hu, Q.; Chen, Y-Y.; Jiao, Q-Y.; Khan, A.; Li, F.; Han, D-F.; Cao, G-D.; Lou, H-X. Triterpenoid saponins from the pulp of Sapindus mukorossi and their antifungal activities. Phytochemistry, 2018, 147, 1-8.
[49]
Soberón, J.R.; Sgariglia, M.A.; Pastoriza, A.C.; Soruco, E.M.; Jäger, S.N.; Labadie, G.R.; Sampietro, D.A.; Vattuone, M.A. Antifungal activity and cytotoxicity of extracts and triterpenoid saponins obtained from the aerial parts of Anagallis arvensis L. J. Ethnopharmacol., 2017, 203, 233-240.
[http://dx.doi.org/10.1016/j.jep.2017.03.056] [PMID: 28389355]
[50]
Franiczek, R. Gleńsk, M.; Krzyżanowska, B.; Włodarczyk, M. β-Aescin at subinhibitory concentration (sub-MIC) enhances susceptibility of Candida glabrata clinical isolates to nystatin. Med. Mycol., 2015, 53(8), 845-851.
[http://dx.doi.org/10.1093/mmy/myv035] [PMID: 26092104]
[51]
Tagousop, C.N.; Tamokou, J.D.; Kengne, I.C.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with antibiotics against pathogenic phenotypes. Chem. Cent. J., 2018, 12(1), 97.
[http://dx.doi.org/10.1186/s13065-018-0466-6] [PMID: 30238231]
[52]
Sung, W.S.; Lee, I.S.; Lee, D.G. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol., 2007, 17(11), 1797-1804.
[PMID: 18092463]
[53]
Choi, H.; Lee, D.G. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie, 2015, 115, 108-115.
[http://dx.doi.org/10.1016/j.biochi.2015.05.009] [PMID: 26005097]
[54]
Zhang, J.D.; Xu, Z.; Cao, Y.B.; Chen, H.S.; Yan, L.; An, M.M.; Gao, P.H.; Wang, Y.; Jia, X.M.; Jiang, Y.Y. Antifungal activities and action mechanisms of compounds from Tribulus terrestris L. J. Ethnopharmacol., 2006, 103(1), 76-84.
[http://dx.doi.org/10.1016/j.jep.2005.07.006] [PMID: 16169173]
[55]
Zhang, J.D.; Cao, Y.B.; Xu, Z.; Sun, H.H.; An, M.M.; Yan, L.; Chen, H.S.; Gao, P.H.; Wang, Y.; Jia, X.M.; Jiang, Y.Y. in vitro and in vivo antifungal activities of the eight steroid saponins from Tribulus terrestris L. with potent activity against fluconazole-resistant fungal pathogens. Biol. Pharm. Bull., 2005, 28(12), 2211-2215.
[http://dx.doi.org/10.1248/bpb.28.2211] [PMID: 16327151]
[56]
Zhang, J.; Zheng, X.; Cao, Y.; Jun, G.; Jiang, Y. Study on regulation of ERG genes expression in Candida albicans by a new anti-fungi agent TTS-12. Chung Kuo Yao Hsueh Tsa Chih, 2011, 46(16), 1229-1234.
[57]
Inhibitory effects of Tribulus terrestris steroid saponin TTS-12 on building biofilm of Cryptococcus neoformans. Chin J Mycol, 2011, 6(6), 341-343.
[58]
Yang, C.R.; Zhang, Y.; Jacob, M.R.; Khan, S.I.; Zhang, Y.J.; Li, X.C. Antifungal activity of C-27 steroidal saponins. Antimicrob. Agents Chemother., 2006, 50(5), 1710-1714.
[http://dx.doi.org/10.1128/AAC.50.5.1710-1714.2006] [PMID: 16641439]
[59]
Wang, M.Y.; Peng, Y.; Peng, C.S.; Qu, J.Y.; Li, X.B. The bioassay-guided isolation of antifungal saponins from Hosta plantaginea leaves. J. Asian Nat. Prod. Res., 2018, 20(6), 501-509.
[http://dx.doi.org/10.1080/10286020.2017.1329304] [PMID: 28534424]
[60]
Wang, M.; Xu, Z.; Peng, Y.; Zhong, G.; Li, X. Two new steroidal saponins with antifungal activity from Hosta plantaginea Rhizomes. Chem. Nat. Compd., 2016, 52(6), 1047-1051.
[http://dx.doi.org/10.1007/s10600-016-1858-2]
[61]
Bai, H.; Li, W.; Zhao, H.; Anzai, Y.; Li, H.; Guo, H.; Kato, F.; Koike, K. Isolation and structural elucidation of novel cholestane glycosides and spirostane saponins from Polygonatum odoratum. Steroids, 2014, 80, 7-14.
[http://dx.doi.org/10.1016/j.steroids.2013.11.013] [PMID: 24291419]
[62]
Ribeiro, P.R.V.; Araújo, A.J.; Costa-Lotufo, L.V.; Braz-Filho, R.; Nobre, H.V., Junior; da Silva, C.R.; Neto, J.B.A.; Silveira, E.R.; Lima, M.A.S. Spirostanol glucosides from the leaves of Cestrum laevigatum L. Steroids, 2016, 106, 35-40.
[http://dx.doi.org/10.1016/j.steroids.2015.12.006] [PMID: 26705702]
[63]
Xu, M.; Zhang, Y.J.; Li, X.C.; Jacob, M.R.; Yang, C.R. Steroidal saponins from fresh stems of Dracaena angustifolia. J. Nat. Prod., 2010, 73(9), 1524-1528.
[http://dx.doi.org/10.1021/np100351p] [PMID: 20718450]
[64]
Renault, S.; De Lucca, A.J.; Boue, S.; Bland, J.M.; Vigo, C.B.; Selitrennikoff, C.P. CAY-I, a novel antifungal compound from cayenne pepper. Med. Mycol., 2003, 41(1), 75-82.
[http://dx.doi.org/10.1080/mmy.41.1.75.82] [PMID: 12627807]
[65]
Stergiopoulou, T.; De Lucca, A.J.; Meletiadis, J.; Sein, T.; Boue, S.M.; Schaufele, R.; Roilides, E.; Ghannoum, M.; Walsh, T.J. in vitro activity of CAY-1, a saponin from Capsicum frutescens, against Microsporum and Trichophyton species. Med. Mycol., 2008, 46(8), 805-810.
[http://dx.doi.org/10.1080/13693780802089831] [PMID: 18608885]
[66]
De Lucca, A.J.; Bland, J.M.; Boue, S.; Vigo, C.B.; Cleveland, T.E.; Walsh, T.J. Synergism of CAY-1 with amphotericin B and itraconazole. Chemotherapy, 2006, 52(6), 285-287.
[http://dx.doi.org/10.1159/000095959] [PMID: 17008779]
[67]
Lucca, A.J.; Bland, J.M.; Vigo, C.B.; Cushion, M.; Selitrennikoff, C.P.; Peter, J.; Walsh, T.J. CAY-1, a fungicidal saponin from Capsicum sp. fruit. Med. Mycol., 2002, 40(2), 131-137.
[http://dx.doi.org/10.1080/mmy.40.2.131.137] [PMID: 12058725]
[68]
Bedir, E.; Khan, I.A.; Walker, L.A. Biologically active steroidal glycosides from Tribulus terrestris. Pharmazie, 2002, 57(7), 491-493.
[PMID: 12168535]
[69]
Shafiq-ur-Rahman. Ismail, M.; Shah, M.R.; Adhikari, A.; Anis, I.; Ahmad, M.S.; Khurram, M. Govanoside A, a new steroidal saponin from rhizomes of Trillium govanianum. Steroids, 2015, 104, 270-275.
[http://dx.doi.org/10.1016/j.steroids.2015.10.013]
[70]
Zhang, Y.; Zhang, Y.J.; Jacob, M.R.; Li, X.C.; Yang, C.R. Steroidal saponins from the stem of Yucca elephantipes. Phytochemistry, 2008, 69(1), 264-270.
[http://dx.doi.org/10.1016/j.phytochem.2007.06.015] [PMID: 17675194]
[71]
Favel, A.; Kemertelidze, E.; Benidze, M.; Fallague, K.; Regli, P. Antifungal activity of steroidal glycosides fromYucca gloriosa L. Phytother. Res., 2005, 19(2), 158-161.
[http://dx.doi.org/10.1002/ptr.1644] [PMID: 15852482]
[72]
da Silva, A.R.; de Andrade Neto, J.B.; da Silva, C.R.; Campos, R.S.; Costa Silva, R.A.; Freitas, D.D.; do Nascimento, F.B.S.A.; de Andrade, L.N.D.; Sampaio, L.S.; Grangeiro, T.B.; Magalhães, H.I.F.; Cavalcanti, B.C.; de Moraes, M.O.; Nobre Júnior, H.V. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: Action mechanism evaluated by flow cytometry and biofilm growth inhibition in candida spp. Antimicrob. Agents Chemother., 2016, 60(6), 3551-3557.
[http://dx.doi.org/10.1128/AAC.01846-15] [PMID: 27021328]
[73]
Dhamgaye, S.; Devaux, F.; Vandeputte, P.; Khandelwal, N.K.; Sanglard, D.; Mukhopadhyay, G.; Prasad, R. Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. PLoS One, 2014, 9(8), e104554.
[http://dx.doi.org/10.1371/journal.pone.0104554] [PMID: 25105295]
[74]
Zhao, T.; Zhang, K.; Shi, G.; Ma, K.; Wang, B.; Shao, J.; Wang, T.; Wang, C. Berberine inhibits the adhesion of Candida albicans to vaginal epithelial cells. Front. Pharmacol., 2022, 13, 814883.
[http://dx.doi.org/10.3389/fphar.2022.814883] [PMID: 35295335]
[75]
Zorić N.; Kosalec, I.; Tomić S.; Bobnjarić I.; Jug, M.; Vlainić T.; Vlainić J. Membrane of Candida albicans as a target of berberine. BMC Complement. Altern. Med., 2017, 17(1), 268.
[http://dx.doi.org/10.1186/s12906-017-1773-5] [PMID: 28514949]
[76]
Zhu, S.; Yan, L.; Zhang, Y.; Jiang, Z.; Gao, P.; Qiu, Y.; Wang, L.; Zhao, M.; Ni, T.; Cai, Z.; Tian, S.; Zang, C.; Zhang, D.; Jiang, Y. Berberine inhibits fluphenazine-induced up-regulation of CDR1 in Candida albicans. Biol. Pharm. Bull., 2014, 37(2), 268-273.
[http://dx.doi.org/10.1248/bpb.b13-00734] [PMID: 24492724]
[77]
Lei, G.; Dan, H.; Jinhua, L.; Wei, Y.; Song, G.; Li, W. Berberine and itraconazole are not synergistic in vitro against Aspergillus fumigatus isolated from clinical patients. Molecules, 2011, 16(11), 9218-9233.
[http://dx.doi.org/10.3390/molecules16119218] [PMID: 22051933]
[78]
Li, D.D.; Xu, Y.; Zhang, D.Z.; Quan, H.; Mylonakis, E.; Hu, D.D.; Li, M.B.; Zhao, L.X.; Zhu, L.H.; Wang, Y.; Jiang, Y.Y. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob. Agents Chemother., 2013, 57(12), 6016-6027.
[http://dx.doi.org/10.1128/AAC.00499-13] [PMID: 24060867]
[79]
Xu, Y.; Quan, H.; Wang, Y.; Zhong, H.; Sun, J.; Xu, J.; Jia, N.; Jiang, Y. Requirement for ergosterol in berberine tolerance underlies synergism of fluconazole and berberine against fluconazole-resistant Candida albicans isolates. Front. Cell. Infect. Microbiol., 2017, 7, 491.
[http://dx.doi.org/10.3389/fcimb.2017.00491] [PMID: 29238700]
[80]
Yang, Z.; Wang, Q.; Ma, K.; Shi, P.; Liu, W.; Huang, Z. Fluconazole inhibits cellular ergosterol synthesis to confer synergism with berberine against yeast cells. J. Glob. Antimicrob. Resist., 2018, 13, 125-130.
[http://dx.doi.org/10.1016/j.jgar.2017.12.011] [PMID: 29287714]
[81]
Wei, G.X.; Xu, X.; Wu, C.D. In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Arch. Oral Biol., 2011, 56(6), 565-572.
[http://dx.doi.org/10.1016/j.archoralbio.2010.11.021] [PMID: 21272859]
[82]
Han, Y.; Lee, J.H. Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol. Pharm. Bull., 2005, 28(3), 541-544.
[http://dx.doi.org/10.1248/bpb.28.541] [PMID: 15744087]
[83]
Shi, G.; Shao, J.; Wang, T.; Wu, D.; Wang, C. Mechanism of berberine-mediated fluconazole-susceptibility enhancement in clinical fluconazole-resistant Candida tropicalis isolates. Biomed. Pharmacother., 2017, 93, 709-712.
[http://dx.doi.org/10.1016/j.biopha.2017.06.106] [PMID: 28700974]
[84]
Shao, J.; Shi, G.; Wang, T.; Wu, D.; Wang, C. Antiproliferation of berberine in combination with fluconazole from the Perspectives of Reactive Oxygen Species, Ergosterol and Drug Efflux in a Fluconazole-Resistant Candida tropicalis isolate. Front. Microbiol., 2016, 7(e93698), 1516.
[http://dx.doi.org/10.3389/fmicb.2016.01516] [PMID: 27721812]
[85]
Zhong, H.; Hu, D.D.; Hu, G.H.; Su, J.; Bi, S.; Zhang, Z.E.; Wang, Z.; Zhang, R.L.; Xu, Z.; Jiang, Y.Y.; Wang, Y. Activity of sanguinarine against candida albicans biofilms. Antimicrob. Agents Chemother., 2017, 61(5), e02259-e16.
[http://dx.doi.org/10.1128/AAC.02259-16] [PMID: 28223387]
[86]
Watamoto, T.; Egusa, H.; Sawase, T.; Yatani, H. Screening of pharmacologically active small molecule compounds identifies antifungal agents against candida biofilms. Front. Microbiol., 2015, 6, 1453.
[http://dx.doi.org/10.3389/fmicb.2015.01453] [PMID: 26733987]
[87]
Meng, F.; Zuo, G.; Hao, X.; Wang, G.; Xiao, H.; Zhang, J.; Xu, G. Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates. J. Ethnopharmacol., 2009, 125(3), 494-496.
[http://dx.doi.org/10.1016/j.jep.2009.07.029] [PMID: 19647059]
[88]
Muhammad, I.; Dunbar, D.C.; Takamatsu, S.; Walker, L.A.; Clark, A.M. Antimalarial, cytotoxic, and antifungal alkaloids from Duguetia hadrantha. J. Nat. Prod., 2001, 64(5), 559-562.
[http://dx.doi.org/10.1021/np000436s] [PMID: 11374943]
[89]
Agarwal, A.K.; Xu, T.; Jacob, M.R.; Feng, Q.; Lorenz, M.C.; Walker, L.A.; Clark, A.M. Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. Eukaryot. Cell, 2008, 7(2), 387-400.
[http://dx.doi.org/10.1128/EC.00323-07] [PMID: 18156292]
[90]
Liu, S.C.; Oguntimein, B.; Hufford, C.D.; Clark, A.M. 3-Methoxysampangine, a novel antifungal copyrine alkaloid from Cleistopholis patens. Antimicrob. Agents Chemother., 1990, 34(4), 529-533.
[http://dx.doi.org/10.1128/AAC.34.4.529] [PMID: 2188584]
[91]
Hufford, C.D.; Funderburk, M.J.; Morgan, J.M.; Robertson, L.W. Two antimicrobial alkaloids from heartwood of Liriodendron tulipifera L. J. Pharm. Sci., 1975, 64(5), 789-792.
[http://dx.doi.org/10.1002/jps.2600640512] [PMID: 807704]
[92]
Hufford, C.D.; Sharma, A.S.; Oguntimein, B.O. Antibacterial and antifungal activity of liriodenine and related oxoaporphine alkaloids. J. Pharm. Sci., 1980, 69(10), 1180-1183.
[http://dx.doi.org/10.1002/jps.2600691016] [PMID: 7420287]
[93]
Clark, A.M.; Watson, E.S.; Ashfaq, M.K.; Hufford, C.D. In vivo efficacy of antifungal oxoaporphine alkaloids in experimental disseminated candidiasis. Pharm. Res., 1987, 4(6), 495-498.
[http://dx.doi.org/10.1023/A:1016479622383] [PMID: 3508563]
[94]
Zhang, Z.; ElSohly, H.N.; Jacob, M.R.; Pasco, D.S.; Walker, L.A.; Clark, A.M. New sesquiterpenoids from the root of Guatteria multivenia. J. Nat. Prod., 2002, 65(6), 856-859.
[http://dx.doi.org/10.1021/np0200717] [PMID: 12088427]
[95]
Tripathi, S.K.; Xu, T.; Feng, Q.; Avula, B.; Shi, X.; Pan, X.; Mask, M.M.; Baerson, S.R.; Jacob, M.R.; Ravu, R.R.; Khan, S.I.; Li, X.C.; Khan, I.A.; Clark, A.M.; Agarwal, A.K. Two plant-derived aporphinoid alkaloids exert their antifungal activity by disrupting mitochondrial iron-sulfur cluster biosynthesis. J. Biol. Chem., 2017, 292(40), 16578-16593.
[http://dx.doi.org/10.1074/jbc.M117.781773] [PMID: 28821607]
[96]
Gazoni, V.F.; Balogun, S.O.; Arunachalam, K.; Oliveira, D.M.; Filho, V.C.; Lima, S.R.; Colodel, E.M.; Soares, I.M.; Ascêncio, S.D.; Martins, D.T.O. Assessment of toxicity and differential antimicrobial activity of methanol extract of rhizome of Simaba ferruginea A. St.-Hil. and its isolate canthin-6-one. J. Ethnopharmacol., 2018, 223, 122-134.
[http://dx.doi.org/10.1016/j.jep.2018.05.014] [PMID: 29772356]
[97]
Overy, D.; Calati, K.; Kahn, J.N.; Hsu, M.J.; Martín, J.; Collado, J.; Roemer, T.; Harris, G.; Parish, C.A. Isolation and structure elucidation of parnafungins C and D, isoxazolidinone-containing antifungal natural products. Bioorg. Med. Chem. Lett., 2009, 19(4), 1224-1227.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.081] [PMID: 19147347]
[98]
Parish, C.A.; Smith, S.K.; Calati, K.; Zink, D.; Wilson, K.; Roemer, T.; Jiang, B.; Xu, D.; Bills, G.; Platas, G.; Peláez, F.; Díez, M.T.; Tsou, N.; McKeown, A.E.; Ball, R.G.; Powles, M.A.; Yeung, L.; Liberator, P.; Harris, G. Isolation and structure elucidation of parnafungins, antifungal natural products that inhibit mRNA polyadenylation. J. Am. Chem. Soc., 2008, 130(22), 7060-7066.
[http://dx.doi.org/10.1021/ja711209p] [PMID: 18461935]
[99]
Bills, G.F.; Platas, G.; Overy, D.P.; Collado, J.; Fillola, A.; Jiménez, M.R.; Martín, J.; del Val, A.G.; Vicente, F.; Tormo, J.R.; Peláez, F.; Calati, K.; Harris, G.; Parish, C.; Xu, D.; Roemer, T. Discovery of the parnafungins, antifungal metabolites that inhibit mRNA polyadenylation, from the Fusarium larvarum complex and other Hypocrealean fungi. Mycologia, 2009, 101(4), 449-472.
[http://dx.doi.org/10.3852/08-163] [PMID: 19623926]
[100]
Haga, A.; Tamoto, H.; Ishino, M.; Kimura, E.; Sugita, T.; Kinoshita, K.; Takahashi, K.; Shiro, M.; Koyama, K. Pyridone alkaloids from a marine-derived fungus, Stagonosporopsis cucurbitacearum, and their activities against azole-resistant Candida albicans. J. Nat. Prod., 2013, 76(4), 750-754.
[http://dx.doi.org/10.1021/np300876t] [PMID: 23496341]
[101]
Shibazaki, M.; Taniguchi, M.; Yokoi, T.; Nagai, K.; Watanabe, M.; Suzuki, K.; Yamamoto, T. YM-215343, a novel antifungal compound from Phoma sp. QN04621. J. Antibiot., 2004, 57(6), 379-382.
[http://dx.doi.org/10.7164/antibiotics.57.379] [PMID: 15323126]
[102]
Stout, E.P.; Yu, L.C.; Molinski, T.F. Antifungal diterpene alkaloids from the caribbean sponge agelas citrina: Unified configurational assignments of agelasidines and agelasines. Eur. J. Org. Chem., 2012, 2012(27), 5131-5135.
[http://dx.doi.org/10.1002/ejoc.201200572] [PMID: 24653665]
[103]
Chu, M.J.; Tang, X.L.; Qin, G.F.; Sun, Y.T.; Li, L.; de Voogd, N.J.; Li, P.L.; Li, G.Q. Pyrrole derivatives and diterpene alkaloids from the south china sea sponge agelas nakamurai. Chem. Biodivers., 2017, 14(7), e1600446.
[http://dx.doi.org/10.1002/cbdv.201600446] [PMID: 28222487]
[104]
Dalisay, D.S.; Saludes, J.P.; Molinski, T.F. Ptilomycalin A inhibits laccase and melanization in Cryptococcus neoformans. Bioorg. Med. Chem., 2011, 19(22), 6654-6657.
[http://dx.doi.org/10.1016/j.bmc.2011.05.041] [PMID: 21715177]
[105]
Jamison, M.T.; Molinski, T.F. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships. J. Nat. Prod., 2015, 78(3), 557-561.
[http://dx.doi.org/10.1021/np501052a] [PMID: 25738226]
[106]
Han, X.; Bao, X.F.; Wang, C.X.; Xie, J.; Song, X.J.; Dai, P.; Chen, G.D.; Hu, D.; Yao, X.S.; Gao, H.; Cladosporine, A. Cladosporine A, a new indole diterpenoid alkaloid with antimicrobial activities from Cladosporium sp. Nat. Prod. Res., 2021, 35(7), 1115-1121.
[http://dx.doi.org/10.1080/14786419.2019.1641807] [PMID: 31307232]
[107]
Kubota, T.; Nakamura, K.; Kurimoto, S.; Sakai, K.; Fromont, J.; Gonoi, T.; Kobayashi, J.; Zamamidine, D. Zamamidine D, a Manzamine Alkaloid from an Okinawan Amphimedon sp. Marine Sponge. J. Nat. Prod., 2017, 80(4), 1196-1199.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01110] [PMID: 28207259]
[108]
Shi, Y-N.; Liu, F-F.; Jacob, M.R.; Li, X-C.; Zhu, H-T.; Wang, D.; Cheng, R-R.; Yang, C-R.; Xu, M.; Zhang, Y-J. Antifungal amide alkaloids from the aerial parts of Piper flaviflorum and Piper sarmentosum. Planta Med., 2017, 83(1-02), 143-150.
[PMID: 27405106]
[109]
Yan, Y.; An, Y.; Wang, X.; Chen, Y.; Jacob, M.R.; Tekwani, B.L.; Dai, L.; Li, X.C. Synthesis and antimicrobial evaluation of fire ant venom alkaloid based 2-Methyl-6-alkyl-Δ 1,6 -piperideines. J. Nat. Prod., 2017, 80(10), 2795-2798.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00625] [PMID: 29023124]
[110]
Thakre, A.; Jadhav, V.; Kazi, R.; Shelar, A.; Patil, R.; Kharat, K.; Zore, G.; Karuppayil, S.M. Oxidative stress induced by piperine leads to apoptosis in Candida albicans. Med. Mycol., 2021, 59(4), 366-378.
[http://dx.doi.org/10.1093/mmy/myaa058] [PMID: 32658959]
[111]
Priya, A.; Pandian, S.K. Piperine impedes biofilm formation and hyphal morphogenesis of Candida albicans. Front. Microbiol., 2020, 11, 756.
[http://dx.doi.org/10.3389/fmicb.2020.00756] [PMID: 32477284]
[112]
Priya, A.; Nivetha, S.; Pandian, S.K. Synergistic interaction of piperine and thymol on attenuation of the biofilm formation, hyphal morphogenesis and phenotypic switching in candida albicans. Front. Cell. Infect. Microbiol., 2022, 11, 780545.
[http://dx.doi.org/10.3389/fcimb.2021.780545] [PMID: 35127553]
[113]
Neelofar, K.; Shreaz, S.; Rimple, B.; Muralidhar, S.; Nikhat, M.; Khan, L.A. Curcumin as a promising anticandidal of clinical interest. Can. J. Microbiol., 2011, 57(3), 204-210.
[http://dx.doi.org/10.1139/W10-117] [PMID: 21358761]
[114]
Khan, N.; Shreaz, S.; Bhatia, R.; Ahmad, S.I.; Muralidhar, S.; Manzoor, N.; Khan, L.A. Anticandidal activity of curcumin and methyl cinnamaldehyde. Fitoterapia, 2012, 83(3), 434-440.
[http://dx.doi.org/10.1016/j.fitote.2011.12.003] [PMID: 22178679]
[115]
Sharma, M.; Manoharlal, R.; Puri, N.; Prasad, R. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci. Rep., 2010, 30(6), 391-404.
[http://dx.doi.org/10.1042/BSR20090151] [PMID: 20017731]
[116]
Dovigo, L.N.; Carmello, J.C.; de Souza Costa, C.A.; Vergani, C.E.; Brunetti, I.L.; Bagnato, V.S.; Pavarina, A.C. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med. Mycol., 2013, 51(3), 243-251.
[http://dx.doi.org/10.3109/13693786.2012.714081] [PMID: 22934533]
[117]
Lee, W.; Lee, D.G. An antifungal mechanism of curcumin lies in membrane-targeted action within C andida albicans. IUBMB Life, 2014, 66(11), 780-785.
[http://dx.doi.org/10.1002/iub.1326] [PMID: 25380239]
[118]
Logan-Smith, M.J.; Lockyer, P.J.; East, J.M.; Lee, A.G. Curcumin, a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+. J. Biol. Chem., 2001, 276(50), 46905-46911.
[http://dx.doi.org/10.1074/jbc.M108778200] [PMID: 11592968]
[119]
Sharma, M.; Manoharlal, R.; Negi, A.S.; Prasad, R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res., 2010, 10(5), no.
[http://dx.doi.org/10.1111/j.1567-1364.2010.00637.x] [PMID: 20528949]
[120]
Sharma, M.; Manoharlal, R.; Shukla, S.; Puri, N.; Prasad, T.; Ambudkar, S.V.; Prasad, R. Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob. Agents Chemother., 2009, 53(8), 3256-3265.
[http://dx.doi.org/10.1128/AAC.01497-08] [PMID: 19470507]
[121]
Garcia-Gomes, A.S.; Curvelo, J.A.R.; Soares, R.M.A.; Ferreira-Pereira, A. Curcumin acts synergistically with fluconazole to sensitize a clinical isolate of Candida albicans showing a MDR phenotype. Med. Mycol., 2012, 50(1), 26-32.
[http://dx.doi.org/10.3109/13693786.2011.578156] [PMID: 21539505]
[122]
Kumar, A.; Dhamgaye, S.; Maurya, I.K.; Singh, A.; Sharma, M.; Prasad, R. Curcumin targets cell wall integrity via calcineurin-mediated signaling in Candida albicans. Antimicrob. Agents Chemother., 2014, 58(1), 167-175.
[http://dx.doi.org/10.1128/AAC.01385-13] [PMID: 24145527]
[123]
Chen, J.; He, Z.M.; Wang, F.L.; Zhang, Z.S.; Liu, X.; Zhai, D.D.; Chen, W.D. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. Eur. J. Pharmacol., 2016, 772, 33-42.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.038] [PMID: 26723514]
[124]
Hani, U.; Shivakumar, H.G.; Osmani, R.A.M.; Srivastava, A.; Kumar Varma, N.S. Development of a curcumin bioadhesive monolithic tablet for treatment of vaginal candidiasis. Iran. J. Pharm. Res., 2016, 15(1), 23-34.
[PMID: 27610145]
[125]
Fernandes, L.S.; Amorim, Y.M.; da Silva, E.L.; Silva, S.C.; Santos, A.J.A.; Peixoto, F.N.; Neves Pires, L.M.; Sakamoto, R.Y.; Horta Pinto, F.C.; Scarpa, M.V.C.; Araújo, M.G.F. Formulation, stability study and preclinical evaluation of a vaginal cream containing curcumin in a rat model of vulvovaginal candidiasis. Mycoses, 2018, 61(10), 723-730.
[http://dx.doi.org/10.1111/myc.12762] [PMID: 29517833]
[126]
Narayanan, A.V.; Banu, S. Curcumin intra-oral controlled release films for oral candidiasis: A comparative study with fluconazole, elucidation of release mechanism. Curr. Drug Ther., 2018, 13(1), 43-55.
[http://dx.doi.org/10.2174/1574885512666171006162948]
[127]
Alalwan, H.; Rajendran, R.; Lappin, D.F.; Combet, E.; Shahzad, M.; Robertson, D.; Nile, C.J.; Williams, C.; Ramage, G. The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Front. Microbiol., 2017, 8, 659.
[http://dx.doi.org/10.3389/fmicb.2017.00659] [PMID: 28473808]
[128]
da Silva, D.L.; Magalhães, T.F.F.; dos Santos, J.R.A.; de Paula, T.P.; Modolo, L.V.; de Fátima, A.; Buzanello Martins, C.V.; Santos, D.A.; de Resende-Stoianoff, M.A. Curcumin enhances the activity of fluconazole against Cryptococcus gattii -induced cryptococcosis infection in mice. J. Appl. Microbiol., 2016, 120(1), 41-48.
[http://dx.doi.org/10.1111/jam.12966] [PMID: 26442997]
[129]
Carmello, J.C.; Pavarina, A.C.; Oliveira, R.; Johansson, B. Genotoxic effect of photodynamic therapy mediated by curcumin on Candida albicans. FEMS Yeast Res., 2015, 15(4), fov018.
[http://dx.doi.org/10.1093/femsyr/fov018] [PMID: 25900893]
[130]
Hsieh, Y.H.; Zhang, J.H.; Chuang, W.C.; Yu, K.H.; Huang, X.B.; Lee, Y.C.; Lee, C.I. An in vitro study on the effect of combined treatment with photodynamic and chemical therapies on candida albicans. Int. J. Mol. Sci., 2018, 19(2), 337.
[http://dx.doi.org/10.3390/ijms19020337] [PMID: 29364155]
[131]
Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol., 2011, 49(4), 396-402.
[http://dx.doi.org/10.3109/13880209.2010.519390] [PMID: 21391841]
[132]
Lee, J.H.; Park, J.H.; Kim, Y.S.; Han, Y. Chlorogenic acid, a polyphenolic compound, treats mice with septic arthritis caused by Candida albicans. Int. Immunopharmacol., 2008, 8(12), 1681-1685.
[http://dx.doi.org/10.1016/j.intimp.2008.08.002] [PMID: 18760384]
[133]
Sung, W.S.; Lee, D.G. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl. Chem., 2010, 82(1), 219-226.
[http://dx.doi.org/10.1351/PAC-CON-09-01-08]
[134]
Hwang, J.H.; Jin, Q.; Woo, E.R.; Lee, D.G. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans. Biochimie, 2013, 95(10), 1917-1922.
[http://dx.doi.org/10.1016/j.biochi.2013.06.019] [PMID: 23816874]
[135]
Hwang, J.H.; Choi, H.; Kim, A.R.; Yun, J.W.; Yu, R.; Woo, E.R.; Lee, D.G. Hibicuslide C-induced cell death in Candida albicans involves apoptosis mechanism. J. Appl. Microbiol., 2014, 117(5), 1400-1411.
[http://dx.doi.org/10.1111/jam.12633] [PMID: 25176011]
[136]
Shang, Z.C.; Yang, M.H.; Liu, R.H.; Wang, X.B.; Kong, L.Y. New formyl phloroglucinol meroterpenoids from the leaves of eucalyptus robusta. Sci. Rep., 2016, 6(1), 39815.
[http://dx.doi.org/10.1038/srep39815] [PMID: 28004790]
[137]
Liu, R.H.; Shang, Z.C.; Li, T.X.; Yang, M.H.; Kong, L.Y. In vitro antibiofilm activity of eucarobustol e against candida albicans. Antimicrob Agents Chemother, 2017, 61(8), AAC.02707-02716.
[138]
Tian, L.W.; Xu, M.; Li, X-C.; Yang, C-R.; Zhu, H-J.; Zhang, Y-J. Eucalmaidials A and B, phloroglucinol-coupled sesquiterpenoids from the juvenile leaves of Eucalyptus maideni. RSC Advances, 2014, 4(41), 21373-21378.
[http://dx.doi.org/10.1039/C4RA01078G]
[139]
Remsberg, C.M.; Yáñez, J.A.; Ohgami, Y.; Vega-Villa, K.R.; Rimando, A.M.; Davies, N.M. Pharmacometrics of pterostilbene: Preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res., 2008, 22(2), 169-179.
[http://dx.doi.org/10.1002/ptr.2277] [PMID: 17726731]
[140]
Li, D.D.; Zhao, L.X.; Mylonakis, E.; Hu, G.H.; Zou, Y.; Huang, T.K.; Yan, L.; Wang, Y.; Jiang, Y.Y. In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrob. Agents Chemother., 2014, 58(4), 2344-2355.
[http://dx.doi.org/10.1128/AAC.01583-13] [PMID: 24514088]
[141]
Kolouchová, I. Maťátková, O.; Paldrychová, M.; Kodeš, Z.; Kvasničková, E.; Sigler, K.; Čejková, A.; Šmidrkal, J.; Demnerová, K.; Masák, J. Resveratrol, pterostilbene, and baicalein: Plant-derived anti-biofilm agents. Folia Microbiol., 2018, 63(3), 261-272.
[http://dx.doi.org/10.1007/s12223-017-0549-0] [PMID: 28971316]
[142]
Hu, D.D.; Zhang, R.L.; Zou, Y.; Zhong, H.; Zhang, E.S.; Luo, X.; Wang, Y.; Jiang, Y.Y. The structure-activity relationship of pterostilbene against Candida albicans Biofilms. Molecules, 2017, 22(3), 360.
[http://dx.doi.org/10.3390/molecules22030360] [PMID: 28264443]
[143]
Okamoto-Shibayama, K.; Sato, Y.; Azuma, T. Resveratrol impaired the morphological transition of Candida albicans under various hyphae-inducing conditions. J. Microbiol. Biotechnol., 2010, 20(5), 942-945.
[http://dx.doi.org/10.4014/jmb.0911.11014] [PMID: 20519919]
[144]
Jung, H.J.; Hwang, I.A.; Sung, W.S.; Kang, H.; Kang, B.S.; Seu, Y.B.; Lee, D.G. Fungicidal effect of resveratrol on human infectious fungi. Arch. Pharm. Res., 2005, 28(5), 557-560.
[http://dx.doi.org/10.1007/BF02977758] [PMID: 15974442]
[145]
Lee, J.; Lee, D.G. Novel antifungal mechanism of resveratrol: apoptosis inducer in Candida albicans. Curr. Microbiol., 2015, 70(3), 383-389.
[http://dx.doi.org/10.1007/s00284-014-0734-1] [PMID: 25413604]
[146]
Song, X.; Gaascht, F.; Schmidt-Dannert, C.; Salomon, C.E. Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique North American Hericium sp. fungus. Molecules, 2020, 25(4), 963.
[http://dx.doi.org/10.3390/molecules25040963] [PMID: 32093422]
[147]
Martins, G.R.; da Fonseca, T.S.; Martínez-Fructuoso, L.; Simas, R.C.; Silva, F.T.; Salimena, F.R.G.; Alviano, D.S.; Alviano, C.S.; Leitão, G.G.; Pereda-Miranda, R.; Leitão, S.G. Antifungal phenylpropanoid glycosides from Lippia rubella. J. Nat. Prod., 2019, 82(3), 566-572.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00975] [PMID: 30817148]
[148]
Funari, C.S.; Gullo, F.P.; Napolitano, A.; Carneiro, R.L.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M.; Piacente, S.; Pizza, C.; Silva, D.H.S. Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem., 2012, 135(3), 2086-2094.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.077] [PMID: 22953960]
[149]
Nzogong, R.T.; Ndjateu, F.S.T.; Ekom, S.E.; Fosso, J-A.M.; Awouafack, M.D.; Tene, M.; Tane, P.; Morita, H.; Choudhary, M.I.; Tamokou, J-D-D. Antimicrobial and antioxidant activities of triterpenoid and phenolic derivatives from two Cameroonian Melastomataceae plants: Dissotis senegambiensis and Amphiblemma monticola. BMC Complement. Altern. Med., 2018, 18, 159-151.
[150]
Brighenti, V.; Iseppi, R.; Pinzi, L.; Mincuzzi, A.; Ippolito, A.; Messi, P.; Sanzani, S.M.; Rastelli, G.; Pellati, F. Antifungal activity and DNA topoisomerase inhibition of hydrolysable tannins from Punica granatum L. Int. J. Mol. Sci., 2021, 22(8), 4175.
[http://dx.doi.org/10.3390/ijms22084175] [PMID: 33920681]
[151]
Possamai Rossatto, F.C.; Tharmalingam, N.; Escobar, I.E.; d’Azevedo, P.A.; Zimmer, K.R.; Mylonakis, E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida auris. J. Fungi, 2021, 7(9), 763.
[http://dx.doi.org/10.3390/jof7090763] [PMID: 34575801]
[152]
Madrid, A.; Espinoza, L.; González, C.; Mellado, M.; Villena, J.; Santander, R.; Silva, V.; Montenegro, I. Antifungal study of the resinous exudate and of meroterpenoids isolated from Psoralea glandulosa (Fabaceae). J. Ethnopharmacol., 2012, 144(3), 809-811.
[http://dx.doi.org/10.1016/j.jep.2012.10.027] [PMID: 23099252]
[153]
Zhang, Z.; ElSohly, H.N.; Jacob, M.R.; Pasco, D.S.; Walker, L.A.; Clark, A.M. Natural products inhibiting Candida albicans secreted aspartic proteases from Tovomita krukovii. Planta Med., 2002, 68(1), 49-54.
[http://dx.doi.org/10.1055/s-2002-20049] [PMID: 11842327]
[154]
Alishir, A.; Yu, J.S.; Park, M.; Kim, J.C.; Pang, C.; Kim, J.K.; Jang, T.S.; Jung, W.H.; Kim, K.H. Ulmusakidian, a new coumarin glycoside and antifungal phenolic compounds from the root bark of Ulmus davidiana var. japonica. Bioorg. Med. Chem. Lett., 2021, 36, 127828.
[http://dx.doi.org/10.1016/j.bmcl.2021.127828] [PMID: 33508466]
[155]
Hwang, B.; Lee, J.; Liu, Q.H.; Woo, E.R.; Lee, D.G. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii. Molecules, 2010, 15(5), 3507-3516.
[http://dx.doi.org/10.3390/molecules15053507] [PMID: 20657496]
[156]
Hwang, B.; Cho, J.; Hwang, I.; Jin, H.G.; Woo, E.R.; Lee, D.G. Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochem. Biophys. Res. Commun., 2011, 410(3), 489-493.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.004] [PMID: 21679690]
[157]
Choi, H.; Lee, J.; Chang, Y.S.; Woo, E.-R.; Lee, D.G. Isolation of (-)-olivil-9′-O-β-d-glucopyranoside from Sambucus williamsii and its antifungal effects with membrane-disruptive action. BBA - Biomembranes, 2013, 1828(8), 2002-2006.
[158]
Lee, H.; Choi, H.; Ko, H.J.; Woo, E.R.; Lee, D.G. Antifungal effect and mode of action of glochidioboside against Candida albicans membranes. Biochem. Biophys. Res. Commun., 2014, 444(1), 30-35.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.019] [PMID: 24434147]
[159]
Hwang, J.H.; Hwang, I.; Liu, Q.H.; Woo, E.R.; Lee, D.G. (+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie, 2012, 94(8), 1784-1793.
[http://dx.doi.org/10.1016/j.biochi.2012.04.010] [PMID: 22534194]
[160]
Leng, P.; Guo, X.; Yang, Y.; Lou, H. Primary study on antifungal activities and reversal of fluconazole resistance of plagiochin E. Chung Kuo Yao Hsueh Tsa Chih, 2007, 42(5), 349-352.
[161]
Wu, X.; Cheng, A.; Sun, L.; Lou, H. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans. Acta Pharmacol. Sin., 2008, 29(12), 1478-1485.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00900.x] [PMID: 19026167]
[162]
Wu, X.Z.; Chang, W.Q.; Cheng, A.X.; Sun, L.M.; Lou, H.X.; Plagiochin, E. Plagiochin E, an antifungal active macrocyclic bis(bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. Biochim. Biophys. Acta, Gen. Subj., 2010, 1800(4), 439-447.
[http://dx.doi.org/10.1016/j.bbagen.2010.01.001] [PMID: 20064588]
[163]
Wu, X.Z.; Cheng, A.X.; Sun, L.M.; Sun, S.J.; Lou, H.X.; Plagiochin, E. Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(8), 770-777.
[http://dx.doi.org/10.1016/j.bbagen.2009.05.002] [PMID: 19446008]
[164]
Park, C.; Woo, E.R.; Lee, D.G. Anti-Candida property of a lignan glycoside derived from Styrax japonica S. et Z. via membrane-active mechanisms. Mol. Cells, 2010, 29(6), 581-584.
[http://dx.doi.org/10.1007/s10059-010-0072-5] [PMID: 20496119]
[165]
Kim, M.R.; Moon, H.T.; Lee, D.G.; Woo, E.R. A new lignan glycoside from the stem bark of styrax japonica s. et Z. Arch. Pharm. Res., 2007, 30(4), 425-430.
[http://dx.doi.org/10.1007/BF02980215] [PMID: 17489357]
[166]
Park, C.; Woo, E.R.; Lee, D.G. Antifungal effect with apoptotic mechanism(s) of Styraxjaponoside C. Biochem. Biophys. Res. Commun., 2009, 390(4), 1255-1259.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.131] [PMID: 19878645]
[167]
Freixa, B.; Vila, R.; Ferro, E.A.; Adzet, T.; Cañigueral, S. Antifungal principles from Piper fulvescens. Planta Med., 2001, 67(9), 873-875.
[http://dx.doi.org/10.1055/s-2001-18838] [PMID: 11745030]
[168]
Johann, S.; Cota, B.B.; Souza-Fagundes, E.M.; Pizzolatti, M.G.; Resende, M.A.; Zani, C.L. Antifungal activities of compounds isolated from Piper abutiloides Kunth. Mycoses, 2009, 52(6), 499-506.
[http://dx.doi.org/10.1111/j.1439-0507.2008.01636.x] [PMID: 19076283]
[169]
Oufensou, S.; Scherm, B.; Pani, G.; Balmas, V.; Fabbri, D.; Dettori, M.A.; Carta, P.; Malbrán, I.; Migheli, Q.; Delogu, G. Honokiol, magnolol and its monoacetyl derivative show strong anti-fungal effect on Fusarium isolates of clinical relevance. PLoS One, 2019, 14(9), e0221249.
[http://dx.doi.org/10.1371/journal.pone.0221249] [PMID: 31483823]
[170]
Sun, L.; Liao, K.; Hang, C.; Wang, D. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One, 2017, 12(2), e0172228.
[http://dx.doi.org/10.1371/journal.pone.0172228] [PMID: 28192489]
[171]
Sun, L.; Liao, K.; Wang, D. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One, 2017, 12(8), e0184003.
[http://dx.doi.org/10.1371/journal.pone.0184003] [PMID: 28854218]
[172]
Sun, L.; Liao, K. The effect of honokiol on ergosterol biosynthesis and vacuole function in Candida albicans. J. Microbiol. Biotechnol., 2020, 30(12), 1835-1842.
[http://dx.doi.org/10.4014/jmb.2008.08019] [PMID: 33263334]
[173]
Zhan, L.; Peng, X.; Lin, J.; Zhang, Y.; Gao, H.; Zhu, Y.; Huan, Y.; Zhao, G. Honokiol reduces fungal load, toll-like receptor-2, and inflammatory cytokines in Aspergillus fumigatus keratitis. Invest. Ophthalmol. Vis. Sci., 2020, 61(4), 48.
[http://dx.doi.org/10.1167/iovs.61.4.48] [PMID: 32347916]
[174]
Yu, J.S.; Park, M.; Pang, C.; Rashan, L.; Jung, W.H.; Kim, K.H. Antifungal Phenols from Woodfordia uniflora Collected in Oman. J. Nat. Prod., 2020, 83(7), 2261-2268.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00395] [PMID: 32639158]
[175]
Messier, C.; Grenier, D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses, 2011, 54(6), e801-e806.
[http://dx.doi.org/10.1111/j.1439-0507.2011.02028.x] [PMID: 21615543]
[176]
Liu, W.; Li, L.P.; Zhang, J.D.; Li, Q.; Shen, H.; Chen, S.M.; He, L.J.; Yan, L.; Xu, G.T.; An, M.M.; Jiang, Y.Y. Synergistic antifungal effect of glabridin and fluconazole. PLoS One, 2014, 9(7), e103442.
[http://dx.doi.org/10.1371/journal.pone.0103442] [PMID: 25058485]
[177]
Moazeni, M.; Hedayati, M.T.; Nabili, M.; Mousavi, S.J.; Abdollahi Gohar, A.; Gholami, S. Glabridin triggers over-expression of MCA1 and NUC1 genes in Candida glabrata: Is it an apoptosis inducer? J. Mycol. Med., 2017, 27(3), 369-375.
[http://dx.doi.org/10.1016/j.mycmed.2017.05.002] [PMID: 28595940]
[178]
Nabili, M.; Aslani, N.; Shokohi, T.; Hedayati, M.T.; Hassanmoghadam, F.; Moazeni, M. In vitro interaction between glabridin and voriconazole against Aspergillus fumigatus isolates. Rev. Iberoam. Micol., 2021, 38(3), 145-147.
[http://dx.doi.org/10.1016/j.riam.2020.12.005] [PMID: 33965316]
[179]
Gao, H.; Peng, X.; Zhan, L.; Lin, J.; Zhang, Y.; Huan, Y.; Zhao, G. The role of Glabridin in antifungal and anti-inflammation effects in Aspergillus fumigatus keratitis. Exp. Eye Res., 2022, 214, 108883.
[http://dx.doi.org/10.1016/j.exer.2021.108883] [PMID: 34896107]
[180]
Mbaveng, A.T.; Ngameni, B.; Kuete, V.; Simo, I.K.; Ambassa, P.; Roy, R.; Bezabih, M.; Etoa, F.X.; Ngadjui, B.T.; Abegaz, B.M.; Meyer, J.J.M.; Lall, N.; Beng, V.P. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol., 2008, 116(3), 483-489.
[http://dx.doi.org/10.1016/j.jep.2007.12.017] [PMID: 18280679]
[181]
ElSohly, H.N.; Joshi, A.S.; Nimrod, A.C.; Walker, L.A.; Clark, A.M. Antifungal chalcones from Maclura tinctoria. Planta Med., 2001, 67(1), 87-89.
[http://dx.doi.org/10.1055/s-2001-10621] [PMID: 11270732]
[182]
Liu, N.; Zhang, N.; Zhang, S.; Zhang, L.; Liu, Q. Phloretin inhibited the pathogenicity and virulence factors against Candida albicans. Bioengineered, 2021, 12(1), 2420-2431.
[http://dx.doi.org/10.1080/21655979.2021.1933824] [PMID: 34167447]
[183]
Batovska, D.; Todorova, I. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
[184]
Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev., 2016, 15(1), 87-120.
[http://dx.doi.org/10.1007/s11101-014-9387-8]
[185]
Peralta, M.A.; Santi, M.D.; Agnese, A.M.; Cabrera, J.L.; Ortega, M.G. Flavanoids from Dalea elegans: Chemical reassignment and determination of kinetics parameters related to their anti-tyrosinase activity. Phytochem. Lett., 2014, 10, 260-267.
[http://dx.doi.org/10.1016/j.phytol.2014.10.012]
[186]
Peralta, M.; Calise, M.; Fornari, M.; Ortega, M.; Diez, R.; Cabrera, J.; Pérez, C. A prenylated flavanone from Dalea elegans inhibits rhodamine 6 G efflux and reverses fluconazole-resistance in Candida albicans. Planta Med., 2012, 78(10), 981-987.
[http://dx.doi.org/10.1055/s-0031-1298627] [PMID: 22673834]
[187]
Peralta, M.A.; da Silva, M.A.; Ortega, M.G.; Cabrera, J.L.; Paraje, M.G. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine, 2015, 22(11), 975-980.
[http://dx.doi.org/10.1016/j.phymed.2015.07.003] [PMID: 26407939]
[188]
Peralta, M.A.; Ortega, M.G.; Cabrera, J.L.; Paraje, M.G. The antioxidant activity of a prenyl flavonoid alters its antifungal toxicity on Candida albicans biofilms. Food Chem. Toxicol., 2018, 114, 285-291.
[http://dx.doi.org/10.1016/j.fct.2018.02.042] [PMID: 29476793]
[189]
Kanchanapiboon, J.; Kongsa, U.; Pattamadilok, D.; Kamponchaidet, S.; Wachisunthon, D.; Poonsatha, S.; Tuntoaw, S. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. J. Ethnopharmacol., 2020, 261, 113193.
[http://dx.doi.org/10.1016/j.jep.2020.113193] [PMID: 32730867]
[190]
Kang, K.; Fong, W.P.; Tsang, P.W.K. Antifungal activity of baicalein against Candida krusei does not involve apoptosis. Mycopathologia, 2010, 170(6), 391-396.
[http://dx.doi.org/10.1007/s11046-010-9341-2] [PMID: 20614252]
[191]
Wang, T.; Shi, G.; Shao, J.; Wu, D.; Yan, Y.; Zhang, M.; Cui, Y.; Wang, C. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb. Pathog., 2015, 87, 21-29.
[http://dx.doi.org/10.1016/j.micpath.2015.07.006] [PMID: 26169236]
[192]
Huang, S.; Cao, Y.Y.; Dai, B.D.; Sun, X.R.; Zhu, Z.Y.; Cao, Y.B.; Wang, Y.; Gao, P.H.; Jiang, Y.Y. In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole. Biol. Pharm. Bull., 2008, 31(12), 2234-2236.
[http://dx.doi.org/10.1248/bpb.31.2234] [PMID: 19043205]
[193]
Fu, Z.; Lu, H.; Zhu, Z.; Yan, L.; Jiang, Y.; Cao, Y. Combination of baicalein and Amphotericin B accelerates Candida albicans apoptosis. Biol. Pharm. Bull., 2011, 34(2), 214-218.
[http://dx.doi.org/10.1248/bpb.34.214] [PMID: 21415530]
[194]
Yun, D.G.; Lee, D.G. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans. Int. J. Biochem. Cell Biol., 2016, 80, 1-9.
[http://dx.doi.org/10.1016/j.biocel.2016.09.008] [PMID: 27639679]
[195]
Yun, D.G.; Lee, D.G. Assessment of silibinin as a potential antifungal agent and investigation of its mechanism of action. IUBMB Life, 2017, 69(8), 631-637.
[http://dx.doi.org/10.1002/iub.1647] [PMID: 28636236]
[196]
Sozen, H.; Celik, O.I.; Cetin, E.S.; Yilmaz, N.; Aksozek, A.; Topal, Y.; Cigerci, I.H.; Beydilli, H. Evaluation of the protective effect of silibinin in rats with liver damage caused by itraconazole. Cell Biochem. Biophys., 2015, 71(2), 1215-1223.
[http://dx.doi.org/10.1007/s12013-014-0331-8] [PMID: 25395192]
[197]
Sathiamoorthy, B.; Gupta, P.; Kumar, M.; Chaturvedi, A.K.; Shukla, P.K.; Maurya, R. New antifungal flavonoid glycoside from Vitex negundo. Bioorg. Med. Chem. Lett., 2007, 17(1), 239-242.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.051] [PMID: 17027268]
[198]
Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules, 2012, 17(6), 7284-7293.
[http://dx.doi.org/10.3390/molecules17067284] [PMID: 22695233]
[199]
Souza-Moreira, T.M.; Severi, J.A.; Rodrigues, E.R.; de Paula, M.I.; Freitas, J.A.; Vilegas, W.; Pietro, R.C.L.R. Flavonoids from Plinia cauliflora (Mart.) Kausel (Myrtaceae) with antifungal activity. Nat. Prod. Res., 2019, 33(17), 2579-2582.
[http://dx.doi.org/10.1080/14786419.2018.1460827] [PMID: 29620451]
[200]
Kwun, M.S.; Lee, D.G. Quercetin-induced yeast apoptosis through mitochondrial dysfunction under the accumulation of magnesium in Candida albicans. Fungal Biol., 2020, 124(2), 83-90.
[http://dx.doi.org/10.1016/j.funbio.2019.11.009] [PMID: 32008756]
[201]
Omokhua-Uyi, A.G.; Abdalla, M.A.; Leonard, C.M.; Aro, A.; Uyi, O.O.; Van Staden, J.; McGaw, L.J. Flavonoids isolated from the South African weed Chromolaena odorata (Asteraceae) have pharmacological activity against uropathogens. BMC Compl. Med. Therap., 2020, 20(1), 233.
[http://dx.doi.org/10.1186/s12906-020-03024-0] [PMID: 32703212]
[202]
Fukai, T.; Yonekawa, M.; Hou, A.J.; Nomura, T.; Sun, H.D.; Uno, J. Antifungal agents from the roots of Cudrania cochinchinensis against Candida, Cryptococcus, and Aspergillus species. J. Nat. Prod., 2003, 66(8), 1118-1120.
[http://dx.doi.org/10.1021/np030024u] [PMID: 12932139]
[203]
Morel, C.; Séraphin, D.; Teyrouz, A.; Larcher, G.; Bouchara, J.P.; Litaudon, M.; Richomme, P.; Bruneton, J. New and antifungal xanthones from Calophyllum caledonicum. Planta Med., 2002, 68(1), 41-44.
[http://dx.doi.org/10.1055/s-2002-19867] [PMID: 11842325]
[204]
Larcher, G.; Morel, C.; Tronchin, G.; Landreau, A.; Séraphin, D.; Richomme, P.; Bouchara, J.P. Investigation of the antifungal activity of caledonixanthone E and other xanthones against Aspergillus fumigatus. Planta Med., 2004, 70(6), 569-571.
[http://dx.doi.org/10.1055/s-2004-827161] [PMID: 15229808]
[205]
Jin, Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19), 126589.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.048] [PMID: 31427220]
[206]
Kang, K.; Fong, W.P.; Tsang, P.W.K. Novel antifungal activity of purpurin against Candida species in vitro. Med. Mycol., 2010, 48(7), 904-911.
[http://dx.doi.org/10.3109/13693781003739351] [PMID: 20392152]
[207]
Zhang, H.; Li, J.; Zhang, J.; Shi, H.; Lin, X.; Sun, H. Purpurin inhibits the adhesion of Candida albicans biofilms. Int. J. Clin. Exp. Med., 2016, 9(6), 10070-10076.
[208]
Tsang, P.W.K.; Bandara, H.M.H.N.; Fong, W.P. Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS One, 2012, 7(11), e50866.
[http://dx.doi.org/10.1371/journal.pone.0050866] [PMID: 23226409]
[209]
Tsang, P.W.K.; Wong, A.P.K.; Yang, H.P.; Li, N.F. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms. PLoS One, 2013, 8(12), e86032.
[http://dx.doi.org/10.1371/journal.pone.0086032] [PMID: 24376900]
[210]
Sasaki, K.; Abe, H.; Yoshizaki, F. In vitro antifungal activity of naphthoquinone derivatives. Biol. Pharm. Bull., 2002, 25(5), 669-670.
[http://dx.doi.org/10.1248/bpb.25.669] [PMID: 12033513]
[211]
Miao, H.; Zhao, L.; Li, C.; Shang, Q.; Lu, H.; Fu, Z.; Wang, L.; Jiang, Y.; Cao, Y. Inhibitory effect of Shikonin on Candida albicans growth. Biol. Pharm. Bull., 2012, 35(11), 1956-1963.
[http://dx.doi.org/10.1248/bpb.b12-00338] [PMID: 23123467]
[212]
Liao, Z.; Yan, Y.; Dong, H.; Zhu, Z.; Jiang, Y.; Cao, Y. Endogenous nitric oxide accumulation is involved in the antifungal activity of Shikonin against Candida albicans. Emerg. Microbes Infect., 2016, 5(8), e88-e88.
[PMID: 27530748]
[213]
Dzoyem, J.P.; Tangmouo, J.G.; Lontsi, D.; Etoa, F.X.; Lohoue, P.J. In vitro antifungal activity of extract and plumbagin from the stem bark ofDiospyros crassiflora Hiern (Ebenaceae). Phytother. Res., 2007, 21(7), 671-674.
[http://dx.doi.org/10.1002/ptr.2140] [PMID: 17444575]
[214]
Dzoyem, J.P.; Kechia, F.A.; Kuete, V.; Pieme, A.C.; Akak, C.M.; Tangmouo, J.G.; Lohoue, P.J. Phytotoxic, antifungal activities and acute toxicity studies of the crude extract and compounds from Diospyros canaliculata. Nat. Prod. Res., 2011, 25(7), 741-749.
[http://dx.doi.org/10.1080/14786419.2010.531392] [PMID: 21462073]
[215]
Hassan, S.T.S.; Berchová-Bímová, K.; Petráš, J. Plumbagin, a Plant-Derived Compound, Exhibits Antifungal Combinatory Effect with Amphotericin B against Candida albicans Clinical Isolates and Anti-hepatitis C Virus Activity. Phytother. Res., 2016, 30(9), 1487-1492.
[http://dx.doi.org/10.1002/ptr.5650] [PMID: 27215409]
[216]
Nair, S.V.; Baranwal, G.; Chatterjee, M.; Sachu, A.; Vasudevan, A.K.; Bose, C.; Banerji, A.; Biswas, R. Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. Int. J. Med. Microbiol., 2016, 306(4), 237-248.
[http://dx.doi.org/10.1016/j.ijmm.2016.05.004] [PMID: 27212459]
[217]
Medeiros, C.S.; Pontes-Filho, N.T.; Camara, C.A.; Lima-Filho, J.V.; Oliveira, P.C.; Lemos, S.A.; Leal, A.F.G.; Brandão, J.O.C.; Neves, R.P. Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Braz. J. Med. Biol. Res., 2010, 43(4), 345-349.
[http://dx.doi.org/10.1590/S0100-879X2010007500012] [PMID: 20209378]
[218]
Moraes, D.C. Curvelo, J.A.R.; Anjos, C.A.; Moura, K.C.G.; Pinto, M.C.F.R.; Portela, M.B.; Soares, R.M.A. β-lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors. J. Mycol. Med., 2018, 28(2), 314-319.
[http://dx.doi.org/10.1016/j.mycmed.2018.03.004] [PMID: 29598974]
[219]
Brilhante, R.S.N.; Caetano, É.P.; Lima, R.A.C.; Marques, F.J.F.; Castelo-Branco, D.S.C.M.; Melo, C.V.S.; Guedes, G.M.M.; Oliveira, J.S.; Camargo, Z.P.; Moreira, J.L.B.; Monteiro, A.J.; Bandeira, T.J.P.G.; Cordeiro, R.A.; Rocha, M.F.G.; Sidrim, J.J.C. Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Braz. J. Microbiol., 2016, 47(4), 917-924.
[http://dx.doi.org/10.1016/j.bjm.2016.07.015] [PMID: 27520529]
[220]
Janeczko, M. Masłyk, M.; Kubiński, K.; Golczyk, H. Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans. Yeast, 2017, 34(6), 253-265.
[http://dx.doi.org/10.1002/yea.3230] [PMID: 28181315]
[221]
Eyong, K.O.; Folefoc, G.N.; Kuete, V.; Beng, V.P.; Krohn, K.; Hussain, H.; Nkengfack, A.E.; Saeftel, M.; Sarite, S.R.; Hoerauf, A.; Newbouldiaquinone, A. Newbouldiaquinone A: A naphthoquinone–anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial agent from Newbouldia laevis. Phytochemistry, 2006, 67(6), 605-609.
[http://dx.doi.org/10.1016/j.phytochem.2005.12.019] [PMID: 16442576]
[222]
Xie, F.; Chang, W.; Zhang, M.; Li, Y.; Li, W.; Shi, H.; Zheng, S.; Lou, H. Quinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans. Sci. Rep., 2016, 6(1), 33687.
[http://dx.doi.org/10.1038/srep33687] [PMID: 27650180]
[223]
Ioset, J.R.; Marston, A.; Gupta, M.P.; Hostettmann, K. Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica. Phytochemistry, 2000, 53(5), 613-617.
[http://dx.doi.org/10.1016/S0031-9422(99)00604-4] [PMID: 10724189]
[224]
Kim, D.G.; Moon, K.; Kim, S.H.; Park, S.H.; Park, S.; Lee, S.K.; Oh, K.B.; Shin, J.; Oh, D.C. Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. J. Nat. Prod., 2012, 75(5), 959-967.
[http://dx.doi.org/10.1021/np3001915] [PMID: 22574670]
[225]
Ding, N.; Jiang, Y.; Han, L.; Chen, X.; Ma, J.; Qu, X.; Mu, Y.; Liu, J.; Li, L.; Jiang, C.; Huang, X. Bafilomycins and Odoriferous Sesquiterpenoids from Streptomyces albolongus Isolated from Elephas maximus Feces. J. Nat. Prod., 2016, 79(4), 799-805.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00827] [PMID: 26933756]
[226]
Su, H.; Han, L.; Ding, N.; Guan, P.; Hu, C.; Huang, X. Bafilomycin C1 exert antifungal effect through disturbing sterol biosynthesis in Candida albicans. J. Antibiot., 2018, 71(4), 467-476.
[http://dx.doi.org/10.1038/s41429-017-0009-8] [PMID: 29391532]
[227]
Wright, A.E.; Botelho, J.C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P.J.; Pitts, T.P.; Pomponi, S.A.; Reed, J.K. Neopeltolide, a macrolide from a lithistid sponge of the family Neopeltidae. J. Nat. Prod., 2007, 70(3), 412-416.
[http://dx.doi.org/10.1021/np060597h] [PMID: 17309301]
[228]
Pettit, R.K.; Woyke, T.; Pon, S.; Cichacz, Z.A.; Pettit, G.R.; Herald, C.L. In vitro and in vivo antifungal activities of the marine sponge constituent spongistatin. Med. Mycol., 2005, 43(5), 453-463.
[http://dx.doi.org/10.1080/13693780500050598] [PMID: 16178375]
[229]
Dalisay, D.S.; Rogers, E.W.; Edison, A.S.; Molinski, T.F. Structure elucidation at the nanomole scale. 1. Trisoxazole macrolides and thiazole-containing cyclic peptides from the nudibranch Hexabranchus sanguineus. J. Nat. Prod., 2009, 72(4), 732-738.
[http://dx.doi.org/10.1021/np8007649] [PMID: 19254038]
[230]
Klenchin, V.A.; Allingham, J.S.; King, R.; Tanaka, J.; Marriott, G.; Rayment, I. Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. Nat. Struct. Mol. Biol., 2003, 10(12), 1058-1063.
[http://dx.doi.org/10.1038/nsb1006] [PMID: 14578936]
[231]
Alferova, V.A.; Shuvalov, M.V.; Novikov, R.A.; Trenin, A.S.; Dezhenkova, L.G.; Gladkikh, E.G.; Lapchinskaya, O.A.; Kulyaeva, V.V.; Bychkova, O.P.; Mirchink, E.P.; Solyev, P.N.; Kudryakova, G.K.; Korshun, V.A.; Tyurin, A.P. Structure-activity studies of irumamycin type macrolides from Streptomyces sp. INA-Ac-5812. Tetrahedron Lett., 2019, 60(21), 1448-1451.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.051]
[232]
Goh, F.; Zhang, M.M.; Lim, T.R.; Low, K.N.; Nge, C.E.; Heng, E.; Yeo, W.L.; Sirota, F.L.; Crasta, S.; Tan, Z.; Ng, V.; Leong, C.Y.; Zhang, H.; Lezhava, A.; Chen, S.L.; Hoon, S.S.; Eisenhaber, F.; Eisenhaber, B.; Kanagasundaram, Y.; Wong, F.T.; Ng, S.B. Identification and engineering of 32 membered antifungal macrolactone notonesomycins. Microb. Cell Fact., 2020, 19(1), 71.
[http://dx.doi.org/10.1186/s12934-020-01328-x] [PMID: 32192516]
[233]
Zhang, Z.; Zhou, T.; Harunari, E.; Oku, N.; Igarashi, Y.; Iseolides, A-C. Iseolides A–C, antifungal macrolides from a coral-derived actinomycete of the genus Streptomyces. J. Antibiot., 2020, 73(8), 534-541.
[http://dx.doi.org/10.1038/s41429-020-0304-7] [PMID: 32393809]
[234]
Perlatti, B.; Lan, N.; Xiang, M.; Earp, C.E.; Spraker, J.E.; Harvey, C.J.B.; Nichols, C.B.; Alspaugh, J.A.; Gloer, J.B.; Bills, G.F. Anti-cryptococcal activity of preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum. J. Ind. Microbiol. Biotechnol., 2021, 48(9-10), kuab022.
[http://dx.doi.org/10.1093/jimb/kuab022] [PMID: 33640980]
[235]
Yoshioka, T.; Igarashi, Y.; Namba, T.; Ueda, S.; Pait, I.G.U.; Nihira, T.; Kitani, S. Lavencidin, a polyene macrolide antibiotic from Streptomyces lavendulae FRI-5. J. Antibiot., 2021, 74(5), 359-362.
[http://dx.doi.org/10.1038/s41429-020-00404-z] [PMID: 33469193]
[236]
Xu, D.; Ondeyka, J.; Harris, G.H.; Zink, D.; Kahn, J.N.; Wang, H.; Bills, G.; Platas, G.; Wang, W.; Szewczak, A.A.; Liberator, P.; Roemer, T.; Singh, S.B. Isolation, structure, and biological activities of Fellutamides C and D from an undescribed Metulocladosporiella (Chaetothyriales) using the genome-wide Candida albicans fitness test. J. Nat. Prod., 2011, 74(8), 1721-1730.
[http://dx.doi.org/10.1021/np2001573] [PMID: 21761939]
[237]
Bae, M.; Kim, H.; Moon, K.; Nam, S.J.; Shin, J.; Oh, K.B.; Oh, D.C. Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org. Lett., 2015, 17(3), 712-715.
[http://dx.doi.org/10.1021/ol5037248] [PMID: 25622093]
[238]
Tian, J.; Shen, Y.; Yang, X.; Liang, S.; Shan, L.; Li, H.; Liu, R.; Zhang, W. Antifungal cyclic peptides from Psammosilene tunicoides. J. Nat. Prod., 2010, 73(12), 1987-1992.
[http://dx.doi.org/10.1021/np100363a] [PMID: 21070025]
[239]
Herath, K.; Harris, G.; Jayasuriya, H.; Zink, D.; Smith, S.; Vicente, F.; Bills, G.; Collado, J.; González, A.; Jiang, B.; Kahn, J.N.; Galuska, S.; Giacobbe, R.; Abruzzo, G.; Hickey, E.; Liberator, P.; Xu, D.; Roemer, T.; Singh, S.B. Isolation, structure and biological activity of phomafungin, a cyclic lipodepsipeptide from a widespread tropical Phoma sp. Bioorg. Med. Chem., 2009, 17(3), 1361-1369.
[http://dx.doi.org/10.1016/j.bmc.2008.12.009] [PMID: 19112025]
[240]
Mendes, T.D.; Borges, W.S.; Rodrigues, A.; Solomon, S.E.; Vieira, P.C.; Duarte, M.C.T.; Pagnocca, F.C. Anti-Candida properties of urauchimycins from actinobacteria associated with trachymyrmex ants. BioMed Res. Int., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/835081] [PMID: 23586060]
[241]
Ortíz-López, F.J.; Monteiro, M.C.; González-Menéndez, V.; Tormo, J.R.; Genilloud, O.; Bills, G.F.; Vicente, F.; Zhang, C.; Roemer, T.; Singh, S.B.; Reyes, F. Cyclic colisporifungin and linear cavinafungins, antifungal lipopeptides isolated from Colispora cavincola. J. Nat. Prod., 2015, 78(3), 468-475.
[http://dx.doi.org/10.1021/np500854j] [PMID: 25636062]
[242]
Tawfik, K.A.; Jeffs, P.; Bray, B.; Dubay, G.; Falkinham, J.O., III; Mesbah, M.; Youssef, D.; Khalifa, S.; Schmidt, E.W. Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. Org. Lett., 2010, 12(4), 664-666.
[http://dx.doi.org/10.1021/ol9029269] [PMID: 20085289]
[243]
Sata, N.U.; Matsunaga, S.; Fusetani, N.; van Soest, R.W.M.; Aurantosides, D.; Aurantosides, D. E, and F: new antifungal tetramic acid glycosides from the marine sponge Siliquariaspongia japonica. J. Nat. Prod., 1999, 62(7), 969-971.
[http://dx.doi.org/10.1021/np9900021] [PMID: 10425118]
[244]
Angawi, R.F.; Bavestrello, G.; Calcinai, B.; Dien, H.A.; Donnarumma, G.; Tufano, M.A.; Paoletti, I.; Grimaldi, E.; Chianese, G.; Fattorusso, E.; Taglialatela-Scafati, O.; Aurantoside, J. Aurantoside J: a new tetramic acid glycoside from Theonella swinhoei. Insights into the antifungal potential of aurantosides. Mar. Drugs, 2011, 9(12), 2809-2817.
[http://dx.doi.org/10.3390/md9122809] [PMID: 22363251]
[245]
Kumar, R.; Subramani, R.; Feussner, K.D.; Aalbersberg, W.; Aurantoside, K. Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar. Drugs, 2012, 10(12), 200-208.
[http://dx.doi.org/10.3390/md10010200] [PMID: 22363230]
[246]
Ondeyka, J.; Harris, G.; Zink, D.; Basilio, A.; Vicente, F.; Bills, G.; Platas, G.; Collado, J.; González, A.; Cruz, M.; Martin, J.; Kahn, J.N.; Galuska, S.; Giacobbe, R.; Abruzzo, G.; Hickey, E.; Liberator, P.; Jiang, B.; Xu, D.; Roemer, T.; Singh, S.B. Isolation, structure elucidation, and biological activity of virgineone from Lachnum Wirgineum using the genome-wide Candida albicans fitness test. J. Nat. Prod., 2009, 72(1), 136-141.
[http://dx.doi.org/10.1021/np800511r] [PMID: 19115836]
[247]
Oh, D.C.; Poulsen, M.; Currie, C.R.; Clardy, J. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp. Org. Lett., 2011, 13(4), 752-755.
[http://dx.doi.org/10.1021/ol102991d] [PMID: 21247188]
[248]
Oh, D.C.; Scott, J.J.; Currie, C.R.; Clardy, J. Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org. Lett., 2009, 11(3), 633-636.
[http://dx.doi.org/10.1021/ol802709x] [PMID: 19125624]
[249]
Wang, P.; Wang, D.; Zhang, R.; Wang, Y.; Kong, F.; Fu, P.; Zhu, W. Novel macrolactams from a deep-sea-derived Streptomyces species. Mar. Drugs, 2020, 19(1), 13.
[http://dx.doi.org/10.3390/md19010013] [PMID: 33383849]
[250]
Piao, S.J.; Song, Y.L.; Jiao, W.H.; Yang, F.; Liu, X.F.; Chen, W.S.; Han, B.N.; Lin, H.W.; Hippolachnin, A. Hippolachnin A, a new antifungal polyketide from the South China Sea sponge Hippospongia lachne. Org. Lett., 2013, 15(14), 3526-3529.
[http://dx.doi.org/10.1021/ol400933x] [PMID: 23829334]
[251]
Yu, H.B.; Liu, X.F.; Xu, Y.; Gan, J.H.; Jiao, W.H.; Shen, Y.; Lin, H.W.; Woodylides, A-C. Woodylides A-C, new cytotoxic linear polyketides from the South China Sea sponge Plakortis simplex. Mar. Drugs, 2012, 10(12), 1027-1036.
[http://dx.doi.org/10.3390/md10051027] [PMID: 22822354]
[252]
Wyche, T.P.; Piotrowski, J.S.; Hou, Y.; Braun, D.; Deshpande, R.; McIlwain, S.; Ong, I.M.; Myers, C.L.; Guzei, I.A.; Westler, W.M.; Andes, D.R.; Bugni, T.S. Forazoline A: marine-derived polyketide with antifungal in vivo efficacy. Angew. Chem. Int. Ed., 2014, 53(43), 11583-11586.
[http://dx.doi.org/10.1002/anie.201405990] [PMID: 25197007]
[253]
Phainuphong, P.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J.; Kanjanasirirat, P.; Borwornpinyo, S.; Akrimajirachoote, N.; Yimnual, C.; Muanprasat, C. Depsides and depsidones from the soil-derived fungus Aspergillus unguis PSU-RSPG204. Tetrahedron, 2018, 74(39), 5691-5699.
[http://dx.doi.org/10.1016/j.tet.2018.07.059]
[254]
Saetang, P.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J.; Hadsadee, S.; Jungsuttiwong, S. Antibacterial and antifungal polyketides from the fungus Aspergillus unguis PSU-MF16. J. Nat. Prod., 2021, 84(5), 1498-1506.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01308] [PMID: 33861594]
[255]
Bang, S.; Kim, J.; Oh, J.; Kim, J.S.; Yu, S.R.; Deyrup, S.; Bahn, Y.S.; Shim, S.H. Rare β-Resorcylic acid derivatives from a halophyte-associated fungus Colletotrichum gloeosporioides JS0419 and their antifungal activities. Mar. Drugs, 2022, 20(3), 195.
[http://dx.doi.org/10.3390/md20030195] [PMID: 35323494]
[256]
Ahn, J.W.; Jang, K.H.; Yang, H.C.; Oh, K.B.; Lee, H.S.; Shin, J. Bithiazole metabolites from the myxobacterium Myxococcus fulvus. Chem. Pharm. Bull., 2007, 55(3), 477-479.
[http://dx.doi.org/10.1248/cpb.55.477] [PMID: 17329897]
[257]
Thierbach, G.; Reichenbach, H. Myxothiazol, a new inhibitor of the cytochrome b-c1 segment of the respiratory chain. Biochim. Biophys. Acta Bioenerg., 1981, 638(2), 282-289.
[http://dx.doi.org/10.1016/0005-2728(81)90238-3] [PMID: 6274398]
[258]
Moon, K.; Ahn, C.H.; Shin, Y.; Won, T.; Ko, K.; Lee, S.; Oh, K.B.; Shin, J.; Nam, S.I.; Oh, D.C. New benzoxazine secondary metabolites from an arctic actinomycete. Mar. Drugs, 2014, 12(5), 2526-2538.
[http://dx.doi.org/10.3390/md12052526] [PMID: 24796308]
[259]
Liu, A.H.; Liu, D.Q.; Liang, T.J.; Yu, X.Q.; Feng, M.T.; Yao, L.G.; Fang, Y.; Wang, B.; Feng, L.H.; Zhang, M.X.; Mao, S.C. Caulerprenylols A and B, two rare antifungal prenylated para-xylenes from the green alga Caulerpa racemosa. Bioorg. Med. Chem. Lett., 2013, 23(9), 2491-2494.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.038] [PMID: 23548547]
[260]
Li, X.C.; Ferreira, D.; Jacob, M.R.; Zhang, Q.; Khan, S.I.; ElSohly, H.N.; Nagle, D.G.; Smillie, T.J.; Khan, I.A.; Walker, L.A.; Clark, A.M. Antifungal Cyclopentenediones from Piper c oruscans. J. Am. Chem. Soc., 2004, 126(22), 6872-6873.
[http://dx.doi.org/10.1021/ja048081c] [PMID: 15174849]
[261]
Babu, K.S.; Li, X.C.; Jacob, M.R.; Zhang, Q.; Khan, S.I.; Ferreira, D.; Clark, A.M. Synthesis, antifungal activity, and structure-activity relationships of coruscanone A analogues. J. Med. Chem., 2006, 49(26), 7877-7886.
[http://dx.doi.org/10.1021/jm061123i] [PMID: 17181171]
[262]
Khodavandi, A.; Alizadeh, F.; Aala, F.; Sekawi, Z.; Chong, P.P. In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species. Mycopathologia, 2010, 169(4), 287-295.
[http://dx.doi.org/10.1007/s11046-009-9251-3] [PMID: 19924565]
[263]
Guo, N.; Wu, X.; Yu, L.; Liu, J.; Meng, R.; Jin, J.; Lu, H.; Wang, X.; Yan, S.; Deng, X. In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Immunol. Med. Microbiol., 2010, 58(2), 193-201.
[http://dx.doi.org/10.1111/j.1574-695X.2009.00620.x] [PMID: 19878317]
[264]
Polymenis, M.; Kim, Y.S.; Kim, K.S.; Han, I.; Kim, M.H.; Jung, M.H.; Park, H.K. Quantitative and Qualitative Analysis of the Antifungal Activity of Allicin Alone and in Combination with Antifungal Drugs. PLoS One, 2012, 7(6), e38242.
[http://dx.doi.org/10.1371/journal.pone.0038242] [PMID: 22679493]
[265]
Khodavandi, A.; Alizadeh, F.; Harmal, N.S.; Sidik, S.M.; Othman, F.; Sekawi, Z.; Jahromi, M.A.F.; Ng, K.P.; Chong, P.P. Comparison between efficacy of allicin and fluconazole against Candida albicansin vitro and in a systemic candidiasis mouse model. FEMS Microbiol. Lett., 2011, 315(2), 87-93.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02170.x] [PMID: 21204918]
[266]
Leontiev, R.; Hohaus, N.; Jacob, C.; Gruhlke, M.C.H.; Slusarenko, A.J. A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Sci. Rep., 2018, 8(1), 6763.
[http://dx.doi.org/10.1038/s41598-018-25154-9] [PMID: 29712980]
[267]
Khodavandi, A.; Alizadeh, F.; Harmal, N.S.; Sidik, S.M.; Othman, F.; Sekawi, Z.; Chong, P.P. Expression analysis of SIR2 and SAPs1-4 gene expression in Candida albicans treated with allicin compared to fluconazole. Trop. Biomed., 2011, 28(3), 589-598.
[PMID: 22433888]
[268]
Prescott, T.A.K.; Panaretou, B. A Mini HIP HOP assay uncovers a central role for copper and zinc in the antifungal mode of action of allicin. J. Agric. Food Chem., 2017, 65(18), 3659-3664.
[http://dx.doi.org/10.1021/acs.jafc.7b00250] [PMID: 28421744]
[269]
Pereira, C.B.; de Oliveira, D.M.; Hughes, A.F.S.; Kohlhoff, M.; Vieira, L.A. M.; Martins Vaz, A.B.; Ferreira, M.C.; Carvalho, C.R.; Rosa, L.H.; Rosa, C.A.; Alves, T.M.A.; Zani, C.L.; Johann, S.; Cota, B.B. Endophytic fungal compounds active against Cryptococcus neoformans and C. gattii. J. Antibiot., 2015, 68(7), 436-444.
[http://dx.doi.org/10.1038/ja.2015.11] [PMID: 25712396]
[270]
Yang, X.; Pei, Z.; Hu, R.; Zhang, Z.; Lou, Z.; Sun, X. Study on the inhibitory activity and possible mechanism of myriocin on clinically relevant drug-resistant <i>Candida albicans</i> and its biofilms. Biol. Pharm. Bull., 2021, 44(3), 305-315.
[http://dx.doi.org/10.1248/bpb.b20-00246] [PMID: 33441497]
[271]
Nagai, K.; Kamigiri, K.; Matsumoto, H.; Kawano, Y.; Yamaoka, M.; Shimoi, H.; Watanabe, M.; Suzuki, K. YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J. Antibiot., 2002, 55(12), 1036-1041.
[http://dx.doi.org/10.7164/antibiotics.55.1036] [PMID: 12617512]
[272]
Altomare, C.; Perrone, G.; Zonno, M.C.; Evidente, A.; Pengue, R.; Fanti, F.; Polonelli, L. Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J. Nat. Prod., 2000, 63(8), 1131-1135.
[http://dx.doi.org/10.1021/np000023r] [PMID: 10978211]
[273]
Yang, D.; Gu, T.; Wang, T.; Tang, Q.; Ma, C. Effects of osthole on migration and invasion in breast cancer cells. Biosci. Biotechnol. Biochem., 2010, 74(7), 1430-1434.
[http://dx.doi.org/10.1271/bbb.100110] [PMID: 20622464]
[274]
Lin, Z.K.; Liu, J.; Jiang, G.Q.; Tan, G.; Gong, P.; Luo, H.F.; Li, H.M.; Du, J.; Ning, Z.; Xin, Y.; Wang, Z.Y. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol. Rep., 2017, 37(3), 1611-1618.
[http://dx.doi.org/10.3892/or.2017.5403] [PMID: 28184928]
[275]
Zhang, Z.R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: A review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid. Based Complement. Alternat. Med., 2015, 2015(2), 1-10.
[http://dx.doi.org/10.1155/2015/919616] [PMID: 26246843]
[276]
Li, D.D.; Chai, D.; Huang, X.W.; Guan, S.X.; Du, J.; Zhang, H.Y.; Sun, Y.; Jiang, Y.Y. Potent in vitro synergism of fluconazole and osthole against fluconazole-resistant Candida albicans. Antimicrob. Agents Chemother., 2017, 61(8), e00436-e17.
[http://dx.doi.org/10.1128/AAC.00436-17] [PMID: 28607012]
[277]
Yuan, M.; Luo, Y.; Xin, Q.; Gao, H.; Zhang, G.; Jing, T. Efficacy of osthole for Echinococcus granulosus in vitro and Echinococcus multilocularis in vivo. Vet. Parasitol., 2016, 226, 38-43.
[http://dx.doi.org/10.1016/j.vetpar.2016.05.016] [PMID: 27514881]
[278]
Low, Z.J.; Xiong, J.; Xie, Y.; Ma, G.L.; Saw, H.; Thi Tran, H.; Wong, S.L.; Pang, L.M.; Fong, J.; Lu, P.; Hu, J.F.; Liang, Y.; Miao, Y.; Liang, Z.X. Discovery, biosynthesis and antifungal mechanism of the polyene-polyol meijiemycin. Chem. Commun., 2020, 56(5), 822-825.
[http://dx.doi.org/10.1039/C9CC08908J] [PMID: 31848534]
[279]
Park, K.D.; Cho, S.J.; Moon, J.S.; Kim, S.U. Synthesis and antifungal activity of a novel series of 13-(4-isopropylbenzyl)berberine derivatives. Bioorg. Med. Chem. Lett., 2010, 20(22), 6551-6554.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.045] [PMID: 20932752]
[280]
Bang, S.; Kwon, H.; Hwang, H.S.; Park, K.D.; Kim, S.U.; Bahn, Y.S. 9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, is a potent antifungal agent that inhibits the growth of Cryptococcus neoformans by regulating gene expression. PLoS One, 2014, 9(10), e109863.
[http://dx.doi.org/10.1371/journal.pone.0109863] [PMID: 25302492]
[281]
Park, K.S.; Kang, K.C.; Kim, K.Y.; Jeong, P.Y.; Kim, J.H.; Adams, D.J.; Kim, J.H.; Paik, Y.K. HWY-289, a novel semi-synthetic protoberberine derivative with multiple target sites in Candida albicans. J. Antimicrob. Chemother., 2001, 47(5), 513-519.
[http://dx.doi.org/10.1093/jac/47.5.513] [PMID: 11328760]
[282]
Li, L.P.; Liu, W.; Liu, H.; Zhu, F.; Zhang, D.Z.; Shen, H.; Xu, Z.; Qi, Y.P.; Zhang, S.Q.; Chen, S.M.; He, L.J.; Cao, X.J.; Huang, X.; Zhang, J.D.; Yan, L.; An, M.M.; Jiang, Y.Y. Synergistic antifungal activity of berberine derivative B-7b and fluconazole. PLoS One, 2015, 10(5), e0126393.
[http://dx.doi.org/10.1371/journal.pone.0126393] [PMID: 25992630]
[283]
Liu, H.; Wang, L.; Li, Y.; Liu, J.; An, M.; Zhu, S.; Cao, Y.; Jiang, Z.; Zhao, M.; Cai, Z.; Dai, L.; Ni, T.; Liu, W.; Chen, S.; Wei, C.; Zang, C.; Tian, S.; Yang, J.; Wu, C.; Zhang, D.; Liu, H.; Jiang, Y. Structural optimization of berberine as a synergist to restore antifungal activity of fluconazole against drug-resistant Candida albicans. ChemMedChem, 2014, 9(1), 207-216.
[http://dx.doi.org/10.1002/cmdc.201300332] [PMID: 24376206]
[284]
Cai, Z.; Ding, Z.; Hao, Y.; Ni, T.; Xie, F.; Zhao, J.; Li, R.; Yu, S.; Wang, T.; Chai, X.; Jin, Y.; Gao, Y.; Zhang, D.; Jiang, Y.; Xie, F.; Ni, T.; Zhao, J.; Pang, L.; Li, R.; Cai, Z.; Ding, Z.; Wang, T.; Yu, S.; Jin, Y.; Zhang, D.; Jiang, Y. Design, synthesis, and SAR study of 3-(benzo[ d][1,3]dioxol-5-yl)- N -benzylpropanamide as novel potent synergists against fluconazole-resistant Candida albicans. Bioorg. Med. Chem. Lett., 2017, 27(19), 4571-4575.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.053] [PMID: 28874321]
[285]
Kaomongkolgit, R.; Jamdee, K.; Chaisomboon, N. Antifungal activity of alpha-mangostin against Candida albicans. J. Oral Sci., 2009, 51(3), 401-406.
[http://dx.doi.org/10.2334/josnusd.51.401] [PMID: 19776506]
[286]
Lin, S.; Sin, W.L.W.; Koh, J.J.; Lim, F.; Wang, L.; Cao, D.; Beuerman, R.W.; Ren, L.; Liu, S. Semisynthesis and Biological Evaluation of Xanthone Amphiphilics as Selective, Highly Potent Antifungal Agents to Combat Fungal Resistance. J. Med. Chem., 2017, 60(24), 10135-10150.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01348] [PMID: 29155590]
[287]
Aeed, P.A.; Young, C.L.; Nagiec, M.M.; Elhammer, Å.P. Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A. Antimicrob. Agents Chemother., 2009, 53(2), 496-504.
[http://dx.doi.org/10.1128/AAC.00633-08] [PMID: 19047657]
[288]
Zhong, W.; Jeffries, M.W.; Georgopapadakou, N.H. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob. Agents Chemother., 2000, 44(3), 651-653.
[http://dx.doi.org/10.1128/AAC.44.3.651-653.2000] [PMID: 10681333]
[289]
Takesako, K.; Kuroda, H.; Inoue, T.; Haruna, F.; Yoshikawa, Y.; Kato, I.; Uchida, K.; Hiratani, T.; Yamaguchi, H. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot., 1993, 46(9), 1414-1420.
[http://dx.doi.org/10.7164/antibiotics.46.1414] [PMID: 8226319]
[290]
Wuts, P.G.M.; Simons, L.J.; Metzger, B.P.; Sterling, R.C.; Slightom, J.L.; Elhammer, A.P. Generation of broad-spectrum antifungal drug candidates from the natural product compound Aureobasidin A. ACS Med. Chem. Lett., 2015, 6(6), 645-649.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00029] [PMID: 26101567]
[291]
Yu, Q.; Ravu, R.R.; Jacob, M.R.; Khan, S.I.; Agarwal, A.K.; Yu, B.Y.; Li, X.C. Synthesis of natural acylphloroglucinol-based antifungal compounds against Cryptococcus species. J. Nat. Prod., 2016, 79(9), 2195-2201.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00224] [PMID: 27584935]
[292]
Jiang, Z.; Liu, N.; Dong, G.; Jiang, Y.; Liu, Y.; He, X.; Huang, Y.; He, S.; Chen, W.; Li, Z.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Scaffold hopping of sampangine: Discovery of potent antifungal lead compound against Aspergillus fumigatus and Cryptococcus neoformans. Bioorg. Med. Chem. Lett., 2014, 24(17), 4090-4094.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.064] [PMID: 25115626]
[293]
Jiang, Z.; Liu, N.; Hu, D.; Dong, G.; Miao, Z.; Yao, J.; He, H.; Jiang, Y.; Zhang, W.; Wang, Y.; Sheng, C. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem. Commun., 2015, 51(78), 14648-14651.
[http://dx.doi.org/10.1039/C5CC05699C] [PMID: 26289663]
[294]
Liu, N.; Zhong, H.; Tu, J.; Jiang, Z.; Jiang, Y.; Jiang, Y.; Jiang, Y.; Li, J.; Zhang, W.; Wang, Y.; Sheng, C. Discovery of simplified sampangine derivatives as novel fungal biofilm inhibitors. Eur. J. Med. Chem., 2018, 143, 1510-1523.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.043] [PMID: 29126739]
[295]
Zhao, F.; Dong, H.H.; Wang, Y.H.; Wang, T.Y.; Yan, Z.H.; Yan, F.; Zhang, D.Z.; Cao, Y.Y.; Jin, Y.S. Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. MedChemComm, 2017, 8(5), 1093-1102.
[http://dx.doi.org/10.1039/C6MD00649C] [PMID: 30108820]
[296]
Dong, H.H.; Wang, Y.H.; Peng, X.M.; Zhou, H.Y.; Zhao, F.; Jiang, Y.Y.; Zhang, D.Z.; Jin, Y.S. Synergistic antifungal effects of curcumin derivatives as fungal biofilm inhibitors with fluconazole. Chem. Biol. Drug Des., 2021, 97(5), 1079-1088.
[http://dx.doi.org/10.1111/cbdd.13827] [PMID: 33506609]
[297]
Apgar, J.M.; Wilkening, R.R.; Parker, D.L., Jr; Meng, D.; Wildonger, K.J.; Sperbeck, D.; Greenlee, M.L.; Balkovec, J.M.; Flattery, A.M.; Abruzzo, G.K.; Galgoci, A.M.; Giacobbe, R.A.; Gill, C.J.; Hsu, M.J.; Liberator, P.; Misura, A.S.; Motyl, M.; Nielsen Kahn, J.; Powles, M.; Racine, F.; Dragovic, J.; Fan, W.; Kirwan, R.; Lee, S.; Liu, H.; Mamai, A.; Nelson, K.; Peel, M. Ibrexafungerp: An orally active β-1,3-glucan synthesis inhibitor. Bioorg. Med. Chem. Lett., 2021, 32, 127661.
[http://dx.doi.org/10.1016/j.bmcl.2020.127661] [PMID: 33160023]
[298]
Lee, A. Ibrexafungerp: First Approval. Drugs, 2021, 81(12), 1445-1450.
[http://dx.doi.org/10.1007/s40265-021-01571-5] [PMID: 34313977]
[299]
Marcos-Zambrano, L.J.; Gómez-Perosanz, M.; Escribano, P.; Bouza, E.; Guinea, J. The novel oral glucan synthase inhibitor SCY-078 shows in vitro activity against sessile and planktonic Candida spp. J. Antimicrob. Chemother., 2017, 72(7), 1969-1976.
[http://dx.doi.org/10.1093/jac/dkx010] [PMID: 28175309]
[300]
Pfaller, M.A.; Messer, S.A.; Motyl, M.R.; Jones, R.N.; Castanheira, M. In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob. Agents Chemother., 2013, 57(2), 1065-1068.
[http://dx.doi.org/10.1128/AAC.01588-12] [PMID: 23229479]
[301]
Arendrup, M.C.; Jørgensen, K.M.; Hare, R.K.; Chowdhary, A. in vitro Activity of Ibrexafungerp (SCY-078) against Candida auris Isolates as Determined by EUCAST Methodology and Comparison with Activity against C. albicans and C. glabrata and with the Activities of Six Comparator Agents. Antimicrob. Agents Chemother., 2020, 64(3), e02136-e19.
[http://dx.doi.org/10.1128/AAC.02136-19] [PMID: 31844005]
[302]
Wiederhold, N.P.; Najvar, L.K.; Jaramillo, R.; Olivo, M.; Pizzini, J.; Catano, G.; Patterson, T.F. Oral glucan synthase inhibitor SCY-078 is effective in an experimental murine model of invasive candidiasis caused by WT and echinocandin-resistant Candida glabrata. J. Antimicrob. Chemother., 2018, 73(2), 448-451.
[http://dx.doi.org/10.1093/jac/dkx422] [PMID: 29177447]
[303]
Wiederhold, N.P.; Najvar, L.K.; Olivo, M.; Morris, K.N.; Patterson, H.P.; Catano, G.; Patterson, T.F. Ibrexafungerp demonstrates in vitro activity against fluconazole-resistant Candida auris and in vivo efficacy with delayed initiation of therapy in an experimental model of invasive candidiasis. Antimicrob. Agents Chemother., 2021, 65(6), e02694-e20.
[http://dx.doi.org/10.1128/AAC.02694-20] [PMID: 33753333]
[304]
Schwebke, J.R.; Sobel, R.; Gersten, J.K.; Sussman, S.A.; Lederman, S.N.; Jacobs, M.A.; Chappell, B.T.; Weinstein, D.L.; Moffett, A.H.; Azie, N.E.; Angulo, D.A.; Harriott, I.A.; Borroto-Esoda, K.; Ghannoum, M.A.; Nyirjesy, P.; Sobel, J.D. Ibrexafungerp versus placebo for vulvovaginal candidiasis treatment: a phase 3, randomized, controlled superiority trial (VANISH 303). Clin. Infect. Dis., 2021, 74(11), 1979-1985.
[PMID: 34467969]
[305]
Lee, Y.; Lee, K.T.; Lee, S.J.; Beom, J.Y.; Hwangbo, A.; Jung, J.A.; Song, M.C.; Yoo, Y.J.; Kang, S.H.; Averette, A.F.; Heitman, J.; Yoon, Y.J.; Cheong, E.; Bahn, Y.S. In vitro and in vivo assessment of FK506 analogs as novel antifungal drug candidates. Antimicrob. Agents Chemother., 2018, 62(11), e01627-e18.
[http://dx.doi.org/10.1128/AAC.01627-18] [PMID: 30181374]
[306]
Jung, J.A.; Yoon, Y.J. Development of non-immunosuppressive FK506 derivatives as antifungal and neurotrophic agents. J. Microbiol. Biotechnol., 2020, 30(1), 1-10.
[http://dx.doi.org/10.4014/jmb.1911.11008] [PMID: 31752059]
[307]
Beom, J.Y.; Jung, J.A.; Lee, K.T.; Hwangbo, A.; Song, M.C.; Lee, Y.; Lee, S.J.; Oh, J.H.; Ha, S.J.; Nam, S.J.; Cheong, E.; Bahn, Y.S.; Yoon, Y.J. Biosynthesis of Nonimmunosuppressive FK506 Analogues with Antifungal Activity. J. Nat. Prod., 2019, 82(8), 2078-2086.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00144] [PMID: 31321978]
[308]
Ostrosky-Zeichner, L.; Casadevall, A.; Galgiani, J.N.; Odds, F.C.; Rex, J.H. An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov., 2010, 9(9), 719-727.
[http://dx.doi.org/10.1038/nrd3074] [PMID: 20725094]
[309]
Roemer, T.; Xu, D.; Singh, S.B.; Parish, C.A.; Harris, G.; Wang, H.; Davies, J.E.; Bills, G.F. Confronting the challenges of natural product-based antifungal discovery. Chem. Biol., 2011, 18(2), 148-164.
[http://dx.doi.org/10.1016/j.chembiol.2011.01.009] [PMID: 21338914]
[310]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy