Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natural Flavonoids as Potential Therapeutics in the Management of Diabetic Wound: A Review

Author(s): Nongmaithem Randhoni Chanu, Pal Gogoi, Pervej Alom Barbhuiya, Partha Pratim Dutta, Manash Pratim Pathak and Saikat Sen*

Volume 23, Issue 8, 2023

Published on: 15 May, 2023

Page: [690 - 710] Pages: 21

DOI: 10.2174/1568026623666230419102140

Price: $65

Abstract

Flavonoids are important bioactive phenolic compounds abundant in plants and exhibit different therapeutic potentials. A wound is a significant problem in diabetic individuals. A hyperglycaemic environment alters the normal wound-healing process and increases the risk of microbial infection, leading to hospitalization, morbidity, and amputation. Flavonoids are an important class of phytochemicals with excellent antioxidant, anti-inflammatory, antimicrobial, antidiabetic, antitumor, and wound healing property. Quercetin, hesperidin, curcumin, kaempferol, apigenin, luteolin, morin, etc. have shown their wound healing potential. Flavonoids effectively exhibit antimicrobial activity, scavenge reactive oxygen species, augment endogenous antioxidants, reduce the expression and synthesis of inflammatory cytokines (i.e. IL-1β, IL-6, TNF-α, NF-κB), inhibit inflammatory enzymes, enhance anti-inflammatory cytokine (IL-10), enhance insulin section, reduce insulin resistance, and control blood glucose level. Several flavonoids like hesperidin, curcumin, quercetin, rutin, naringin, and luteolin have shown their potential in managing diabetic wounds. Natural products that maintain glucose haemostatic, exert anti-inflammatory activity, suppress/inhibit microbial growth, modulate cytokines, inhibit matrix metalloproteinase (MMP), stimulate angiogenesis and extracellular matrix, and modulate growth factor can be considered as a potential therapeutic lead to treat diabetic wound. Flavonoids were found to play a positive role in management of diabetic wounds by regulating MMP-2, MMP-8, MMP-9, MMP-13, Ras/Raf/ MEK/ERK, PI3K/Akt, and nitric oxide pathways. Therefore, it can be assumed that flavonoids could be potential therapeutics to prevent devastating effects of diabetic wounds. This paper focused on the potential role of flavonoids in managing diabetic wounds and discussed their possible mechanism of action.

« Previous
Graphical Abstract

[1]
Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother., 2019, 112, 108615.
[http://dx.doi.org/10.1016/j.biopha.2019.108615] [PMID: 30784919]
[2]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[3]
Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med., 2017, 7(2), 234-244.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.006] [PMID: 28417092]
[4]
Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[5]
Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop., 2017, 20(2), 1700-1741.
[6]
Verri, W.A.; Vicentini, F.T.M.C.; Baracat, M.M.; Georgetti, S.R.; Cardoso, R.D.R.; Cunha, T.M.; Ferreira, S.H.; Cunha, F.Q.; Fonseca, M.J.V.; Casagrande, R. Chapter 9 - flavonoids as antiinflammatory and analgesic drugs: mechanisms of action and perspectives in the development of pharmaceutical forms.Studies in Natural Products Chemistry; Elsevier, 2012, 36, pp. 297-330.
[http://dx.doi.org/10.1016/B978-0-444-53836-9.00026-8]
[7]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Scientific World J., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[8]
Ruiz-Cruz, S.; Chaparro-Hernandez, S.; Hernandez-Ruiz, K.L.; Cira-Chavez, L.A.; Estrada-Alvarado, M.I.; Ortega, L.E.G.; Ornelas-Paz, J.J.; Mata, M.A.L. Flavaonoids: Important biocompounds in food. Flavonoids - From Biosynthesis to Human Health; Intechopen, 2017.
[9]
Guven, H.; Arici, A.; Simsek, O. Flavonoids in our foods: A short review. Journal of Basic and Clinical Health Sciences, 2019, 3, 96-106.
[http://dx.doi.org/10.30621/jbachs.2019.555]
[10]
Musumeci, L.; Maugeri, A.; Cirmi, S.; Lombardo, G.E.; Russo, C.; Gangemi, S.; Calapai, G.; Navarra, M. Citrus fruits and their flavonoids in inflammatory bowel disease: An overview. Nat. Prod. Res., 2020, 34(1), 122-136.
[http://dx.doi.org/10.1080/14786419.2019.1601196] [PMID: 30990326]
[11]
Li, J.E.; Fan, S.T.; Qiu, Z-H.; Li, C.; Nie, S.P. Total flavonoids content, antioxidant and antimicrobial activities of extracts from Mosla chinensis Maxim. cv. Jiangxiangru. Lebensm. Wiss. Technol., 2015, 64(2), 1022-1027.
[http://dx.doi.org/10.1016/j.lwt.2015.07.033]
[12]
AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels’. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[13]
Babu, P.V.A.; Liu, D. Flavonoids and Cardiovascular Health. Complementary and alternative therapies and the aging population, 2009, 371-392.
[14]
Unnikrishnan, M.K.; Veerapur, V.; Nayak, Y.; Mudgal, P.P.; Mathew, G. Chapter 13 - Antidiabetic, Antihyperlipidemic and Antioxidant Effects of the Flavonoids.Polyphenols in Human Health and Disease; , 2014, 1, pp. 143-161.
[15]
Mohammed, R.S.; Souda, S.; Taie, H.; Moharam, M.E.; Shaker, K. Antioxidant, antimicrobial activities of flavonoids glycoside from Leucaena leucocephala leaves. J. Appl. Pharm. Sci., 2015, 5(6), 138-147.
[http://dx.doi.org/10.7324/JAPS.2015.50623]
[16]
Akhavan, M.; Jahangiri, S.; Shafaghat, A. Studies on the antioxidant and antimicrobial activity and flavonoid derivatives from the fruit of Trigonosciadium brachytaenium (Boiss.) Alava. Ind. Crops Prod., 2015, 63, 114-118.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.023]
[17]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[18]
Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother., 2019, 116, 109004.
[http://dx.doi.org/10.1016/j.biopha.2019.109004] [PMID: 31128404]
[19]
Maher, P. The potential of flavonoids for the treatment of neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12), 3056.
[http://dx.doi.org/10.3390/ijms20123056] [PMID: 31234550]
[20]
Costa, S.L.; Silva, V.D.A.; dos Santos Souza, C.; Santos, C.C.; Paris, I.; Muñoz, P.; Segura-Aguilar, J. Impact of Plant-derived flavonoids on neurodegenerative diseases. Neurotox. Res., 2016, 30(1), 41-52.
[http://dx.doi.org/10.1007/s12640-016-9600-1] [PMID: 26951456]
[21]
Mohandas, A.; Kumar P T, S.; Raja, B.; Lakshmanan, V.K.; Jayakumar, R. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. Int. J. Nanomedicine, 2015, 10(Suppl. 1), 53-66.
[PMID: 26491307]
[22]
Chakraborty, R.; Borah, P.; Dutta, P.P.; Sen, S. Evolving spectrum of diabetic wound: Mechanistic insights and therapeutic targets. World J. Diabetes, 2022, 13(9), 696-716.
[http://dx.doi.org/10.4239/wjd.v13.i9.696] [PMID: 36188143]
[23]
Sharp, A.; Clark, J. Diabetes and its effects on wound healing. Nurs. Stand., 2011, 25(45), 41-47.
[http://dx.doi.org/10.7748/ns.25.45.41.s48] [PMID: 21850847]
[24]
Patel, S.; Dwivedi, S.D.; Yadav, K.; Kanwar, J.R.; Singh, M.R.; Singh, D. Pathogenesis and molecular targets in treatment of diabetic wounds. Obesity and Diabetes, Faintuch, J.; Faintuch, S. 2020, 747-758.
[http://dx.doi.org/10.1007/978-3-030-53370-0_55]
[25]
Baltzis, D.; Eleftheriadou, I.; Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: New insights. Adv. Ther., 2014, 31(8), 817-836.
[http://dx.doi.org/10.1007/s12325-014-0140-x] [PMID: 25069580]
[26]
Alavi, A.; Sibbald, R.G.; Mayer, D.; Goodman, L.; Botros, M.; Armstrong, D.G.; Woo, K.; Boeni, T.; Ayello, E.A.; Kirsner, R.S. Diabetic foot ulcers. J. Am. Acad. Dermatol., 2014, 70(1), 1.e1-1.e18.
[http://dx.doi.org/10.1016/j.jaad.2013.06.055] [PMID: 24355275]
[27]
Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Invest. Dermatol., 2007, 127(3), 514-525.
[http://dx.doi.org/10.1038/sj.jid.5700701] [PMID: 17299434]
[28]
Liu, T.; Zhang, L.; Joo, D; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[29]
Schäffer, M.R.; Tantry, U.; Thornton, F.J.; Barbul, A. Inhibition of nitric oxide synthesis in wounds: Pharmacology and effect on accumulation of collagen in wounds in mice. Eur. J. Surg., 1999, 165(3), 262-267.
[http://dx.doi.org/10.1080/110241599750007153] [PMID: 10231662]
[30]
Bouma, G.; Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol., 2003, 3(7), 521-533.
[http://dx.doi.org/10.1038/nri1132] [PMID: 12876555]
[31]
Babaei, S.; Bayat, M.; Nouruzian, M.; Bayat, M. Pentoxifylline improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2013, 700(1-3), 165-172.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.024] [PMID: 23220163]
[32]
Brem, H.; Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest., 2007, 117(5), 1219-1222.
[http://dx.doi.org/10.1172/JCI32169] [PMID: 17476353]
[33]
Carvalho, M.T.B.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Barreto, R.S.S. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine, 2021, 90, 153636.
[http://dx.doi.org/10.1016/j.phymed.2021.153636] [PMID: 34333340]
[34]
Shadrick, W.R.; Ndjomou, J.; Kolli, R.; Mukherjee, S.; Hanson, A.M.; Frick, D.N. Discovering new medicines targeting helicases: Challenges and recent progress. SLAS Discov., 2013, 18(7), 761-781.
[http://dx.doi.org/10.1177/1087057113482586] [PMID: 23536547]
[35]
Rajab, A.; Al-Wattar, W.; Taqa, G.A. The roles of apigenin cream on wound healing in rabbits model. J. Appl. Vet. Sci., 2022, 7(1), 1-5.
[36]
El-Barky, A.; Ezz, A.; El-Said, K.; Sadek, M.; Mohamed, T. Anti-diabetic activity of Egyptian celery apigenin. Asian J. Dietary Food Res., 2019, 38(4), 341-346.
[37]
Rajasekaran, A.; Arivukkarasu, R.; Mathew, P.J.; Bonagiri, R.; Saradhi, R.P. Antimicrobial evaluation and quantification of apigenin content by HPTLC in methanol stem extract of Cardiospermum halicacabum L. Res. J. Pharm. Tech., 2014, 7(5), 537-543.
[38]
Kashyap, P.; Shikha, D.; Thakur, M.; Aneja, A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J. Food Biochem., 2022, 46(4)e13950
[http://dx.doi.org/10.1111/jfbc.13950] [PMID: 34569073]
[39]
Lee, J.H.; Zhou, H.Y.; Cho, S.Y.; Kim, Y.S.; Lee, Y.S.; Jeong, C.S. Anti-inflammatory mechanisms of apigenin: Inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch. Pharm. Res., 2007, 30(10), 1318-1327.
[http://dx.doi.org/10.1007/BF02980273] [PMID: 18038911]
[40]
Ozay, Y.; Guzel, S.; Erdogdu, I.H.; Yildirim, Z.; Pehlivanoglu, B.; Turk, B.A.; Darcan, S. Evaluation of the wound healing properties of luteolin ointments on excision and incision wound models in diabetic and non-diabetic rats. Rec. Nat. Prod., 2018, 12(4), 350-366.
[http://dx.doi.org/10.25135/rnp.38.17.08.135]
[41]
Zang, Y.; Igarashi, K.; Li, Y. Anti-diabetic effects of luteolin and luteolin-7- O -glucoside on KK- A y mice. Biosci. Biotechnol. Biochem., 2016, 80(8), 1580-1586.
[http://dx.doi.org/10.1080/09168451.2015.1116928] [PMID: 27170065]
[42]
Wang, Q.; Xie, M. [Antibacterial activity and mechanism of luteolin on Staphylococcus aureus]. Wei Sheng Wu Hsueh Pao, 2010, 50(9), 1180-1184.
[PMID: 21090258]
[43]
Majewska, M.; Skrzycki, M.; Podsiad, M.; Czeczot, H. Evaluation of antioxidant potential of flavonoids: An in vitro study. Acta Pol. Pharm., 2011, 68(4), 611-615.
[PMID: 21796946]
[44]
Ziyan, L.; Yongmei, Z.; Nan, Z.; Ning, T.; Baolin, L. Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med., 2007, 73(3), 221-226.
[http://dx.doi.org/10.1055/s-2007-967122] [PMID: 17354164]
[45]
Mi, Y.; Zhong, L.; Lu, S.; Hu, P.; Pan, Y.; Ma, X.; Yan, B.; Wei, Z.; Yang, G. Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway. J. Ethnopharmacol., 2022, 290, 115066.
[http://dx.doi.org/10.1016/j.jep.2022.115066] [PMID: 35122975]
[46]
Haddad, P.S.; Eid, H.M.; Nachar, A.; Thong, F.; Sweeney, G. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn. Mag., 2015, 11(41), 74-81.
[http://dx.doi.org/10.4103/0973-1296.149708] [PMID: 25709214]
[47]
Jaisinghani, R. Antibacterial properties of quercetin. Microbiol. Res., 2017, 8, 6877.
[48]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[49]
Chen, L.Y.; Huang, C.N.; Liao, C.K.; Chang, H.M.; Kuan, Y.H.; Tseng, T.J.; Yen, K.J.; Yang, K.L.; Lin, H.C. Effects of rutin on wound healing in hyperglycemic rats. Antioxidants, 2020, 9(11), 1122.
[http://dx.doi.org/10.3390/antiox9111122] [PMID: 33202817]
[50]
Niture, N.T.; Ansari, A.A.; Naik, S.R. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: An effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J. Exp. Biol., 2014, 52(7), 720-727.
[PMID: 25059040]
[51]
Soni, H.; Malik, J.; Singhai, A.K.; Sharma, S. Antimicrobial and anti-inflammatory activity of the hydrogels containing rutin delivery. Asian J. Chem., 2013, 25(15), 8371-8373.
[http://dx.doi.org/10.14233/ajchem.2013.14912]
[52]
Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. Lebensm. Wiss. Technol., 2008, 41(6), 1060-1066.
[http://dx.doi.org/10.1016/j.lwt.2007.06.010]
[53]
Guardia, T.; Rotelli, A.E.; Juarez, A.O.; Pelzer, L.E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco, 2001, 56(9), 683-687.
[http://dx.doi.org/10.1016/S0014-827X(01)01111-9] [PMID: 11680812]
[54]
Özay, Y.; Güzel, S.; Yumrutaş, Ö.; Pehlivanoğlu, B; Erdoğdu, İ.H.; Yildirim, Z.; Türk, B.A.; Darcan, S.; Darcan, S. Wound healing effect of kaempferol in diabetic and nondiabetic rats. J. Surg. Res., 2019, 233, 284-296.
[http://dx.doi.org/10.1016/j.jss.2018.08.009] [PMID: 30502261]
[55]
Zhang, Y.; Liu, D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur. J. Pharmacol., 2011, 670(1), 325-332.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.011] [PMID: 21914439]
[56]
Taiwo, F.O.; Oyedeji, O.; Osundahunsi, M.T. Anti-microbial and antioxidant properties of kaempferol-3-O-glycoside and 1-(4-Hydroxyphenyl)-3-phenylpropan-1-one isolated from the leaves of Annona muricata (Linn.). Br. J. Pharm. Res., 2019, 26(3), 1-13.
[57]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[58]
Aslam, S.; Khan, I.; Jameel, F.; Zaidi, M.B.; Salim, A. Umbilical cord-derived mesenchymal stem cells preconditioned with isorhamnetin: Potential therapy for burn wounds. World J. Stem Cells, 2020, 12(12), 1652-1666.
[http://dx.doi.org/10.4252/wjsc.v12.i12.1652] [PMID: 33505606]
[59]
Gong, G.; Guan, Y.Y.; Zhang, Z.L.; Rahman, K.; Wang, S.J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother., 2020, 128, 110301.
[http://dx.doi.org/10.1016/j.biopha.2020.110301] [PMID: 32502837]
[60]
Ponrasu, T.; Veerasubramanian, P.K.; Kannan, R.; Gopika, S.; Suguna, L.; Muthuvijayan, V. Morin incorporated polysaccharide–protein (psyllium–keratin) hydrogel scaffolds accelerate diabetic wound healing in Wistar rats. RSC Advances, 2018, 8(5), 2305-2314.
[http://dx.doi.org/10.1039/C7RA10334D] [PMID: 35541447]
[61]
Rajput, S.A.; Wang, X.; Yan, H.C. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed. Pharmacother., 2021, 138, 111511.
[http://dx.doi.org/10.1016/j.biopha.2021.111511] [PMID: 33744757]
[62]
Li, W.; Kandhare, A.D.; Mukherjee, A.A.; Bodhankar, S.L. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways. EXCLI J., 2018, 17, 399-419.
[PMID: 29805347]
[63]
Akiyama, S.; Katsumata, S.; Suzuki, K.; Nakaya, Y.; Ishimi, Y.; Uehara, M. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci. Biotechnol. Biochem., 2009, 73(12), 2779-2782.
[http://dx.doi.org/10.1271/bbb.90576] [PMID: 19966469]
[64]
Karayildirim, Ç.K. Characetrization and in vivo evolution of antibacterial efficacy of novel hesperidin micoremulsion. Celal Bayar University J Sci., 2017, 13(4), 943-947.
[65]
Wilmsen, P.K.; Spada, D.S.; Salvador, M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem., 2005, 53(12), 4757-4761.
[http://dx.doi.org/10.1021/jf0502000] [PMID: 15941311]
[66]
Pinho-Ribeiro, F.A.; Hohmann, M.S.N.; Borghi, S.M.; Zarpelon, A.C.; Guazelli, C.F.S.; Manchope, M.F.; Casagrande, R.; Verri, W.A., Jr Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: Role of TRPV1, oxidative stress, cytokines and NF-κ. B. Chem. Biol. Interact., 2015, 228, 88-99.
[http://dx.doi.org/10.1016/j.cbi.2015.01.011] [PMID: 25617481]
[67]
Kandhare, A.D.; Alam, J.; Patil, M.V.K.; Sinha, A.; Bodhankar, S.L. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharm. Biol., 2016, 54(3), 419-432.
[http://dx.doi.org/10.3109/13880209.2015.1038755] [PMID: 25894211]
[68]
Priscilla, D.H.; Roy, D.; Suresh, A.; Kumar, V.; Thirumurugan, K. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem. Biol. Interact., 2014, 210, 77-85.
[http://dx.doi.org/10.1016/j.cbi.2013.12.014] [PMID: 24412302]
[69]
Tiza, N.; Thato, M.; Raymond, D.; Jeremy, K.; Burtram, C.F. Additive antibacterial activity of naringenin and antibiotic combinations against multidrug resistant Staphylococcus aureus. Afr. J. Microbiol. Res., 2015, 9(23), 1513-1518.
[http://dx.doi.org/10.5897/AJMR2015.7514]
[70]
Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: An overview. Pharm. Biol., 2016, 54(12), 3203-3210.
[http://dx.doi.org/10.1080/13880209.2016.1216131] [PMID: 27564838]
[71]
Mohammadi, Z.; Sharif Zak, M.; Majdi, H.; Seidi, K.; Barati, M.; Akbarzadeh, A.; Latifi, A.M. The effect of chrysin-loaded nanofiber on wound healing process in male rat. Chem. Biol. Drug Des., 2017, 90(6), 1106-1114.
[http://dx.doi.org/10.1111/cbdd.12996] [PMID: 28388004]
[72]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Farkhondeh, T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol., 2016, 94(4), 388-393.
[http://dx.doi.org/10.1139/cjpp-2014-0412] [PMID: 26863330]
[73]
Alipour, M.; Pouya, B.; Aghazadeh, Z.; Kafil, H.S.; Ghorbani, M.; Alizadeh, S. The antimicrobial, antioxidative, and anti-inflammatory effects of polycaprolactone/gelatin scaffolds containing chrysin for regenerative endodontic purposes. Stem Cells Int., 2021, 2021, 3828777.
[74]
Naz, S.; Imran, M.; Rauf, A.; Orhan, I.E.; Shariati, M.A. Chrysin: Pharmacological and therapeutic properties. Life Sci., 2019, 235, 116797.
[75]
Park, E.; Lee, S.M.; Jung, I.K.; Lim, Y.; Kim, J.H. Effects of genistein on early-stage cutaneous wound healing. Biochem. Biophys. Res. Commun., 2011, 410(3), 514-519.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.013] [PMID: 21679688]
[76]
Babu, P.V.A.; Si, H.; Fu, Z.; Zhen, W.; Liu, D. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J. Nutr., 2012, 142(4), 724-730.
[http://dx.doi.org/10.3945/jn.111.152322] [PMID: 22399524]
[77]
Hong, H.; Landauer, M.R.; Foriska, M.A.; Ledney, G.D. Antibacterial activity of the soy isoflavone genistein. J. Basic Microbiol., 2006, 46(4), 329-335.
[http://dx.doi.org/10.1002/jobm.200510073] [PMID: 16847837]
[78]
Sharifi-Rad, J.; Quispe, C.; Imran, I.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; Zhilina, O.M.; Garsiya, E.R.; Smeriglio, A.; Trombetta, D.; Pons, D.G.; Martorell, M.; Cardoso, S.M.; Razis, A.F.A.; Sunusi, U.; Kamal, R.M.; Rotariu, L.S.; Butnariu, M.; Docea, A.O.; Calina, D. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell. Longev., 2021, 2021, 3268136.
[http://dx.doi.org/10.1155/2021/3268136]
[79]
Ji, G.; Yang, Q.; Hao, J.; Guo, L.; Chen, X.; Hu, J.; Leng, L.; Jiang, Z. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int. Immunopharmacol., 2011, 11(6), 762-768.
[http://dx.doi.org/10.1016/j.intimp.2011.01.036] [PMID: 21320636]
[80]
Van de Velde, F.; Esposito, D.; Grace, M.H.; Pirovani, M.E.; Lila, M.A. Anti-inflammatory and wound healing properties of polyphenolic extracts from strawberry and blackberry fruits. Food Res. Int., 2019, 121, 453-462.
[http://dx.doi.org/10.1016/j.foodres.2018.11.059] [PMID: 31108769]
[81]
Nasri, S.; Roghani, M.; Baluchnejadmojarad, T.; Rabani, T.; Balvardi, M. Vascular mechanisms of cyanidin-3-glucoside response in streptozotocin-diabetic rats. Pathophysiology, 2011, 18(4), 273-278.
[http://dx.doi.org/10.1016/j.pathophys.2011.03.001] [PMID: 21546226]
[82]
Li, L.; Zhou, P.; Wang, Y.; Pan, Y.; Chen, M.; Tian, Y.; Zhou, H.; Yang, B.; Meng, H.; Zheng, J. Antimicrobial activity of cyanidin-3-O-glucoside–lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chem., 2022, 383, 132410.
[http://dx.doi.org/10.1016/j.foodchem.2022.132410] [PMID: 35182879]
[83]
Acquaviva, R.; Russo, A.; Galvano, F.; Galvano, G.; Barcellona, M.L.; Li Volti, G.; Vanella, A. Cyanidin and cyanidin 3- O -β-D-glucoside as DNA cleavage protectors and antioxidants. Cell Biol. Toxicol., 2003, 19(4), 243-252.
[http://dx.doi.org/10.1023/B:CBTO.0000003974.27349.4e] [PMID: 14686616]
[84]
He, Y.H.; Xiao, C.; Wang, Y.S.; Zhao, L.H.; Zhao, H.Y.; Tong, Y.; Zhou, J.; Jia, H.W.; Lu, C.; Li, X.M.; Lu, A.P. [Antioxidant and anti-inflammatory effects of cyanidin from cherries on rat adjuvantinduced arthritis] Zhongguo Zhongyao Zazhi, 2005, 30(20), 1602-1605.
[PMID: 16422543]
[85]
Ali, B.H.; Marrif, H.; Noureldayem, S.A.; Bakheit, A.O.; Blunden, G. Some biological properties of curcumin: A review. Nat. Prod. Commun., 2006, 1(6), 1934578X0600100.
[http://dx.doi.org/10.1177/1934578X0600100613]
[86]
De, R.; Kundu, P.; Swarnakar, S.; Ramamurthy, T.; Chowdhury, A.; Nair, G.B.; Mukhopadhyay, A.K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob. Agents Chemother., 2009, 53(4), 1592-1597.
[http://dx.doi.org/10.1128/AAC.01242-08] [PMID: 19204190]
[87]
Schmidt, C.A.; Murillo, R.; Bruhn, T.; Bringmann, G.; Goettert, M.; Heinzmann, B.; Brecht, V.; Laufer, S.A.; Merfort, I. Catechin derivatives from Parapiptadenia rigida with in vitro wound-healing properties. J. Nat. Prod., 2010, 73(12), 2035-2041.
[http://dx.doi.org/10.1021/np100523s] [PMID: 21080642]
[88]
Mrabti, H.; Jaradat, N.; Fichtali, I.; Ouedrhiri, W.; Jodeh, S.; Ayesh, S.; Cherrah, Y.; Faouzi, M. Separation, identification, and antidiabetic activity of catechin isolated from Arbutus unedo L. plant roots. Plants, 2018, 7(2), 31.
[http://dx.doi.org/10.3390/plants7020031] [PMID: 29649130]
[89]
Taylor, P.W.; Hamilton-Miller, J.M.T.; Stapleton, P.D. Antimicrobial properties of green tea catechins. Food Sci. Technol. Bull., 2005, 2(7), 71-81.
[http://dx.doi.org/10.1616/1476-2137.14184] [PMID: 19844590]
[90]
Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal., 2008, 21(8), 589-598.
[http://dx.doi.org/10.1016/j.jfca.2008.03.011]
[91]
Baranwal, A.; Aggarwal, P.; Rai, A.; Kumar, N. Pharmacological actions and underlying mechanisms of catechin: A review. Mini Rev. Med. Chem., 2022, 22(5), 821-833.
[http://dx.doi.org/10.2174/1389557521666210902162120] [PMID: 34477517]
[92]
Elshamy, A.I.; Ammar, N.M.; Hassan, H.A.; El-Kashak, W.A.; Al-Rejaie, S.S.; Abd-ElGawad, A.M.; Farrag, A.R.H. Topical wound healing activity of myricetin isolated from Tecomaria capensis v. Aurea. Molecules, 2020, 25(21), 4870.
[http://dx.doi.org/10.3390/molecules25214870] [PMID: 33105570]
[93]
Park, K.S.; Chong, Y.; Kim, M.K. Myricetin: Biological activity related to human health. Appl. Biol. Chem., 2016, 59(2), 259-269.
[http://dx.doi.org/10.1007/s13765-016-0150-2]
[94]
Aloud, A.A.; Chinnadurai, V.; Govindasamy, C.; Alsaif, M.A.; Al-Numair, K.S. Galangin, a dietary flavonoid, ameliorates hyperglycaemia and lipid abnormalities in rats with streptozotocin-induced hyperglycaemia. Pharm. Biol., 2018, 56(1), 302-308.
[http://dx.doi.org/10.1080/13880209.2018.1474931] [PMID: 29952676]
[95]
Ouyang, J.; Sun, F.; Feng, W.; Xie, Y.; Ren, L.; Chen, Y. Antimicrobial activity of galangin and its effects on murein hydrolases of vancomycin-intermediate Staphylococcus aureus (VISA) strain Mu50. Chemotherapy, 2018, 63(1), 20-28.
[http://dx.doi.org/10.1159/000481658] [PMID: 29145175]
[96]
Aloud, A.A.; Veeramani, C.; Govindasamy, C.; Alsaif, M.A.; El Newehy, A.S.; Al-Numair, K.S. Galangin, a dietary flavonoid, improves antioxidant status and reduces hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Redox Rep., 2017, 22(6), 290-300.
[http://dx.doi.org/10.1080/13510002.2016.1273437] [PMID: 28030991]
[97]
Lee, H.N.; Shin, S.A.; Choo, G.S.; Kim, H.J.; Park, Y.S.; Kim, B.S.; Kim, S.K.; Cho, S.D.; Nam, J.S.; Choi, C.S.; Che, J.H.; Park, B.K.; Jung, J.Y. Anti inflammatory effect of quercetin and galangin in LPS stimulated RAW264.7 macrophages and DNCB induced atopic dermatitis animal models. Int. J. Mol. Med., 2018, 41(2), 888-898.
[PMID: 29207037]
[98]
Vinayagam, R.; Xu, B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab., 2015, 12(1), 60.
[http://dx.doi.org/10.1186/s12986-015-0057-7] [PMID: 26705405]
[99]
Bai, L.; Li, X.; He, L.; Zheng, Y.; Lu, H.; Li, J.; Zhong, L.; Tong, R.; Jiang, Z.; Shi, J.; Li, J. Antidiabetic potential of flavonoids from traditional Chinese medicine: A review. Am. J. Chin. Med., 2019, 47(5), 933-957.
[http://dx.doi.org/10.1142/S0192415X19500496] [PMID: 31248265]
[100]
Zhang, Z.; Ding, Y.; Dai, X.; Wang, J.; Li, Y. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur. J. Pharmacol., 2011, 670(1), 311-316.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.033] [PMID: 21925162]
[101]
Zang, M.; Xu, S.; Maitland-Toolan, K.A.; Zuccollo, A.; Hou, X.; Jiang, B.; Wierzbicki, M.; Verbeuren, T.J.; Cohen, R.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes, 2006, 55(8), 2180-2191.
[http://dx.doi.org/10.2337/db05-1188] [PMID: 16873680]
[102]
Jung, H.A.; Jin, S.E.; Ahn, B.R.; Lee, C.M.; Choi, J.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol., 2013, 59, 199-206.
[http://dx.doi.org/10.1016/j.fct.2013.05.061] [PMID: 23774261]
[103]
Zang, Y.; Zhang, L.; Igarashi, K.; Yu, C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct., 2015, 6(3), 834-841.
[http://dx.doi.org/10.1039/C4FO00844H] [PMID: 25599885]
[104]
Miyake, Y.; Yamamoto, K.; Tsujihara, N.; Osawa, T. Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids, 1998, 33(7), 689-695.
[http://dx.doi.org/10.1007/s11745-998-0258-y] [PMID: 9688172]
[105]
Bucolo, C.; Leggio, G.M.; Drago, F.; Salomone, S. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochem. Pharmacol., 2012, 84(1), 88-92.
[http://dx.doi.org/10.1016/j.bcp.2012.03.019] [PMID: 22484312]
[106]
Crespy, V.; Williamson, G. A review of the health effects of green tea catechins in in vivo animal models. J. Nutr., 2004, 134(12)(Suppl.), S3431-S3440.
[http://dx.doi.org/10.1093/jn/134.12.3431S] [PMID: 15570050]
[107]
Filios, S.R.; Xu, G.; Chen, J.; Hong, K.; Jing, G.; Shalev, A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J. Biol. Chem., 2014, 289(52), 36275-36283.
[http://dx.doi.org/10.1074/jbc.M114.592360] [PMID: 25391656]
[108]
Nakamura, A.; Shikata, K.; Nakatou, T.; Kitamura, T.; Kajitani, N.; Ogawa, D.; Makino, H. Combination therapy with an angiotensin-converting-enzyme inhibitor and an angiotensin II receptor antagonist ameliorates microinflammation and oxidative stress in patients with diabetic nephropathy. J. Diabetes Investig., 2013, 4(2), 195-201.
[http://dx.doi.org/10.1111/jdi.12004] [PMID: 24843652]
[109]
Boden, G.; Sargrad, K.; Homko, C.; Mozzoli, M.; Stein, T.P. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med., 2005, 142(6), 403-411.
[http://dx.doi.org/10.7326/0003-4819-142-6-200503150-00006] [PMID: 15767618]
[110]
Mo, C.; Wang, L.; Zhang, J.; Numazawa, S.; Tang, H.; Tang, X.; Han, X.; Li, J.; Yang, M.; Wang, Z.; Wei, D.; Xiao, H. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal., 2014, 20(4), 574-588.
[http://dx.doi.org/10.1089/ars.2012.5116] [PMID: 23875776]
[111]
Prasath, G.S.; Subramanian, S.P. Fisetin, a tetra hydroxy flavone recuperates antioxidant status and protects hepatocellular ultrastructure from hyperglycemia mediated oxidative stress in streptozotocin induced experimental diabetes in rats. Food Chem. Toxicol., 2013, 59, 249-255.
[http://dx.doi.org/10.1016/j.fct.2013.05.062] [PMID: 23791753]
[112]
Kim, H.J.; Kim, S.H.; Yun, J. Fisetin inhibits hyperglycaemia-induced proinflammatory cytokine production by epigenetic mechanisms. Evid. Based Compliment Alt. Med, 2012, 2012, 639469.
[113]
Kuai, M.; Li, Y.; Sun, X.; Ma, Z.; Lin, C.; Jing, Y.; Lu, Y.; Chen, Q.; Wu, X.; Kong, X.; Bian, H. A novel formula Sang-Tong-Jian improves glycometabolism and ameliorates insulin resistance by activating PI3K/AKT pathway in type 2 diabetic KKAy mice. Biomed. Pharmacother., 2016, 84, 1585-1594.
[http://dx.doi.org/10.1016/j.biopha.2016.10.101] [PMID: 27829545]
[114]
Ueda-Wakagi, M.; Nagayasu, H.; Yamashita, Y.; Ashida, H. Green tea ameliorates hyperglycaemia by promoting the translocation of glucose transporter 4 in the skeletal muscle of diabetic rodents. Int. J. Mol. Sci., 2019, 20(10), 2436.
[http://dx.doi.org/10.3390/ijms20102436] [PMID: 31100973]
[115]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[116]
Kerry, N.L.; Abbey, M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro1. Supported by the National Heart Foundation of Australia and the Australian Atherosclerosis Society.1. Atherosclerosis, 1997, 135(1), 93-102.
[http://dx.doi.org/10.1016/S0021-9150(97)00156-1] [PMID: 9395277]
[117]
Gupta, V.K.; Kumria, R.; Garg, M.; Gupta, M. Recent updates on free radicals scavenging flavonoids: An overview. Asian J. Plant Sci., 2010, 9(3), 108-117.
[http://dx.doi.org/10.3923/ajps.2010.108.117]
[118]
Comino-Sanz, I.M.; López-Franco, M.D.; Castro, B.; Pancorbo-Hidalgo, P.L. The role of antioxidants on wound healing: A review of the current evidence. J. Clin. Med., 2021, 10(16), 3558.
[http://dx.doi.org/10.3390/jcm10163558] [PMID: 34441854]
[119]
Hou, D.X.; Kumamoto, T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: Direct binding and molecular modeling. Antioxid. Redox Signal., 2010, 13(5), 691-719.
[http://dx.doi.org/10.1089/ars.2009.2816] [PMID: 20070239]
[120]
Lolli, G.; Cozza, G.; Mazzorana, M.; Tibaldi, E.; Cesaro, L.; Donella-Deana, A.; Meggio, F.; Venerando, A.; Franchin, C.; Sarno, S.; Battistutta, R.; Pinna, L.A. Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry, 2012, 51(31), 6097-6107.
[http://dx.doi.org/10.1021/bi300531c] [PMID: 22794353]
[121]
Yokoyama, T.; Kosaka, Y.; Mizuguchi, M. Structural insight into the interactions between death-associated protein kinase 1 and natural flavonoids. J. Med. Chem., 2015, 58(18), 7400-7408.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00893] [PMID: 26322379]
[122]
Guo, Y.Q.; Tang, G.H.; Lou, L.L.; Li, W.; Zhang, B.; Liu, B.; Yin, S. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: Isolation, modification, and structure-activity relationship study. Eur. J. Med. Chem., 2018, 144, 758-766.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.057] [PMID: 29291443]
[123]
Wahlang, B.; McClain, C.; Barve, S.; Gobejishvili, L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell. Signal., 2018, 49, 105-115.
[http://dx.doi.org/10.1016/j.cellsig.2018.06.005] [PMID: 29902522]
[124]
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 2018, 10(11), 1618-1641.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[125]
Yoon, J.H.; Baek, S.J. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med. J., 2005, 46(5), 585-596.
[http://dx.doi.org/10.3349/ymj.2005.46.5.585] [PMID: 16259055]
[126]
Li, Y.; Yu, Q.; Zhao, W.; Zhang, J.; Liu, W.; Huang, M.; Zeng, X. Oligomeric proanthocyanidins attenuate airway inflammation in asthma by inhibiting dendritic cells maturation. Mol. Immunol., 2017, 91, 209-217.
[http://dx.doi.org/10.1016/j.molimm.2017.09.012] [PMID: 28963930]
[127]
Galleggiante, V.; De Santis, S.; Cavalcanti, E.; Scarano, A.; De Benedictis, M.; Serino, G.; Caruso, M.L.; Mastronardi, M.; Pinto, A.; Campiglia, P.; Kunde, D.; Santino, A.; Chieppa, M. Dendritic cells modulate iron homeostasis and inflammatory abilities following quercetin exposure. Curr. Pharm. Des., 2017, 23(14), 2139-2146.
[PMID: 28079005]
[128]
Wu, D.; Kong, Y.; Han, C.; Chen, J.; Hu, L.; Jiang, H.; Shen, X. d-Alanine: d-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int. J. Antimicrob. Agents, 2008, 32(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.06.010] [PMID: 18774266]
[129]
Singh, S.P.; Konwarh, R.; Konwar, B.K.; Karak, N. Molecular docking studies on analogues of quercetin with d-alanine:d-alanine ligase of Helicobacter pylori. Med. Chem. Res., 2013, 22(5), 2139-2150.
[http://dx.doi.org/10.1007/s00044-012-0207-7]
[130]
Kragh, K.N.; Hutchison, J.B.; Melaugh, G.; Rodesney, C.; Roberts, A.E.L.; Irie, Y.; Jensen, P.Ø.; Diggle, S.P.; Allen, R.J.; Gordon, V.; Bjarnsholt, T. Role of Multicellular Aggregates in Biofilm Formation. MBio, 2016, 7(2), e00237-e16.
[http://dx.doi.org/10.1128/mBio.00237-16] [PMID: 27006463]
[131]
El-adawi, H. Inhibitory effect of grape seed extract (GSE) on cariogenic bacteria. J. Med. Plants Res., 2014, 6(34), 4883-4891.
[132]
Elmasri, W.A.; Zhu, R.; Peng, W.; Al-Hariri, M.; Kobeissy, F.; Tran, P.; Hamood, A.N.; Hegazy, M.F.; Paré, P.W.; Mechref, Y. Multitargeted flavonoid inhibition of the pathogenic bacterium Staphylococcus aureus: A proteomic characterization. J. Proteome Res., 2017, 16(7), 2579-2586.
[http://dx.doi.org/10.1021/acs.jproteome.7b00137] [PMID: 28541047]
[133]
Dzoyem, J.P.; Hamamoto, H.; Ngameni, B.; Ngadjui, B.T.; Sekimizu, K. Antimicrobial action mechanism of flavonoids from Dorstenia species. Drug Discov. Ther., 2013, 7(2), 66-72.
[PMID: 23715504]
[134]
Sanver, D.; Murray, B.S.; Sadeghpour, A.; Rappolt, M.; Nelson, A.L. Experimental modeling of flavonoid-biomembrane interactions. Langmuir, 2016, 32(49), 13234-13243.
[http://dx.doi.org/10.1021/acs.langmuir.6b02219] [PMID: 27951697]
[135]
Reygaert, W.C. The antimicrobial possibilities of green tea. Front. Microbiol., 2014, 5, 434.
[http://dx.doi.org/10.3389/fmicb.2014.00434] [PMID: 25191312]
[136]
Bouayed, J.; Bohn, T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev., 2010, 3(4), 228-237.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[137]
Ren, J.; Meng, S.; Lekka, C.E.; Kaxiras, E. Complexation of flavonoids with iron: Structure and optical signatures. J. Phys. Chem. B, 2008, 112(6), 1845-1850.
[http://dx.doi.org/10.1021/jp076881e] [PMID: 18211058]
[138]
Ruddock, P.S.; Charland, M.; Ramirez, S.; López, A.; Neil Towers, G.H.; Arnason, J.T.; Liao, M.; Dillon, J.A.R. Antimicrobial activity of flavonoids from Piper lanceaefolium and other Colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae. Sex. Transm. Dis., 2011, 38(2), 82-88.
[http://dx.doi.org/10.1097/OLQ.0b013e3181f0bdbd] [PMID: 20921932]
[139]
Tofighi, Z.; Molazem, M.; Doostdar, B.; Taban, P.; Shahverdi, A.R.; Samadi, N.; Yassa, N. Antimicrobial activities of three medicinal plants and investigation of flavonoids of Tripleurospermum disciforme. Iran. J. Pharm. Res., 2015, 14(1), 225-231.
[PMID: 25561928]
[140]
Samsonowicz, M.; Regulska, E.; Kalinowska, M. Hydroxyflavone metal complexes - molecular structure, antioxidant activity and biological effects. Chem. Biol. Interact., 2017, 273, 245-256.
[http://dx.doi.org/10.1016/j.cbi.2017.06.016] [PMID: 28625490]
[141]
Ahmed, S.I.; Hayat, M.Q.; Tahir, M.; Mansoor, Q.; Ismail, M.; Keck, K.; Bates, R.B. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement. Altern. Med., 2016, 16(1), 460.
[http://dx.doi.org/10.1186/s12906-016-1443-z] [PMID: 27835979]
[142]
Fang, Y.; Lu, Y.; Zang, X.; Wu, T.; Qi, X.; Pan, S.; Xu, X. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors. Sci. Rep., 2016, 6(1), 23634.
[http://dx.doi.org/10.1038/srep23634] [PMID: 27049530]
[143]
Xu, X.; Zhou, X.D.; Wu, C.D. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Arch. Oral Biol., 2012, 57(6), 678-683.
[http://dx.doi.org/10.1016/j.archoralbio.2011.10.021] [PMID: 22169220]
[144]
Soromou, L.W.; Zhang, Y.; Cui, Y.; Wei, M.; Chen, N.; Yang, X.; Huo, M.; Baldé, A.; Guan, S.; Deng, X.; Wang, D. Subinhibitory concentrations of pinocembrin exert anti- Staphylococcus aureus activity by reducing α -toxin expression. J. Appl. Microbiol., 2013, 115(1), 41-49.
[http://dx.doi.org/10.1111/jam.12221] [PMID: 23594163]
[145]
Aslam, M.S.; Ahmad, M.S.; Riaz, H.; Raza, S.A.; Hussain, S.; Qureshi, O.S.; Maria, P.; Hamzah, Z.; Javed, O. Role of Flavonoids as wound healing agent. Phytochemicals; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.79179]
[146]
Kant, V.; Jangir, B.L.; Sharma, M.; Kumar, V.; Joshi, V.G. Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacol. Immunotoxicol., 2021, 43(5), 536-553.
[http://dx.doi.org/10.1080/08923973.2021.1950758] [PMID: 34278923]
[147]
Shukla, R.; Kashaw, S.K.; Jain, A.P.; Lodhi, S. Fabrication of Apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int. J. Biol. Macromol., 2016, 91, 1110-1119.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.075] [PMID: 27344952]
[148]
Sidhu, G.S.; Mani, H.; Gaddipati, J.P.; Singh, A.K.; Seth, P.; Banaudha, K.K.; Patnaik, G.K.; Maheshwari, R.K. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen., 1999, 7(5), 362-374.
[http://dx.doi.org/10.1046/j.1524-475X.1999.00362.x] [PMID: 10564565]
[149]
Lodhi, S.; Singhai, A.K. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med., 2013, 6(4), 253-259.
[http://dx.doi.org/10.1016/S1995-7645(13)60053-X] [PMID: 23608325]
[150]
Lodhi, S.; Jain, A.P.; Sharma, V.K.; Singhai, A.K. Wound-healing effect of flavonoid-rich fraction from Tephrosia purpurea Linn. on streptozotocin-induced diabetic rats. J. Herbs Spices Med. Plants, 2013, 19(2), 191-205.
[http://dx.doi.org/10.1080/10496475.2013.779620]
[151]
Tie, L.; An, Y.; Han, J.; Xiao, Y.; Xiaokaiti, Y.; Fan, S.; Liu, S.; Chen, A.F.; Li, X. Genistein accelerates refractory wound healing by suppressing superoxide and FoxO1/iNOS pathway in type 1 diabetes. J. Nutr. Biochem., 2013, 24(1), 88-96.
[http://dx.doi.org/10.1016/j.jnutbio.2012.02.011] [PMID: 22819564]
[152]
Wang, L.; He, T.; Fu, A.; Mao, Z.; Yi, L.; Tang, S.; Yang, J. Hesperidin enhances angiogenesis via modulating expression of growth and inflammatory factor in diabetic foot ulcer in rats. Eur. J. Inflamm., 2018, 16, 1-13.
[http://dx.doi.org/10.1177/2058739218775255]
[153]
Ibrahim, F.B.; Islam, M.R.; Akand, M.M.U.; Anwar, R.; Islam, M.A.; Deb, A.K. Combined approach of vasodilators and surgical reconstruction in diabetic foot ulcer: Experience in a tertiary care hospital. BIRDEM Med. J., 2018, 8(2), 108-113.
[http://dx.doi.org/10.3329/birdem.v8i2.36639]
[154]
Okur, M.E.; Şakul, A.A.; Ayla, Ş.; Karadağ, A.E.; Şenyüz, C.Ş.; Batur, Ş.; Daylan, B.; Özdemı̇r, E.M.; Yücelı̇k, Ş.S.; Sı̇pahı̇, H.; Aydin, A. Wound healing effect of naringin gel in alloxan induced diabetic mice. Ankara Universitesi Eczacilik Fakultesi Dergisi, 2020, 44(3), 397-414.
[http://dx.doi.org/10.33483/jfpau.742224]
[155]
Kandhare, A.D.; Ghosh, P.; Bodhankar, S.L. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem. Biol. Interact., 2014, 219, 101-112.
[http://dx.doi.org/10.1016/j.cbi.2014.05.012] [PMID: 24880026]
[156]
Chen, L.Y.; Cheng, H.L.; Kuan, Y.H.; Liang, T.J.; Chao, Y.Y.; Lin, H.C. Therapeutic potential of luteolin on impaired wound healing in streptozotocin induced rats. Biomedicines, 2021, 9(7), 761.
[http://dx.doi.org/10.3390/biomedicines9070761] [PMID: 34209369]
[157]
Gallelli, G.; Cione, E.; Serra, R.; Leo, A.; Citraro, R.; Matricardi, P.; Di Meo, C.; Bisceglia, F.; Caroleo, M.C.; Basile, S.; Gallelli, L. Nano‐hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int. Wound J., 2020, 17(2), 485-490.
[http://dx.doi.org/10.1111/iwj.13299] [PMID: 31876118]
[158]
Khan, I.A.; Rizwan, A.; Abid, M.U.; Manzoor, A.; Khan, M.K.; Abbas, K. Formulation and evaluation of rutin-allicin gel against diabetic foot ulcer. Lat. Am. J. Pharm., 2020, 39(4), 725-729.
[159]
Mokhtari, M.; Razzaghi, R.; Momen-Heravi, M. The effects of curcumin intake on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double‐blind, placebo‐controlled trial. Phytother. Res., 2021, 35(4), 2099-2107.
[http://dx.doi.org/10.1002/ptr.6957] [PMID: 33200488]
[160]
Hu, Q.; Qu, C.; Xiao, X.; Zhang, W.; Jiang, Y.; Wu, Z.; Song, D.; Peng, X.; Ma, X.; Zhao, Y. Flavonoids on diabetic nephropathy: Advances and therapeutic opportunities. Chin. Med., 2021, 16(1), 74.
[http://dx.doi.org/10.1186/s13020-021-00485-4] [PMID: 34364389]
[161]
Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901.
[http://dx.doi.org/10.3390/molecules27092901] [PMID: 35566252]
[162]
Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release, 2019, 296, 190-201.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.029] [PMID: 30682442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy