Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Natural Polymers with Bioactive Glass Additives for Bone Regeneration: Chemistry and Trends

Author(s): Tomas Duminis*

Volume 14, Issue 1, 2024

Published on: 12 May, 2023

Article ID: e280423216342 Pages: 17

DOI: 10.2174/2210315513666230428113707

Price: $65

Abstract

Natural polymers, such as chitosan (CH) and gelatine (GE), have a wide range of uses in biological environments. This is primarily attributed to their biocompatibility and the body’s recognition of them being as “self” as opposed to “foreign”. These polymers provide a dynamic and cell-friendly interaction environment which is a crucial factor for tissue repair and regeneration. Bone regeneration is a highly intricate multistep process involving a plethora of biomolecules, signalling pathways, and stages in cellular activity. Critically-sized bone defects do not regenerate without an implant due to the cessation of the cellular stimulus associated with new bone formation. Therefore, natural polymers have been combined with bioactive glasses (BGs) to provide a biocompatible delivery matrix and to stimulate bone formation via the release of osteogenic ions from the BG particles. The addition of BG particles in natural polymers has been shown not only to result in an osteogenic response at a cellular level but also result in per se formation of hydroxyapatite (HA) on implant surfaces and regeneration of new bone in vivo. This review discusses the recent trends over the last decade in this field, keeping a focus on the chemistry and properties of CH and GE composites containing a bioactive glass additive.

Graphical Abstract

[1]
Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res., 1971, 5(6), 117-141.
[http://dx.doi.org/10.1002/jbm.820050611]
[2]
Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater., 2013, 9(1), 4457-4486.
[http://dx.doi.org/10.1016/j.actbio.2012.08.023] [PMID: 22922331]
[3]
Sharifi, E.; Bigham, A.; Yousefiasl, S.; Trovato, M.; Ghomi, M.; Esmaeili, Y.; Samadi, P.; Zarrabi, A.; Ashrafizadeh, M.; Sharifi, S.; Sartorius, R.; Dabbagh Moghaddam, F.; Maleki, A.; Song, H.; Agarwal, T.; Maiti, T.K.; Nikfarjam, N.; Burvill, C.; Mattoli, V.; Raucci, M.G.; Zheng, K.; Boccaccini, A.R.; Ambrosio, L.; Makvandi, P. Mesoporous bioactive glasses in cancer diagnosis and therapy: Stimuli-responsive, toxicity, immunogenicity, and clinical translation. Adv. Sci., 2022, 9(2), 2102678.
[http://dx.doi.org/10.1002/advs.202102678] [PMID: 34796680]
[4]
Hill, R. An alternative view of the degradation of bioglass. J. Mater. Sci. Lett., 1996, 15(13), 1122-1125.
[http://dx.doi.org/10.1007/BF00539955]
[5]
Brauer, D.S. Bioactive glasses—structure and properties. Angew. Chem. Int. Ed., 2015, 54(14), 4160-4181.
[http://dx.doi.org/10.1002/anie.201405310] [PMID: 25765017]
[6]
Hill, R.G.; Brauer, D.S. Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non-Cryst. Solids, 2011, 357(24), 3884-3887.
[http://dx.doi.org/10.1016/j.jnoncrysol.2011.07.025]
[7]
Wetzel, R.; Brauer, D.S. Apatite formation of substituted Bioglass 45S5: SBF vs. Tris. Mater. Lett., 2019, 257, 126760.
[http://dx.doi.org/10.1016/j.matlet.2019.126760]
[8]
Mneimne, M.; Hill, R.G.; Bushby, A.J.; Brauer, D.S. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater., 2011, 7(4), 1827-1834.
[http://dx.doi.org/10.1016/j.actbio.2010.11.037] [PMID: 21115144]
[9]
Bingel, L.; Groh, D.; Karpukhina, N.; Brauer, D.S. Influence of dissolution medium pH on ion release and apatite formation of Bioglass® 45S5. Mater. Lett., 2015, 143, 279-282.
[http://dx.doi.org/10.1016/j.matlet.2014.12.124]
[10]
Chen, X.; Chen, X.; Brauer, D.S.; Wilson, R.M.; Law, R.V.; Hill, R.G.; Karpukhina, N. Sodium is not essential for high bioactivity of glasses. Int. J. Appl. Glass Sci., 2017, 8(4), 428-437.
[http://dx.doi.org/10.1111/ijag.12323] [PMID: 29271977]
[11]
Karadjian, M.; Essers, C.; Tsitlakidis, S.; Reible, B.; Moghaddam, A.; Boccaccini, A.; Westhauser, F. Biological properties of calcium phosphate bioactive glass composite bone substitutes: Current experimental evidence. Int. J. Mol. Sci., 2019, 20(2), 305.
[http://dx.doi.org/10.3390/ijms20020305] [PMID: 30646516]
[12]
Sergi, R.; Bellucci, D.; Cannillo, V. A review of bioactive glass/natural polymer composites: State of the art. Materials, 2020, 13(23), 5560.
[http://dx.doi.org/10.3390/ma13235560] [PMID: 33291305]
[13]
Tiskaya, M.; Shahid, S.; Gillam, D.; Hill, R. The use of bioactive glass (BAG) in dental composites: A critical review. Dent. Mater., 2021, 37(2), 296-310.
[http://dx.doi.org/10.1016/j.dental.2020.11.015] [PMID: 33441250]
[14]
Raafat, D.; von Bargen, K.; Haas, A.; Sahl, H.G. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol., 2008, 74(12), 3764-3773.
[http://dx.doi.org/10.1128/AEM.00453-08] [PMID: 18456858]
[15]
Sahariah, P.; Másson, M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship. Biomacromolecules, 2017, 18(11), 3846-3868.
[http://dx.doi.org/10.1021/acs.biomac.7b01058] [PMID: 28933147]
[16]
Vukajlovic, D.; Bretcanu, O.; Novakovic, K. Fabrication and characterization of two types of bone composites made of chitosan-genipin hydrogel and Bioglass 45S5. Open Ceramics, 2021, 8, 100174.
[http://dx.doi.org/10.1016/j.oceram.2021.100174]
[17]
Ghasemi, A.; Mohtashami, M.; Sheijani, S.S.; Aliakbari, K. Chitosan-genipin nanohydrogel as a vehicle for sustained delivery of alpha-1 antitrypsin. Res. Pharm. Sci., 2015, 10(6), 523-534.
[PMID: 26779272]
[18]
Singh, B.N.; Veeresh, V.; Mallick, S.P.; Jain, Y.; Sinha, S.; Rastogi, A.; Srivastava, P. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int. J. Biol. Macromol., 2019, 133, 817-830.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.107] [PMID: 31002908]
[19]
Cordero-Arias, L.; Boccaccini, A.R. Electrophoretic deposition of chondroitin sulfate-chitosan/bioactive glass composite coatings with multilayer design. Surf. Coat. Tech., 2017, 315, 417-425.
[http://dx.doi.org/10.1016/j.surfcoat.2017.02.037]
[20]
Kumar, P.; Saini, M.; Dehiya, B.S.; Umar, A.; Sindhu, A.; Mohammed, H.; Al-Hadeethi, Y.; Guo, Z. Fabrication and in vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. Int. J. Biol. Macromol., 2020, 149, 1-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.035] [PMID: 31923516]
[21]
Yang, J.; Long, T.; He, N.F.; Guo, Y.P.; Zhu, Z.A.; Ke, Q.F. Fabrication of a chitosan/bioglass three-dimensional porous scaffold for bone tissue engineering applications. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(38), 6611-6618.
[http://dx.doi.org/10.1039/C4TB00940A] [PMID: 32261821]
[22]
Mota, J.; Yu, N.; Caridade, S.G.; Luz, G.M.; Gomes, M.E.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater., 2012, 8(11), 4173-4180.
[http://dx.doi.org/10.1016/j.actbio.2012.06.040] [PMID: 22771458]
[23]
Li, W.; Ding, Y.; Yu, S.; Yao, Q.; Boccaccini, A.R. Multifunctional chitosan-45S5 bioactive glass-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microsphere composite membranes for guided tissue/bone regeneration. ACS Appl. Mater. Interfaces, 2015, 7(37), 20845-20854.
[http://dx.doi.org/10.1021/acsami.5b06128] [PMID: 26317326]
[24]
Caridade, S.G.; Merino, E.G.; Alves, N.M.; Mano, J.F. Bioactivity and viscoelastic characterization of chitosan/bioglass® composite membranes. Macromol. Biosci., 2012, 12(8), 1106-1113.
[http://dx.doi.org/10.1002/mabi.201200036] [PMID: 22707301]
[25]
Zhou, T.; Liu, X.; Sui, B.; Liu, C.; Mo, X.; Sun, J. Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. Biomed. Mater., 2017, 12(5), 055004.
[http://dx.doi.org/10.1088/1748-605X/aa7b55] [PMID: 28902637]
[26]
Goh, Y.; Akram, M.; Alshemary, A.; Hussain, R. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass. Appl. Surf. Sci., 2016, 387, 1-7.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.054]
[27]
Correia, C.O.; Leite, Á.J.; Mano, J.F. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr. Polym., 2015, 123, 39-45.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.076] [PMID: 25843832]
[28]
Covarrubias, C.; Arroyo, F.; Balanda, C.; Neira, M.; Von Marttens, A.; Caviedes, P.; Rodríguez, J.P.; Urra, C. The effect of the nanoscale structure of nanobioceramics on their in vitro bioactivity and cell differentiation properties. J. Nanomater., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/526230]
[29]
Covarrubias, C.; Cádiz, M.; Maureira, M.; Celhay, I.; Cuadra, F.; von Marttens, A. Bionanocomposite scaffolds based on chitosan-gelatin and nanodimensional bioactive glass particles: In vitro properties and in vivo bone regeneration. J. Biomater. Appl., 2018, 32(9), 1155-1163.
[http://dx.doi.org/10.1177/0885328218759042] [PMID: 29451421]
[30]
Khoshakhlagh, P.; Rabiee, S.M.; Kiaee, G.; Heidari, P.; Miri, A.K.; Moradi, R.; Moztarzadeh, F.; Ravarian, R. Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohydr. Polym., 2017, 157, 1261-1271.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.003] [PMID: 27987831]
[31]
Ordikhani, F.; Simchi, A. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential. Appl. Surf. Sci., 2014, 317, 56-66.
[http://dx.doi.org/10.1016/j.apsusc.2014.07.197]
[32]
Xu, H.; Ge, Y.W.; Lu, J.W.; Ke, Q.F.; Liu, Z.Q.; Zhu, Z.A.; Guo, Y-P. Icariin loaded-hollow bioglass/chitosan therapeutic scaffolds promote osteogenic differentiation and bone regeneration. Chem. Eng. J., 2018, 354, 285-294.
[http://dx.doi.org/10.1016/j.cej.2018.08.022]
[33]
Chau, J.F.L.; Jia, D.; Wang, Z.; Liu, Z.; Hu, Y.; Zhang, X.; Jia, H.; Lai, K.P.; Leong, W.F.; Au, B.J.; Mishina, Y.; Chen, Y.G.; Biondi, C.; Robertson, E.; Xie, D.; Liu, H.; He, L.; Wang, X.; Yu, Q.; Li, B. A crucial role for bone morphogenetic protein-Smad1 signalling in the DNA damage response. Nat. Commun., 2012, 3(1), 836.
[http://dx.doi.org/10.1038/ncomms1832] [PMID: 22588298]
[34]
Chen, C.; Li, H.; Pan, J.; Yan, Z.; Yao, Z.; Fan, W.; Guo, C. Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration. Biotechnol. Lett., 2015, 37(2), 457-465.
[http://dx.doi.org/10.1007/s10529-014-1697-9] [PMID: 25326173]
[35]
Ge, Y.W.; Lu, J.W.; Sun, Z.Y.; Liu, Z.Q.; Zhou, J.; Ke, Q.F.; Mao, Y.Q.; Guo, Y.P.; Zhu, Z.A. Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration. Nanomedicine, 2019, 18, 336-346.
[http://dx.doi.org/10.1016/j.nano.2018.10.010] [PMID: 30419364]
[36]
Seo, D.Y.; Lee, S.R.; Heo, J.W.; No, M.H.; Rhee, B.D.; Ko, K.S.; Kwak, H.B.; Han, J. Ursolic acid in health and disease. Korean J. Physiol. Pharmacol., 2018, 22(3), 235-248.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.235] [PMID: 29719446]
[37]
Porwal, K.; Pal, S.; Dev, K.; China, S.P.; Kumar, Y.; Singh, C.; Barbhuyan, T.; Sinha, N.; Sanyal, S.; Trivedi, A.K.; Maurya, R.; Chattopadhyay, N. Guava fruit extract and its triterpene constituents have osteoanabolic effect: Stimulation of osteoblast differentiation by activation of mitochondrial respiration via the Wnt/β-catenin signaling. J. Nutr. Biochem., 2017, 44, 22-34.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.011] [PMID: 28343085]
[38]
Thibault, M.H.; Comeau, C.; Vienneau, G.; Robichaud, J.; Brown, D.; Bruening, R.; Martin, L.J.; Djaoued, Y. Assessing the potential of boronic acid/chitosan/bioglass composite materials for tissue engineering applications. Mater. Sci. Eng. C, 2020, 110, 110674.
[http://dx.doi.org/10.1016/j.msec.2020.110674] [PMID: 32204103]
[39]
Patel, K.D.; El-Fiqi, A.; Lee, H.Y.; Singh, R.K.; Kim, D.A.; Lee, H.H.; Kim, H-W. Chitosan-nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. J. Mater. Chem., 2012, 22(47), 24945-24956.
[http://dx.doi.org/10.1039/c2jm33830k]
[40]
Zarghami, V.; Ghorbani, M.; Pooshang Bagheri, K.; Shokrgozar, M.A. Prolongation of bactericidal efficiency of chitosan — Bioactive glass coating by drug controlled release. Prog. Org. Coat., 2020, 139, 105440.
[http://dx.doi.org/10.1016/j.porgcoat.2019.105440]
[41]
Ghalayani Esfahani, A.; Soleimanzade, M.; Campiglio, C.E.; Federici, A.; Altomare, L.; Draghi, L.; Boccaccini, A.R.; De Nardo, L. Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positive-replica. J. Biomed. Mater. Res. A, 2019, 107(7), 1455-1465.
[http://dx.doi.org/10.1002/jbm.a.36660] [PMID: 30786159]
[42]
Bonetti, L.; Altomare, L.; Bono, N.; Panno, E.; Campiglio, C.E.; Draghi, L.; Candiani, G.; Farè, S.; Boccaccini, A.R.; De Nardo, L. Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration. J. Mater. Sci. Mater. Med., 2020, 31(5), 43.
[http://dx.doi.org/10.1007/s10856-020-06378-6] [PMID: 32358696]
[43]
Alaei, M.; Atapour, M.; Labbaf, S. Electrophoretic deposition of chitosan-bioactive glass nanocomposite coatings on AZ91 Mg alloy for biomedical applications. Prog. Org. Coat., 2020, 147, 105803.
[http://dx.doi.org/10.1016/j.porgcoat.2020.105803]
[44]
Radda’a, N.S.; Goldmann, W.H.; Detsch, R.; Roether, J.A.; Cordero-Arias, L.; Virtanen, S.; Moskalewicz, T.; Boccaccini, A.R. Electrophoretic deposition of tetracycline hydrochloride loaded halloysite nanotubes chitosan/bioactive glass composite coatings for orthopedic implants. Surf. Coat. Tech., 2017, 327, 146-157.
[http://dx.doi.org/10.1016/j.surfcoat.2017.07.048]
[45]
Peter, M.; Binulal, N.S.; Nair, S.V.; Selvamurugan, N.; Tamura, H.; Jayakumar, R. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J., 2010, 158(2), 353-361.
[http://dx.doi.org/10.1016/j.cej.2010.02.003]
[46]
Ahmadi, Z.; Moztarzadeh, F. Synthesizing and characterizing of gelatin-chitosan-bioactive glass (58s) scaffolds for bone tissue engineering. Silicon, 2018, 10(4), 1393-1402.
[http://dx.doi.org/10.1007/s12633-017-9616-z]
[47]
Abdel-Salam, F.S.; Elkheshen, S.A.; Mahmoud, A.A.; Basalious, E.B.; Amer, M.S.; Mostafa, A.A.; Elkasabgy, N.A. In situ forming chitosan implant-loaded with raloxifene hydrochloride and bioactive glass nanoparticles for treatment of bone injuries: Formulation and biological evaluation in animal model. Int. J. Pharm., 2020, 580, 119213.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119213] [PMID: 32165229]
[48]
Liu, L.; Tang, X.; Wang, Y.; Guo, S. Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int. J. Pharm., 2011, 414(1-2), 6-15.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.052] [PMID: 21554937]
[49]
Wu, J.; Zheng, K.; Huang, X.; Liu, J.; Liu, H.; Boccaccini, A.R.; Wan, Y.; Guo, X.; Shao, Z. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in situ bone formation in rat calvarial bone defects. Acta Biomater., 2019, 91, 60-71.
[http://dx.doi.org/10.1016/j.actbio.2019.04.023] [PMID: 30986530]
[50]
Rahmanian-Devin, P.; Baradaran Rahimi, V.; Askari, V.R. Thermosensitive chitosan-β-glycerophosphate hydrogels as targeted drug delivery systems: An overview on preparation and their applications. Adv. Pharmacol. Pharm. Sci., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/6640893] [PMID: 34036263]
[51]
Lemos, E.M.F.; Patrício, P.S.O.; Pereira, M.M. 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: An evaluation of the porous structure and mechanical properties. Quim. Nova, 2016, 39, 462-466.
[http://dx.doi.org/10.5935/0100-4042.20160047]
[52]
Ravarian, R.; Craft, M.; Dehghani, F. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass. J. Biomed. Mater. Res. A, 2015, 103(9), 2898-2908.
[http://dx.doi.org/10.1002/jbm.a.35423] [PMID: 25690303]
[53]
Sohrabi, M.; Eftekhari Yekta, B.; Rezaie, H.; Naimi-Jamal, M.R.; Kumar, A.; Cochis, A.; Miola, M.; Rimondini, L. Enhancing mechanical properties and biological performances of injectable bioactive glass by gelatin and chitosan for bone small defect repair. Biomedicines, 2020, 8(12), 616.
[http://dx.doi.org/10.3390/biomedicines8120616] [PMID: 33334044]
[54]
Luz, G.M.; Mano, J.F. Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed. Mater., 2012, 7(5), 054104.
[http://dx.doi.org/10.1088/1748-6041/7/5/054104] [PMID: 22972166]
[55]
Zhu, D.; Lu, B.; Yang, Q.; Yu, H.; Liu, P.; Yin, J.; Chen, Y.; Huang, Y.; Ke, Q.; Zhang, C.; Guo, Y.; Gao, Y. Lanthanum-doped mesoporous bioglasses/chitosan composite scaffolds enhance synchronous osteogenesis and angiogenesis for augmented osseous regeneration. Chem. Eng. J., 2021, 405, 127077.
[http://dx.doi.org/10.1016/j.cej.2020.127077]
[56]
Zhang, H.; Wu, J.; Wan, Y.; Romeis, S.; Esper, J.D.; Peukert, W.; Zheng, K.; Boccaccini, A.R. Bioactive glass flakes as innovative fillers in chitosan membranes for guided bone regeneration. Adv. Eng. Mater., 2022, 24(4), 2101042.
[http://dx.doi.org/10.1002/adem.202101042]
[57]
Maji, K.; Dasgupta, S. Bioactive glass and biopolymer based composite scaffold for bone regeneration. Trans. Indian Ceram. Soc., 2015, 74(4), 195-201.
[http://dx.doi.org/10.1080/0371750X.2015.1092396]
[58]
Al-esnawy, A.A.; Ereiba, K.T.; Bakr, A.M.; Abdraboh, A.S. Characterization and antibacterial activity of Streptomycin Sulfate loaded Bioglass/Chitosan beads for bone tissue engineering. J. Mol. Struct., 2021, 1227, 129715.
[http://dx.doi.org/10.1016/j.molstruc.2020.129715]
[59]
Yao, Q.; Nooeaid, P.; Roether, J.A.; Dong, Y.; Zhang, Q.; Boccaccini, A.R. Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram. Int., 2013, 39(7), 7517-7522.
[http://dx.doi.org/10.1016/j.ceramint.2013.03.002]
[60]
Raboh, A.S.A.; El-khooly, M.S.; Hassaan, M.Y. Bioactivity and drug release study of dexamethasone loaded bioglass/chitosan composites for biomedical applications. J. Inorg. Organomet. Polym. Mater., 2021, 31(7), 2779-2790.
[http://dx.doi.org/10.1007/s10904-021-01936-z]
[61]
Dasgupta, S.; Maji, K.; Nandi, S.K. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Mater. Sci. Eng. C, 2019, 94, 713-728.
[http://dx.doi.org/10.1016/j.msec.2018.10.022] [PMID: 30423758]
[62]
Xu, S.; Chen, X.; Yang, X.; Zhang, L.; Yang, G.; Shao, H.; He, Y.; Gou, Z. Preparation and in vitro biological evaluation of octacalcium phosphate/bioactive glass-chitosan/alginate composite membranes potential for bone guided regeneration. J. Nanosci. Nanotechnol., 2016, 16(6), 5577-5585.
[http://dx.doi.org/10.1166/jnn.2016.11734] [PMID: 27427599]
[63]
Yang, X.; Zhang, L.; Chen, X.; Yang, G.; Zhang, L.; Gao, C.; Yang, H.; Gou, Z. Trace element-incorporating octacalcium phosphate porous beads via polypeptide-assisted nanocrystal self-assembly for potential applications in osteogenesis. Acta Biomater., 2012, 8(4), 1586-1596.
[http://dx.doi.org/10.1016/j.actbio.2011.12.012] [PMID: 22200612]
[64]
Shaltooki, M.; Dini, G.; Mehdikhani, M. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C, 2019, 105, 110138.
[http://dx.doi.org/10.1016/j.msec.2019.110138] [PMID: 31546409]
[65]
Hu, J.; Wang, Z.; Miszuk, J.M.; Zhu, M.; Lansakara, T.I.; Tivanski, A.V.; Banas, J.A.; Sun, H. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering. Carbohydr. Polym., 2021, 271, 118440.
[http://dx.doi.org/10.1016/j.carbpol.2021.118440] [PMID: 34364578]
[66]
Shariatinia, Z. Carboxymethyl chitosan: Properties and biomedical applications. Int. J. Biol. Macromol., 2018, 120(Pt B), 1406-1419.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.131] [PMID: 30267813]
[67]
Wu, X.; Li, H. Incorporation of bioglass improved the mechanical stability and bioactivity of alginate/carboxymethyl chitosan hydrogel wound dressing. ACS Appl. Bio Mater., 2021, 4(2), 1677-1692.
[http://dx.doi.org/10.1021/acsabm.0c01477] [PMID: 35014515]
[68]
Yu, L.; Xia, K.; Gong, C.; Chen, J.; Li, W.; Zhao, Y.; Guo, W.; Dai, H. An injectable bioactive magnesium phosphate cement incorporating carboxymethyl chitosan for bone regeneration. Int. J. Biol. Macromol., 2020, 160, 101-111.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.161] [PMID: 32450325]
[69]
Sharifi, F.; Atyabi, S.M.; Norouzian, D.; Zandi, M.; Irani, S.; Bakhshi, H. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int. J. Biol. Macromol., 2018, 115, 243-248.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.045] [PMID: 29654862]
[70]
Gao, C.; Gao, Q.; Li, Y.; Rahaman, M.N.; Teramoto, A.; Abe, K. In vitro evaluation of electrospun gelatin-bioactive glass hybrid scaffolds for bone regeneration. J. Appl. Polym. Sci., 2013, 127(4), 2588-2599.
[http://dx.doi.org/10.1002/app.37946]
[71]
Gao, C.; Rahaman, M.N.; Gao, Q.; Teramoto, A.; Abe, K. Robotic deposition and in vitro characterization of 3D gelatin−bioactive glass hybrid scaffolds for biomedical applications. J. Biomed. Mater. Res. A, 2013, 101A(7), 2027-2037.
[http://dx.doi.org/10.1002/jbm.a.34496] [PMID: 23255226]
[72]
Zheng, J.; Zhao, F.; Zhang, W.; Mo, Y.; Zeng, L.; Li, X.; Chen, X. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Mater. Sci. Eng. C, 2018, 89, 119-127.
[http://dx.doi.org/10.1016/j.msec.2018.03.029] [PMID: 29752080]
[73]
Kwon, S.; Lee, S.; Sivashanmugam, A.; Kwon, J.; Kim, S.; Noh, M.; Kwon, S.; Jayakumar, R.; Hwang, N. Bioglass-incorporated methacrylated gelatin cryogel for regeneration of bone defects. Polymers, 2018, 10(8), 914.
[http://dx.doi.org/10.3390/polym10080914] [PMID: 30960839]
[74]
Hafezi, F.; Hosseinnejad, F.; Fooladi, A.A.I.; Mohit Mafi, S.; Amiri, A.; Nourani, M.R. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J. Mater. Sci. Mater. Med., 2012, 23(11), 2783-2792.
[http://dx.doi.org/10.1007/s10856-012-4722-3] [PMID: 22826004]
[75]
Gao, W.; Sun, L.; Zhang, Z.; Li, Z. Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. J. Biomater. Sci. Polym. Ed., 2020, 31(8), 984-998.
[http://dx.doi.org/10.1080/09205063.2020.1735607] [PMID: 32100612]
[76]
Kazemi, M.; Azami, M.; Johari, B.; Ahmadzadehzarajabad, M.; Nazari, B.; Kargozar, S.; Hajighasemlou, S.; Mozafari, M.; Soleimani, M.; Samadikuchaksaraei, A.; Farajollahi, M. Bone Regeneration in rat using a gelatin/bioactive glass nanocomposite scaffold along with endothelial cells (HUVECs). Int. J. Appl. Ceram. Technol., 2018, 15(6), 1427-1438.
[http://dx.doi.org/10.1111/ijac.12907]
[77]
Zheng, X.; Liu, Y.; Liu, Y.; Pan, Y.; Yao, Q. Novel three-dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(4), 517-526.
[http://dx.doi.org/10.1002/jbm.b.34720] [PMID: 32864862]
[78]
Arabi, N.; Zamanian, A.; Rashvand, S.N.; Ghorbani, F. The tunable porous structure of gelatin-bioglass nanocomposite scaffolds for bone tissue engineering applications: Physicochemical, mechanical, and in vitro properties. Macromol. Mater. Eng., 2018, 303(3), 1700539.
[http://dx.doi.org/10.1002/mame.201700539]
[79]
Luo, H.; Zhang, Y.; Wang, Z.; Yang, Z.; Tu, J.; Liu, Z.; Yao, F.; Xiong, G.; Wan, Y. Constructing three-dimensional nanofibrous bioglass/gelatin nanocomposite scaffold for enhanced mechanical and biological performance. Chem. Eng. J., 2017, 326, 210-221.
[http://dx.doi.org/10.1016/j.cej.2017.05.115]
[80]
Han, B.; Jaurequi, J.; Tang, B.W.; Nimni, M.E. Proanthocyanidin: A natural crosslinking reagent for stabilizing collagen matrices. J. Biomed. Mater. Res., 2003, 65A(1), 118-124.
[http://dx.doi.org/10.1002/jbm.a.10460] [PMID: 12635161]
[81]
Lacroix, J.; Jallot, E.; Lao, J. Gelatin-bioactive glass composites scaffolds with controlled macroporosity. Chem. Eng. J., 2014, 256, 9-13.
[http://dx.doi.org/10.1016/j.cej.2014.06.022]
[82]
Johari, B.; Kadivar, M.; Lak, S.; Gholipourmalekabadi, M.; Urbanska, A.M.; Mozafari, M.; Ahmadzadehzarajabad, M.; Azarnezhad, A.; Afshari, S.; Zargan, J.; Kargozar, S. Osteoblast-seeded bioglass/gelatin nanocomposite: A promising bone substitute in critical-size calvarial defect repair in rat. Int. J. Artif. Organs, 2016, 39(10), 524-533.
[http://dx.doi.org/10.5301/ijao.5000533] [PMID: 27901555]
[83]
Diba, M.; Camargo, W.A.; Brindisi, M.; Farbod, K.; Klymov, A.; Schmidt, S.; Harrington, M.J.; Draghi, L.; Boccaccini, A.R.; Jansen, J.A.; van den Beucken, J.J.J.P.; Leeuwenburgh, S.C.G. Composite colloidal gels made of bisphosphonate-functionalized gelatin and bioactive glass particles for regeneration of osteoporotic bone defects. Adv. Funct. Mater., 2017, 27(45), 1703438.
[http://dx.doi.org/10.1002/adfm.201703438]
[84]
Ye, Q.; Zhang, Y.; Dai, K.; Chen, X.; Read, H.M.; Zeng, L.; Hang, F. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. J. Mater. Sci. Mater. Med., 2020, 31(9), 77.
[http://dx.doi.org/10.1007/s10856-020-06413-6] [PMID: 32816067]
[85]
Zhou, L.; Fan, L.; Zhang, F.M.; Jiang, Y.; Cai, M.; Dai, C.; Luo, Y.A.; Tu, L.J.; Zhou, Z.N.; Li, X.J.; Ning, C.Y.; Zheng, K.; Boccaccini, A.R.; Tan, G.X. Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioact. Mater., 2021, 6(3), 890-904.
[http://dx.doi.org/10.1016/j.bioactmat.2020.09.012] [PMID: 33073063]
[86]
Dawlee, S.; Sugandhi, A.; Balakrishnan, B.; Labarre, D.; Jayakrishnan, A. Oxidized chondroitin sulfate-cross-linked gelatin matrixes: A new class of hydrogels. Biomacromolecules, 2005, 6(4), 2040-2048.
[http://dx.doi.org/10.1021/bm050013a] [PMID: 16004443]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy