Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Stem Cell Therapy in Combination with Naturopathy: Current Progressive Management of Diabetes and Associated Complications

Author(s): Aloke Saha, Asmita Samadder* and Sisir Nandi*

Volume 23, Issue 8, 2023

Published on: 26 December, 2022

Page: [649 - 689] Pages: 41

DOI: 10.2174/1568026623666221201150933

Price: $65

Abstract

Background: Diabetes is a chronic metabolic disorder having a global prevalence of nearly doubled over the last 30 years and has become one of the major health concerns worldwide. The number of adults with diabetes increased to 537 million in 2021.

Introduction: The overarching goal of diabetic research and treatment has always been to restore insulin independence and an average blood glucose level. Chemotherapeutic antidiabetic agents can manage diabetes but often show toxicity and drug resistance. Natural phytomedicines may be useful along with stem cell therapy for diabetes management. Even if the whole pancreatic organ and islet transplantation, are becoming benchmark techniques for diabetes management and control, a considerable scarcity of eligible donors of pancreatic tissues and organs severely limits their use. Stem cell treatment provides a bunch of possibilities for treating people with diabetes.

Methods: For this purpose, comprehensive article searching was conducted, with relevant material obtained using search engines such as Scopus, PubMed, MEDLINE, Google, and others, using appropriate keywords.

Results: Stem cell therapies, including induced pluripotent stem cells and mesenchymal stem cells, are now becoming a popular area of investigation. Recent advancements in stem cell therapy might provide a feasible treatment option. Furthermore, in recent years, some novel bioactive compounds derived from plants have demonstrated antidiabetic action with higher potency than oral hypoglycaemic medications. Recent regenerative medicine and stem cell treatment advancements might subsequently provide a feasible diabetic management option. On the other hand, medicinal herbs have been considered a better choice for the extensive treatment of diabetes.

Conclusion: If proper attention is not given to control diabetes by antidiabetic chemotherapeutic agents, natural phytomedicine, and sophisticated treatment like stem cell therapy, then the lifespan of patients will be decreased, and some associated secondary problems will also arise. So, the present review attempts to discuss naturopathy as an alternative resource in combination with stem cell therapy for the progressive management of diabetes and associated disorders.

Graphical Abstract

[1]
IDF NEWS Int. J. Dairy Technol., 1968, 21(2), 113-113.
[http://dx.doi.org/10.1111/j.1471-0307.1968.tb00311.x]
[2]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[3]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. In: Diabetes Research and Clinical Practice; Novo Nordisk: Bagsværd, Denmark, 2019; 157, p. 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[4]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[5]
Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat. Rev. Endocrinol., 2012, 8(4), 228-236.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[6]
Samadder, A. Nanotechnological approaches in diabetes treatment: A new horizon. World J. Transl. Med., 2014, 3(2), 84.
[http://dx.doi.org/10.5528/wjtm.v3.i2.84]
[7]
Elton, M.; Roveena, G.; Manish, R. Stem cell therapy: Recent success and continuing progress in treating diabetes. Int. J. Stem Cell Res. Ther., 2018, 5(1), 1410053.
[http://dx.doi.org/10.23937/2469-570X/1410053]
[8]
Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers, 2017, 3(1), 17016.
[http://dx.doi.org/10.1038/nrdp.2017.16] [PMID: 28358037]
[9]
Gregory, J.M.; Moore, D.J.; Simmons, J.H. Type 1 diabetes mellitus. Pediatr. Rev., 2013, 34(5), 203-215.
[http://dx.doi.org/10.1542/pir.34.5.203] [PMID: 23637249]
[10]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[11]
Murea, M.; Ma, L.; Freedman, B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud., 2012, 9(1), 6-22.
[http://dx.doi.org/10.1900/RDS.2012.9.6] [PMID: 22972441]
[12]
Ismail, L.; Materwala, H.; Al Kaabi, J. Association of risk factors with type 2 diabetes: A systematic review. Comput. Struct. Biotechnol. J., 2021, 19, 1759-1785.
[http://dx.doi.org/10.1016/j.csbj.2021.03.003] [PMID: 33897980]
[13]
Centers for Disease Control and Prevention (CDC). Prevalence of overweight and obesity among adults with diagnosed diabetes--United States, 1988-1994 and 1999-2002. MMWR Morb. Mortal. Wkly. Rep., 2004, 53(45), 1066-1068.
[PMID: 15549021]
[14]
Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA, 2008, 300(11), 1303-1310.
[http://dx.doi.org/10.1001/jama.300.11.1303] [PMID: 18799442]
[15]
Rother, K.I. Diabetes treatment--bridging the divide. N. Engl. J. Med., 2007, 356(15), 1499-1501.
[http://dx.doi.org/10.1056/NEJMp078030] [PMID: 17429082]
[16]
Sanghera, D.K.; Blackett, P.R. Type 2 diabetes genetics: Beyond GWAS. J. Diabetes Metab., 2012, 3(198), 6948.
[http://dx.doi.org/10.4172/2155-6156.1000198] [PMID: 23243555]
[17]
Ali, O. Genetics of type 2 diabetes. World J. Diabetes, 2013, 4(4), 114-123.
[http://dx.doi.org/10.4239/wjd.v4.i4.114] [PMID: 23961321]
[18]
Berumen, J.; Orozco, L.; Betancourt-Cravioto, M.; Gallardo, H.; Zulueta, M.; Mendizabal, L.; Simon, L.; Benuto, R.E.; Ramírez-Campos, E.; Marin, M.; Juárez, E.; García-Ortiz, H.; Martínez-Hernández, A.; Venegas-Vega, C.; Peralta-Romero, J.; Cruz, M.; Tapia-Conyer, R. Influence of obesity, parental history of diabetes, and genes in type 2 diabetes: A case-control study. Sci. Rep., 2019, 9(1), 2748.
[http://dx.doi.org/10.1038/s41598-019-39145-x] [PMID: 30808941]
[19]
Hani, E.H.; Boutin, P.; Durand, E.; Inoue, H.; Permutt, M.A.; Velho, G.; Froguel, P. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia, 1998, 41(12), 1511-1515.
[http://dx.doi.org/10.1007/s001250051098] [PMID: 9867219]
[20]
McCarthy, M.I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med., 2010, 363(24), 2339-2350.
[http://dx.doi.org/10.1056/NEJMra0906948] [PMID: 21142536]
[21]
Gao, H.; Salim, A.; Lee, J.; Tai, E.S.; van Dam, R.M. Can body fat distribution, adiponectin levels and inflammation explain differences in insulin resistance between ethnic Chinese, Malays and Asian Indians? Int. J. Obes., 2012, 36(8), 1086-1093.
[http://dx.doi.org/10.1038/ijo.2011.185] [PMID: 21946705]
[22]
Shan, Z.; Ma, H.; Xie, M.; Yan, P.; Guo, Y.; Bao, W.; Rong, Y.; Jackson, C.L.; Hu, F.B.; Liu, L. Sleep duration and risk of type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care, 2015, 38(3), 529-537.
[http://dx.doi.org/10.2337/dc14-2073] [PMID: 25715415]
[23]
Patel, S.R.; Zhu, X.; Storfer-Isser, A.; Mehra, R.; Jenny, N.S.; Tracy, R.; Redline, S. Sleep duration and biomarkers of inflammation. Sleep, 2009, 32(2), 200-204.
[http://dx.doi.org/10.1093/sleep/32.2.200] [PMID: 19238807]
[24]
Meier-Ewert, H.K.; Ridker, P.M.; Rifai, N.; Regan, M.M.; Price, N.J.; Dinges, D.F.; Mullington, J.M. Effect of sleep loss on C-Reactive protein, an inflammatory marker of cardiovascular risk. J. Am. Coll. Cardiol., 2004, 43(4), 678-683.
[http://dx.doi.org/10.1016/j.jacc.2003.07.050] [PMID: 14975482]
[25]
Harris, M.L.; Oldmeadow, C.; Hure, A.; Luu, J.; Loxton, D.; Attia, J. Stress increases the risk of type 2 diabetes onset in women: A 12-year longitudinal study using causal modelling. PLoS One, 2017, 12(2)e0172126
[http://dx.doi.org/10.1371/journal.pone.0172126] [PMID: 28222165]
[26]
Li, Y.; Gao, X.; Winkelman, J.W.; Cespedes, E.M.; Jackson, C.L.; Walters, A.S.; Schernhammer, E.; Redline, S.; Hu, F.B. Association between sleeping difficulty and type 2 diabetes in women. Diabetologia, 2016, 59(4), 719-727.
[http://dx.doi.org/10.1007/s00125-015-3860-9] [PMID: 26818148]
[27]
Kalghatgi, S.; Spina, C.S.; Costello, J.C.; Liesa, M.; Morones-Ramirez, J.R.; Slomovic, S.; Molina, A.; Shirihai, O.S.; Collins, J.J. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Transl. Med., 2013, 5(192), 192ra85.
[http://dx.doi.org/10.1126/scitranslmed.3006055] [PMID: 23825301]
[28]
Chang, S.A. Smoking and type 2 diabetes mellitus. Diabetes Metab. J., 2012, 36(6), 399-403.
[http://dx.doi.org/10.4093/dmj.2012.36.6.399] [PMID: 23275932]
[29]
Ye, Z.; Sharp, S.J.; Burgess, S.; Scott, R.A.; Imamura, F.; Langenberg, C.; Wareham, N.J.; Forouhi, N.G. Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol., 2015, 3(1), 35-42.
[http://dx.doi.org/10.1016/S2213-8587(14)70184-6] [PMID: 25281353]
[30]
Lin, J.; Hu, F.B.; Curhan, G.C. Associations of diet with albuminuria and kidney function decline. Clin. J. Am. Soc. Nephrol., 2010, 5(5), 836-843.
[http://dx.doi.org/10.2215/CJN.08001109] [PMID: 20299364]
[31]
Li, Y.; Chen, J.; Duan, L.; Li, S. Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Res. Clin. Pract., 2018, 136, 39-51.
[http://dx.doi.org/10.1016/j.diabres.2017.11.020] [PMID: 29196151]
[32]
Lu, L.; Bennett, D.A.; Millwood, I.Y.; Parish, S.; McCarthy, M.I.; Mahajan, A.; Lin, X.; Bragg, F.; Guo, Y.; Holmes, M.V.; Afzal, S.; Nordestgaard, B.G.; Bian, Z.; Hill, M.; Walters, R.G.; Li, L.; Chen, Z.; Clarke, R. Association of vitamin D with risk of type 2 diabetes: A Mendelian randomisation study in European and Chinese adults. PLoS Med., 2018, 15(5)e1002566
[http://dx.doi.org/10.1371/journal.pmed.1002566] [PMID: 29718904]
[33]
Gulseth, H.L.; Wium, C.; Angel, K.; Eriksen, E.F.; Birkeland, K.I. Effects of Vitamin D supplementation on insulin sensitivity and insulin secretion in subjects with type 2 diabetes and vitamin D deficiency: A randomized controlled trial. Diabetes Care, 2017, 40(7), 872-878.
[http://dx.doi.org/10.2337/dc16-2302] [PMID: 28468770]
[34]
Talaei, M.; Wang, Y.L.; Yuan, J.M.; Pan, A.; Koh, W.P. Meat, dietary heme iron, and risk of Type 2 Diabetes Mellitus. Am. J. Epidemiol., 2017, 186(7), 824-833.
[http://dx.doi.org/10.1093/aje/kwx156] [PMID: 28535164]
[35]
Alvarez-Bueno, C.; Cavero-Redondo, I.; Martinez-Vizcaino, V.; Sotos-Prieto, M.; Ruiz, J.R.; Gil, A. Effects of milk and dairy product consumption on Type 2 Diabetes: Overview of systematic reviews and meta-analyses. Adv. Nutr., 2019, 10(Suppl. 2), S154-S163.
[http://dx.doi.org/10.1093/advances/nmy107] [PMID: 31089734]
[36]
Grosso, G.; Godos, J.; Galvano, F.; Giovannucci, E.L. Coffee, caffeine, and health outcomes: An umbrella review. Annu. Rev. Nutr., 2017, 37(1), 131-156.
[http://dx.doi.org/10.1146/annurev-nutr-071816-064941] [PMID: 28826374]
[37]
Fang, X.; Han, H.; Li, M.; Liang, C.; Fan, Z.; Aaseth, J.; He, J.; Montgomery, S.; Cao, Y. Dose-response relationship between dietary magnesium intake and risk of type 2 diabetes mellitus: A systematic review and meta-regression analysis of prospective cohort studies. Nutrients, 2016, 8(11), 739.
[http://dx.doi.org/10.3390/nu8110739] [PMID: 27869762]
[38]
Quansah, D.; Ha, K.; Jun, S.; Kim, S.A.; Shin, S.; Wie, G.A.; Joung, H. Associations of dietary antioxidants and risk of Type 2 Diabetes: Data from the 2007-2012 Korea National Health and Nutrition Examination Survey. Molecules, 2017, 22(10), 1664.
[http://dx.doi.org/10.3390/molecules22101664] [PMID: 28981464]
[39]
Villegas, R.; Goodloe, R.J.; McClellan, B.E., Jr; Boston, J.; Crawford, D.C. Gene-carbohydrate and gene-fiber interactions and type 2 diabetes in diverse populations from the National Health and Nutrition Examination Surveys (NHANES) as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study. BMC Genet., 2014, 15(1), 69.
[http://dx.doi.org/10.1186/1471-2156-15-69] [PMID: 24929251]
[40]
Wu, J.H.Y.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br. J. Nutr., 2012, 107(Suppl. 2), S214-S227.
[http://dx.doi.org/10.1017/S0007114512001602] [PMID: 22591895]
[41]
Dey, S.; Samadder, A.; Nandi, S. Exploring current role of nanotechnology used in food processing industry to control food additives and their biochemical mechanisms. Curr. Drug Targets, 2022, 23(5), 513-539.
[http://dx.doi.org/10.2174/1389450123666211216150355] [PMID: 34915833]
[42]
Dey, R.; Nandi, S.; Samadder, A. Pelargonidin mediated selective activation of p53 and parp proteins in preventing food additive induced genotoxicity: An in vivo coupled in silico molecular docking study. Eur. J. Pharm. Sci., 2021, 156, 105586.
[http://dx.doi.org/10.1016/j.ejps.2020.105586] [PMID: 33039567]
[43]
Piper, M.S.; Saad, R.J. Diabetes mellitus and the colon. Curr. Treat. Options Gastroenterol., 2017, 15(4), 460-474.
[http://dx.doi.org/10.1007/s11938-017-0151-1] [PMID: 29063998]
[44]
Novak, J.S.S.; Baksh, S.C.; Fuchs, E. Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes Dev., 2021, 35(3-4), 199-211.
[http://dx.doi.org/10.1101/gad.346973.120] [PMID: 33526586]
[45]
Kido, Y. Gene-environment interaction in type 2 diabetes. Diabetol. Int., 2017, 8(1), 7-13.
[http://dx.doi.org/10.1007/s13340-016-0299-2] [PMID: 30603301]
[46]
Ding, G.L.; Wang, F.F.; Shu, J.; Tian, S.; Jiang, Y.; Zhang, D.; Wang, N.; Luo, Q.; Zhang, Y.; Jin, F.; Leung, P.C.K.; Sheng, J.Z.; Huang, H.F. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes, 2012, 61(5), 1133-1142.
[http://dx.doi.org/10.2337/db11-1314] [PMID: 22447856]
[47]
Sandovici, I.; Smith, N.H.; Nitert, M.D.; Ackers-Johnson, M.; Uribe-Lewis, S.; Ito, Y.; Jones, R.H.; Marquez, V.E.; Cairns, W.; Tadayyon, M.; O’Neill, L.P.; Murrell, A.; Ling, C.; Constância, M.; Ozanne, S.E. Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc. Natl. Acad. Sci. USA, 2011, 108(13), 5449-5454.
[http://dx.doi.org/10.1073/pnas.1019007108] [PMID: 21385945]
[48]
Raychaudhuri, N.; Raychaudhuri, S.; Thamotharan, M.; Devaskar, S.U. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J. Biol. Chem., 2008, 283(20), 13611-13626.
[http://dx.doi.org/10.1074/jbc.M800128200] [PMID: 18326493]
[49]
Ogino, S.; Nowak, J.A.; Hamada, T.; Milner, D.A., Jr; Nishihara, R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu. Rev. Pathol., 2019, 14(1), 83-103.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012818] [PMID: 30125150]
[50]
Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev., 2005, 26(2), 19-39.
[PMID: 16278749]
[51]
Gupta, B.B.P. Mechanism of insulin action. Curr. Sci., 1997, 73(11), 993-1003.
[52]
Mayfield, J.A.; White, R.D. Insulin therapy for type 2 diabetes: Rescue, augmentation, and replacement of beta-cell function. Am. Fam. Phys., 2004, 70(3), 489-500.
[PMID: 15317436]
[53]
Unger, J.; Parkin, C. Hypoglycemia in insulin-treated diabetes: A case for increased vigilance. Postgrad. Med., 2011, 123(4), 81-91.
[http://dx.doi.org/10.3810/pgm.2011.07.2307] [PMID: 21680992]
[54]
Radermecker, R.P.; Piérard, G.E.; Scheen, A.J. Lipodystrophy reactions to insulin: effects of continuous insulin infusion and new insulin analogs. Am. J. Clin. Dermatol., 2007, 8(1), 21-28.
[http://dx.doi.org/10.2165/00128071-200708010-00003] [PMID: 17298103]
[55]
Rybicka, M.; Krysiak, R.; Okopień, B. The dawn phenomenon and the Somogyi effect-two phenomena of morning hyperglycaemia. Endokrynol. Pol., 2011, 62(3), 276-284.
[PMID: 21717414]
[56]
Viollet, B.; Guigas, B.; Garcia, N.S.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. (Lond.), 2012, 122(6), 253-270.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[57]
Collier, C.A.; Bruce, C.R.; Smith, A.C.; Lopaschuk, G.; Dyck, D.J. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2006, 291(1), E182-E189.
[http://dx.doi.org/10.1152/ajpendo.00272.2005] [PMID: 16478780]
[58]
Fogelman, Y.; Kitai, E.; Blumberg, G.; Golan-Cohen, A.; Rapoport, M.; Carmeli, E. Vitamin B12 screening in metformin-treated diabetics in primary care: Were elderly patients less likely to be tested? Aging Clin. Exp. Res., 2017, 29(2), 135-139.
[http://dx.doi.org/10.1007/s40520-016-0546-1] [PMID: 26914484]
[59]
Harris, K.B.; McCarty, D.J. Efficacy and tolerability of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus. Ther. Adv. Endocrinol. Metab., 2015, 6(1), 3-18.
[http://dx.doi.org/10.1177/2042018814558242] [PMID: 25678952]
[60]
Derosa, G.; Maffioli, P. GLP-1 agonists exenatide and liraglutide: A review about their safety and efficacy. Curr. Clin. Pharmacol., 2012, 7(3), 214-228.
[http://dx.doi.org/10.2174/157488412800958686] [PMID: 22432846]
[61]
Proks, P.; Reimann, F.; Green, N.; Gribble, F.; Ashcroft, F. Sulfonylurea stimulation of insulin secretion. Diabetes, 2002, 51(Suppl. 3), S368-S376.
[http://dx.doi.org/10.2337/diabetes.51.2007.S368] [PMID: 12475777]
[62]
Chiniwala, N.; Jabbour, S. Management of diabetes mellitus in the elderly. Curr. Opin. Endocrinol. Diabetes Obes., 2011, 18(2), 148-152.
[http://dx.doi.org/10.1097/MED.0b013e3283444ba0] [PMID: 21522002]
[63]
Van Staa, T.; Abenhaim, L.; Monette, J. Rates of hypoglycemia in users of sulfonylureas. J. Clin. Epidemiol., 1997, 50(6), 735-741.
[http://dx.doi.org/10.1016/S0895-4356(97)00024-3] [PMID: 9250272]
[64]
Shorr, R.I.; Ray, W.A.; Daugherty, J.R.; Griffin, M.R. Individual sulfonylureas and serious hypoglycemia in older people. J. Am. Geriatr. Soc., 1996, 44(7), 751-755.
[http://dx.doi.org/10.1111/j.1532-5415.1996.tb03729.x] [PMID: 8675920]
[65]
Scheen, A.J. Drug interactions of clinical importance with antihyperglycaemic agents. Drug Saf., 2005, 28(7), 601-631.
[http://dx.doi.org/10.2165/00002018-200528070-00004]
[66]
Hurren, K.M.; Dunham, M.W. Are thiazolidinediones a preferred drug treatment for type 2 diabetes? Expert Opin. Pharmacother., 2021, 22(2), 131-133.
[http://dx.doi.org/10.1080/14656566.2020.1853100] [PMID: 33280446]
[67]
Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med., 2004, 351(11), 1106-1118.
[http://dx.doi.org/10.1056/NEJMra041001] [PMID: 15356308]
[68]
Yoon, K.H.; Lee, J.H.; Kim, J.W.; Cho, J.H.; Choi, Y.H.; Ko, S.H.; Zimmet, P.; Son, H.Y. Epidemic obesity and type 2 diabetes in Asia. Lancet, 2006, 368(9548), 1681-1688.
[http://dx.doi.org/10.1016/S0140-6736(06)69703-1] [PMID: 17098087]
[69]
Coniff, R.F.; Shapiro, J.A.; Seaton, T.B.; Bray, G.A. Multicenter, placebo-controlled trial comparing acarbose (BAY g 5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am. J. Med., 1995, 98(5), 443-451.
[http://dx.doi.org/10.1016/S0002-9343(99)80343-X] [PMID: 7733122]
[70]
Derosa, G.; Maffioli, P. Mini-Special Issue paper Management of diabetic patients with hypoglycemic agents α-glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci., 2012, 5(5), 899-906.
[http://dx.doi.org/10.5114/aoms.2012.31621] [PMID: 23185202]
[71]
Kawamori, R.; Tajima, N.; Iwamoto, Y.; Kashiwagi, A.; Shimamoto, K.; Kaku, K. Voglibose for prevention of type 2 diabetes mellitus: A randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet, 2009, 373(9675), 1607-1614.
[http://dx.doi.org/10.1016/S0140-6736(09)60222-1] [PMID: 19395079]
[72]
Pathak, R.; Bridgeman, M.B. Dipeptidyl Peptidase-4 (DPP-4) inhibitors in the management of diabetes. P&T, 2010, 35(9), 509-513.
[PMID: 20975810]
[73]
Pratley, R.E.; Salsali, A. Inhibition of DPP-4: A new therapeutic approach for the treatment of type 2 diabetes. Curr. Med. Res. Opin., 2007, 23(4), 919-931.
[http://dx.doi.org/10.1185/030079906X162746] [PMID: 17407649]
[74]
Barnett, A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int. J. Clin. Pract., 2006, 60(11), 1454-1470.
[http://dx.doi.org/10.1111/j.1742-1241.2006.01178.x] [PMID: 17073841]
[75]
Riser Taylor, S.; Harris, K.B. The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus. Pharmacotherapy, 2013, 33(9), 984-999.
[http://dx.doi.org/10.1002/phar.1303] [PMID: 23744749]
[76]
Prabhakar, P.K.; Doble, M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin. J. Integr. Med., 2011, 17(8), 563-574.
[http://dx.doi.org/10.1007/s11655-011-0810-3] [PMID: 21826590]
[77]
Kumar, K.; Fateh, V.; Verma, B.; Pandey, S. Some herbal drugs used for treatment of diabetes. Int. J. Res. Dev. Pharm. L. Sci., 2014, 3(5), 1116-1120.
[78]
Wachtel-Galor, S.; Benzie, I.F.F. Herbal Medicine: An introduction to its history, usage, regulation, current trends, and research needs. In: Herbal Medicine: Biomolecular and Clinical Aspects; Benzie, I.F.F.; Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, 2011.
[79]
Gupta, R.; Bajpai, K.G.; Johri, S.; Saxena, A.M. An overview of Indian novel traditional medicinal plants with anti-diabetic potentials. Afr. J. Tradit. Complement. Altern. Med., 2007, 5(1), 1-17.
[PMID: 20162049]
[80]
Peczuh, M.W.; Hamilton, A.D. Peptide and protein recognition by designed molecules. Chem. Rev., 2000, 100(7), 2479-2494.
[http://dx.doi.org/10.1021/cr9900026] [PMID: 11749292]
[81]
Saha, S.K.; Khuda-Bukhsh, A.R. Molecular approaches towards development of purified natural products and their structurally known derivatives as efficient anti-cancer drugs: Current trends. Eur. J. Pharmacol., 2013, 714(1-3), 239-248.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.009] [PMID: 23819913]
[82]
Henkel, T.; Brunne, R.M.; Müller, H.; Reichel, F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed., 1999, 38(5), 643-647.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990301)38:5<643:AID-ANIE643>3.0.CO;2-G] [PMID: 29711552]
[83]
Pati, R.; Muthukumar, M. Genetic Transformation of Bael (Aegle marmelos Corr.). In: Biotechnology of Neglected and Underutilized Crops; Jain, S.M.; Dutta Gupta, S., Eds.; Springer Netherlands: Dordrecht, 2013; pp. 343-365.
[http://dx.doi.org/10.1007/978-94-007-5500-0_14]
[84]
Prajapat, R.; Gupta, V.; Soni, B.; Choudhary, D.; Ram, V.; Bh, A. Ari. Extraction and isolation of marmelosin from Aegle marmelos, synthesis and evaluation of their derivative as antidiabetic agent. Pharm. Lett., 2012, 4, 1085-1092.
[85]
Li, J.; Zhang, M.; Zheng, T. The in vitro antioxidant activity of lotus germ oil from supercritical fluid carbon dioxide extraction. Food Chem., 2009, 115(3), 939-944.
[http://dx.doi.org/10.1016/j.foodchem.2009.01.008]
[86]
Bodduluru, L.N.; Kasala, E.R.; Madhana, R.M.; Barua, C.C.; Hussain, M.I.; Haloi, P.; Borah, P. Naringenin ameliorates inflammation and cell proliferation in benzo(a)pyrene induced pulmonary carcinogenesis by modulating CYP1A1, NFκB and PCNA expression. Int. Immunopharmacol., 2016, 30, 102-110.
[http://dx.doi.org/10.1016/j.intimp.2015.11.036] [PMID: 26655880]
[87]
Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological properties and bioactive components of Allium cepa L.: focus on potential benefits in the treatment of obesity and related comorbidities. Molecules, 2018, 24(1), 119.
[http://dx.doi.org/10.3390/molecules24010119] [PMID: 30598012]
[88]
Tran, N.; Pham, B.; Le, L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel), 2020, 9(9), 252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[89]
Aggarwal, N.; Shishu, A. Review of recent investigations on medicinal herbs possessing anti-diabetic properties. J. Nutr. Disord. Ther., 2011, 1(1)1000102
[http://dx.doi.org/10.4172/2161-0509.1000102]
[90]
Faroughi, F.; Mohammad-Alizadeh Charandabi, S.; Javadzadeh, Y.; Mirghafourvand, M. Effects of garlic pill on blood glucose level in borderline gestational diabetes mellitus: A randomized controlled trial. Iran. Red Crescent Med. J., 2018, 20(7), 60675.
[http://dx.doi.org/10.5812/ircmj.60675]
[91]
Sharifi-Rad, J.; Cristina Cirone Silva, N.; Jantwal, A.; Bhatt, D.I.; Sharopov, F.; Cho, W.; Taheri, Y.; Martins, N. Therapeutic potential of allicin-rich garlic preparations: Emphasis on clinical evidence toward upcoming drugs formulation. Appl. Sci. (Basel), 2019, 9(24), 5555.
[http://dx.doi.org/10.3390/app9245555]
[92]
El-Saber Batiha, G.; Magdy Beshbishy, A.; G Wasef, L. Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 2020, 12(3), 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[93]
Nugroho, A.; Warditiani, N.K.; Pramono, S.; Andrie, M.; Siswanto, E.; Lukitaningsih, E. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian J. Pharmacol., 2012, 44(3), 377-381.
[http://dx.doi.org/10.4103/0253-7613.96343] [PMID: 22701250]
[94]
Preeti, S.; Kamlesh, S.; Pushpa, P.; Shashikant, C.; Sahu, R.K.; Roy, A. Approach to phytochemistry and mechaniasm of action of plants having antidiabetic activity. UK J. Pharmaceut. Biosci., 2016, 4(1), 82-120.
[http://dx.doi.org/10.20510/ukjpb/4/i1/90385]
[95]
Qi, C.; Zhou, Q.; Yuan, Z.; Luo, Z.; Dai, C.; Zhu, H.; Chen, C.; Xue, Y.; Wang, J.; Wang, Y.; Liu, Y.; Xiang, M.; Sun, W.; Zhang, J.; Zhang, Y. Kinsenoside: A promising bioactive compound from anoectochilus species. Curr. Med. Sci., 2018, 38(1), 11-18.
[http://dx.doi.org/10.1007/s11596-018-1841-1] [PMID: 30074146]
[96]
Rehman, S.U.; Kim, S.; Choi, M.S.; Luo, Z.; Yao, G.; Xue, Y.; Zhang, Y.; Yoo, H.H. Evaluation of metabolic stability of kinsenoside, an antidiabetic candidate, in rat and human liver microsomes. Mass Spectrom. Lett., 2015, 6(2), 48-51.
[http://dx.doi.org/10.5478/MSL.2015.6.2.48]
[97]
Zhang, Y.; Cai, J.; Ruan, H.; Pi, H.; Wu, J. Antihyperglycemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in streptozotocin diabetic rats. J. Ethnopharmacol., 2007, 114(2), 141-145.
[http://dx.doi.org/10.1016/j.jep.2007.05.022] [PMID: 17869039]
[98]
Patel, B.H.; Mandot, A.A.; Jha, P.K. Extraction, characterization and application of Azadirachta indica leaves for development of hygienic lycra filament. J. Int. Acad. Res. Multidisciplin., 2014, 1(12), 65-84.
[99]
Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P.A. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40(3), 163-173.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[100]
Paari, E.; Pari, L. Role of some phytochemicals in the management of Diabetes Mellitus: A review. JMPR, 2019, 3(4), 515-520.
[101]
Chakrabarti, R.; Bhavtaran, S.; Narendra, P.; Varghese, N.; Vanchhawbg, L.; Shihabudeen, H.M.S.; Thirumurgan, K. Dipeptidyl Peptidase-IV inhibitory activity of Berberis aristata. J. Nat. Prod., 2011, 4, 158-163.
[102]
Mohanty, I.; Kumar, S.; Rajesh, S. Dipeptidyl Peptidase IV inhibitory activity of Berberine and Mangiferin: An in silico approach. Int. J. Clin. Endocrinol. Metab., 2017, 31(1), 018-022.
[http://dx.doi.org/10.17352/ijcem.000024]
[103]
Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008, 57(5), 712-717.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[104]
Tian, X.; Liu, F.; Li, Z.; Lin, Y.; Liu, H.; Hu, P.; Chen, M.; Sun, Z.; Xu, Z.; Zhang, Y.; Han, L.; Zhang, Y.; Pan, G.; Huang, C. Enhanced anti-diabetic effect of Berberine Combined With Timosaponin B2 in Goto-Kakizaki rats, associated with increased variety and exposure of effective substances through intestinal absorption. Front. Pharmacol., 2019, 10, 19.
[http://dx.doi.org/10.3389/fphar.2019.00019] [PMID: 30733676]
[105]
Pari, L.; Satheesh, M.A. Antidiabetic activity of Boerhaavia diffusa L.: effect on hepatic key enzymes in experimental diabetes. J. Ethnopharmacol., 2004, 91(1), 109-113.
[http://dx.doi.org/10.1016/j.jep.2003.12.013] [PMID: 15036478]
[106]
Mishra, S.; Aeri, V.; Gaur, P.K.; Jachak, S.M. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Res. Int., 2014, 2014, 1-19.
[http://dx.doi.org/10.1155/2014/808302] [PMID: 24949473]
[107]
Bule, M.; Abdurahman, A.; Nikfar, S.; Abdollahi, M.; Amini, M. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem. Toxicol., 2019, 125, 494-502.
[http://dx.doi.org/10.1016/j.fct.2019.01.037] [PMID: 30735748]
[108]
Thirumalai, T.; Therasa, S.V.; Elumalai, E.K.; David, E. Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac. J. Trop. Biomed., 2011, 1(4), 323-325.
[http://dx.doi.org/10.1016/S2221-1691(11)60052-X] [PMID: 23569784]
[109]
Axelsson, A.S.; Tubbs, E.; Mecham, B.; Chacko, S.; Nenonen, H.A.; Tang, Y.; Fahey, J.W.; Derry, J.M.J.; Wollheim, C.B.; Wierup, N.; Haymond, M.W.; Friend, S.H.; Mulder, H.; Rosengren, A.H. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci. Transl. Med., 2017, 9(394)eaah4477
[http://dx.doi.org/10.1126/scitranslmed.aah4477] [PMID: 28615356]
[110]
Gu, Z.; Guo, Q.; Gu, Y. Factors influencing glucoraphanin and sulforaphane formation in brassica plants: A review. J. Integr. Agric., 2012, 11(11), 1804-1816.
[http://dx.doi.org/10.1016/S2095-3119(12)60185-3]
[111]
Naik, S.R.; Filho, J.M.B.; Dhuley, J.N.; Deshmukh, V. Probable mechanism of hypoglycemic activity of bassic acid, a natural product isolated from Bumelia sartorum. J. Ethnopharmacol., 1991, 33(1-2), 37-44.
[http://dx.doi.org/10.1016/0378-8741(91)90158-A] [PMID: 1943171]
[112]
Mohammed, A.; Kumar, D.; Rizvi, S. Emergence of traditional antidiabetic treatments as starting points for development of modern medicine. J. Exp. Integr. Med., 2015, 5(3), 121.
[http://dx.doi.org/10.5455/jeim.160615.rw.012]
[113]
Pal, D.; Sachan, N.; Ghosh, A.K.; Mishra, P. Biological activities and medicinal properties of Cajanus cajan (L.). Millsp. J. Adv. Pharm. Technol. Res., 2011, 2(4), 207-214.
[http://dx.doi.org/10.4103/2231-4040.90874] [PMID: 22247887]
[114]
Ezike, A.C.; Akah, P.A.; Okoli, C.C.; Okpala, C.B. Experimental evidence for the antidiabetic activity of Cajanus cajan leaves in rats. J. Basic Clin. Pharm., 2010, 1(2), 81-84.
[PMID: 24825970]
[115]
Danese, C.; Esposito, D.; D’Alfonso, V.; Cirene, M.; Ambrosino, M.; Colotto, M. Plasma glucose level decreases as collateral effect of fermented papaya preparation use. Clin. Ter., 2006, 157(3), 195-198.
[PMID: 16900843]
[116]
Airaodion, A. Antidiabetic effect of ethanolic extract of Carica papaya leaves in alloxan-induced diabetic rats. Am. J. Biomed. Sci. Res., 2019, 5(3), 227-234.
[http://dx.doi.org/10.34297/AJBSR.2019.05.000917]
[117]
Kondratiuk, T.; Beregova, T.; Ostapchenko, L.; Srivastava, A.K.; Singh, V.K.; Elbayaa, R.Y.; Abdelwahab, I.A.; Youssef, F.S.; Ashour, M.L. Antimicrobial activity of papain. In: Antimicrobial activity of natural substances; JB Books: Poznań: Poland, 2017; pp. 19-34.
[http://dx.doi.org/10.5281/ZENODO.1014019]
[118]
Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules, 2021, 26(12), 3625.
[http://dx.doi.org/10.3390/molecules26123625] [PMID: 34199316]
[119]
Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health benefits and pharmacological properties of Carvone. Biomolecules, 2021, 11(12), 1803.
[http://dx.doi.org/10.3390/biom11121803] [PMID: 34944447]
[120]
Girme, A.; Gaikar, N.; Saste, G.; Kunkulol, R. Chemical studies on antidiabetic botanical drug: Cassia auriculata. J. Pharmacogn. Phytochem., 2018, 7(5), 3417-3424.
[121]
Murali, R.; Saravanan, R. Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomed. Prevent. Nutr., 2012, 2(4), 269-275.
[http://dx.doi.org/10.1016/j.bionut.2012.08.008]
[122]
Pari, L.; Latha, M. Antidiabetic activity of Cassia auriculata flowers: Effect on lipid peroxidation in streptozotocin diabetes rats. Pharm. Biol., 2002, 40(7), 512-517.
[http://dx.doi.org/10.1076/phbi.40.7.512.14683]
[123]
Daisy, P.; Balasubramanian, K.; Rajalakshmi, M.; Eliza, J.; Selvaraj, J. Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats. Phytomedicine, 2010, 17(1), 28-36.
[http://dx.doi.org/10.1016/j.phymed.2009.10.018] [PMID: 19931438]
[124]
Yao, X.; Chen, F.; Li, P.; Quan, L.; Chen, J.; Yu, L.; Ding, H.; Li, C.; Chen, L.; Gao, Z.; Wan, P.; Hu, L.; Jiang, H.; Shen, X. Natural product vindoline stimulates insulin secretion and efficiently ameliorates glucose homeostasis in diabetic murine models. J. Ethnopharmacol., 2013, 150(1), 285-297.
[http://dx.doi.org/10.1016/j.jep.2013.08.043] [PMID: 24012527]
[125]
Zhu, X.; Zeng, X.; Sun, C.; Chen, S. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front. Med., 2014, 8(3), 285-293.
[http://dx.doi.org/10.1007/s11684-014-0350-2] [PMID: 25159992]
[126]
Subash Babu, P.; Prabuseenivasan, S.; Ignacimuthu, S. Cinnamaldehyde-A potential antidiabetic agent. Phytomedicine, 2007, 14(1), 15-22.
[http://dx.doi.org/10.1016/j.phymed.2006.11.005] [PMID: 17140783]
[127]
Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Use of essential oils to inhibit Alicyclobacillus acidoterrestris: A short overview of the literature. Front. Microbiol., 2011, 2, 195.
[http://dx.doi.org/10.3389/fmicb.2011.00195] [PMID: 21991262]
[128]
Bisht, V.K. Cinnamomum tamala (Buch.-Ham.) T. Nees & Eberm.: An Alternative Source of Natural Linalool. Natl. Acad. Sci. Lett., 2021, 44(1), 59-61.
[http://dx.doi.org/10.1007/s40009-020-00911-5]
[129]
Chanotiya, C.S.; Yadav, A. Enantioenriched (3S)-(+)-Linalool in the Leaf Oil of Cinnamomum tamala Nees et Eberm. from Kumaon. J. Essent. Oil Res., 2010, 22(6), 593-596.
[http://dx.doi.org/10.1080/10412905.2010.9700407]
[130]
More, T.; Kulkarni, B.; Nalawade, M.; Arvindekar, A. Antidiabetic Activity of Linalool and Limonene in Streptozotocin-Induced Diabetic Rat: A Combinatorial Therapy Approach. Int. J. Pharm. Pharm. Sci., 2014, 6, 159-163.
[131]
Verspohl, E.J.; Bauer, K.; Neddermann, E. Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum In vivo and In vitro. Phytother. Res., 2005, 19(3), 203-206.
[http://dx.doi.org/10.1002/ptr.1643] [PMID: 15934022]
[132]
Ranasinghe, P.; Pigera, S.; Premakumara, G.A.S.; Galappaththy, P.; Constantine, G.R.; Katulanda, P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): A systematic review. BMC Complement. Altern. Med., 2013, 13(1), 275.
[http://dx.doi.org/10.1186/1472-6882-13-275] [PMID: 24148965]
[133]
Koyagura, N.; Kumar, V.H.; Shanmugam, C. Anti-diabetic and hypolipidemic effect of Coccinia indica in glucocorticoid induced insulin resistance. Biomed. Pharmacol. J., 2021, 14(1), 133-140.
[http://dx.doi.org/10.13005/bpj/2107]
[134]
Fu, M.; Wang, L.; Wang, X.; Deng, B.; Hu, X.; Zou, J. Determination of the five main terpenoids in different tissues of Wolfiporia cocos. Molecules, 2018, 23(8), 1839.
[http://dx.doi.org/10.3390/molecules23081839] [PMID: 30042340]
[135]
Pereira, M.A.; Parker, E.D.; Folsom, A.R. Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch. Intern. Med., 2006, 166(12), 1311-1316.
[http://dx.doi.org/10.1001/archinte.166.12.1311] [PMID: 16801515]
[136]
Yamaji, T.; Mizoue, T.; Tabata, S.; Ogawa, S.; Yamaguchi, K.; Shimizu, E.; Mineshita, M.; Kono, S. Coffee consumption and glucose tolerance status in middle-aged Japanese men. Diabetologia, 2004, 47(12), 2145-2151.
[http://dx.doi.org/10.1007/s00125-004-1590-5] [PMID: 15662555]
[137]
Bidel, S.; Hu, G.; Sundvall, J.; Kaprio, J.; Tuomilehto, J. Effects of coffee consumption on glucose tolerance, serum glucose and insulin levels--a cross-sectional analysis. Horm. Metab. Res., 2006, 38(1), 38-43.
[http://dx.doi.org/10.1055/s-2006-924982] [PMID: 16477539]
[138]
Kusumah, J.; Gonzalez de Mejia, E. Coffee constituents with antiadipogenic and antidiabetic potentials: A narrative review. Food Chem. Toxicol., 2022, 161, 112821.
[http://dx.doi.org/10.1016/j.fct.2022.112821] [PMID: 35032569]
[139]
Husen, F.; Hernayanti, H.; Ekowati, N.; Sukmawati, D.; Ratnaningtyas, N.I. Antidiabetic effects and antioxidant properties of the saggy ink cap medicinal mushroom, Coprinus comatus (Agaricomycetes), in Streptozotocin-induced hyperglycemic rats. Int. J. Med. Mushrooms, 2021, 23(10), 9-21.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2021040020] [PMID: 34595888]
[140]
Ding, Z.; Lu, Y.; Lu, Z.; Lv, F.; Wang, Y.; Bie, X.; Wang, F.; Zhang, K. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem., 2010, 121(1), 39-43.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.001]
[141]
Balahbib, A.; El Omari, N.; Hachlafi, N.E.L.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol., 2021, 153, 112259.
[http://dx.doi.org/10.1016/j.fct.2021.112259] [PMID: 33984423]
[142]
Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed., 2015, 5(6), 421-428.
[http://dx.doi.org/10.1016/j.apjtb.2015.04.001]
[143]
Chahal, K.; Singh, R.; Kumar, R.; Kumar, A.; Bhardwaj, U. Chemical composition and biological activity of Coriandrum sativum L.: A Review. Indian J. Nat. Prod. Resour., 2018, 8, 193-203.
[144]
Tung, B.T.; Nham, D.T.; Hai, N.T.; Thu, D.K. Curcuma Longa, the Polyphenolic Curcumin Compound and Pharmacological Effects on Liver. In: Dietary Interventions in Liver Disease; Elsevier: Amsterdam, 2019; pp. 125-134.
[http://dx.doi.org/10.1016/B978-0-12-814466-4.00010-0]
[145]
Nabavi, S.; Thiagarajan, R.; Rastrelli, L.; Daglia, M.; Sobarzo-Sánchez, E.; Alinezhad, H.; Nabavi, S. Curcumin: A natural product for diabetes and its complications. Curr. Top. Med. Chem., 2015, 15(23), 2445-2455.
[http://dx.doi.org/10.2174/1568026615666150619142519] [PMID: 26088351]
[146]
Den Hartogh, D.J.; Gabriel, A.; Tsiani, E. Antidiabetic Properties of Curcumin I: Evidence from in vitro Studies. Nutrients, 2020, 12(1), 118.
[http://dx.doi.org/10.3390/nu12010118] [PMID: 31906278]
[147]
Lee, S.H.; Park, M.H.; Heo, S.J.; Kang, S.M.; Ko, S.C.; Han, J.S.; Jeon, Y.J. Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem. Toxicol., 2010, 48(10), 2633-2637.
[http://dx.doi.org/10.1016/j.fct.2010.06.032] [PMID: 20600532]
[148]
Lee, S.H.; Park, M.H.; Kang, S.M.; Ko, S.C.; Kang, M.C.; Cho, S.; Park, P.J.; Jeon, B.T.; Kim, S.K.; Han, J.S.; Jeon, Y.J. Dieckol isolated from Ecklonia cava protects against high-glucose induced damage to rat insulinoma cells by reducing oxidative stress and apoptosis. Biosci. Biotechnol. Biochem., 2012, 76(8), 1445-1451.
[http://dx.doi.org/10.1271/bbb.120096] [PMID: 22878185]
[149]
D’souza, J.J.; D’souza, P.P.; Fazal, F.; Kumar, A.; Bhat, H.P.; Baliga, M.S. Anti-diabetic effects of the Indian indigenous fruit Emblica officinalis Gaertn: active constituents and modes of action. Food Funct., 2014, 5(4), 635-644.
[http://dx.doi.org/10.1039/c3fo60366k] [PMID: 24577384]
[150]
Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906.
[http://dx.doi.org/10.1016/j.phymed.2019.152906] [PMID: 31064680]
[151]
Qu, G-Z.; Heo, S-I.; Wang, M-H. Antioxidant and antidiabetic activities of Eucommia ulmoides Bark. J. Appl. Biol. Chem., 2006, 49(3), 82-85.
[152]
Kim, H.Y.; Moon, B.H.; Lee, H.J.; Choi, D.H. Flavonol glycosides from the leaves of Eucommia ulmoides O with glycation inhibitory activity. J. Ethnopharmacol., 2004, 93(2-3), 227-230.
[http://dx.doi.org/10.1016/j.jep.2004.03.047] [PMID: 15234757]
[153]
Chen, J.; Mangelinckx, S.; Adams, A.; Wang, Z.; Li, W.; De Kimpe, N. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat. Prod. Commun., 2015, 10(1), 1934578X1501000.
[http://dx.doi.org/10.1177/1934578X1501000140]
[154]
Jeong, S.Y.; Nguyen, P.H.; Zhao, B.T.; Ali, M.Y.; Choi, J.S.; Min, B.S.; Woo, M.H. Chemical constituents of Euonymus alatus (Thunb.) Sieb. and their PTP1B and α-glucosidase inhibitory activities. Phytother. Res., 2015, 29(10), 1540-1548.
[http://dx.doi.org/10.1002/ptr.5411] [PMID: 26172104]
[155]
Zhai, X.; Lenon, G.B.; Xue, C.C.L.; Li, C.G. Euonymus alatus: A review on its phytochemistry and antidiabetic activity. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/9425714] [PMID: 27642361]
[156]
Chandramohan, G.; Al-Numair, K.S.; Alsaif, M.A.; Veeramani, C. Antidiabetic effect of kaempferol a flavonoid compound, on streptozotocin-induced diabetic rats with special reference to glycoprotein components. Prog. Nutr., 2015, 17(1), 50-57.
[157]
AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430]
[158]
Samadder, A.; Abraham, S.K.; Khuda-Bukhsh, A.R. Nanopharmaceutical approach using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environ. Toxicol. Pharmacol., 2016, 43, 27-37.
[http://dx.doi.org/10.1016/j.etap.2016.02.010] [PMID: 26943895]
[159]
Samadder, A.; Tarafdar, D.; Abraham, S.; Ghosh, K.; Khuda-Bukhsh, A. Nano-Pelargonidin protects hyperglycemic-induced l6 cells against mitochondrial dysfunction. Planta Med., 2017, 83(5), 468-475.
[http://dx.doi.org/10.1055/s-0043-100017] [PMID: 28073120]
[160]
Bouyahya, A.; Omari, N.E.; E.L. Hachlafi, N.; Jemly, M.E.; Hakkour, M.; Balahbib, A.; El Menyiy, N.; Bakrim, S.; Naceiri Mrabti, H.; Khouchlaa, A.; Mahomoodally, M.F.; Catauro, M.; Montesano, D.; Zengin, G. Chemical compounds of berry-derived polyphenols and their effects on gut microbiota, inflammation, and cancer. Molecules, 2022, 27(10), 3286.
[http://dx.doi.org/10.3390/molecules27103286] [PMID: 35630763]
[161]
Ahmed, A.B.A.; Rao, A.S.; Rao, M.V. In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate β-cells regeneration and anti-diabetic activity in Wistar rats. Phytomedicine, 2010, 17(13), 1033-1039.
[http://dx.doi.org/10.1016/j.phymed.2010.03.019] [PMID: 20537514]
[162]
Sugihara, Y.; Nojima, H.; Matsuda, H.; Murakami, T.; Yoshikawa, M.; Kimura, I. Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. J. Asian Nat. Prod. Res., 2000, 2(4), 321-327.
[http://dx.doi.org/10.1080/10286020008041372] [PMID: 11249615]
[163]
Kaewseejan, N.; Sutthikhum, V.; Siriamornpun, S. Potential of Gynura procumbens leaves as source of flavonoid-enriched fractions with enhanced antioxidant capacity. J. Funct. Foods, 2015, 12, 120-128.
[http://dx.doi.org/10.1016/j.jff.2014.11.001]
[164]
Chandramohan, G.; Al-Numair, K.S.; Veeramani, C.; Alsaif, M.A.; Almajwal, A.M. Protective effect of kaempferol, a flavonoid compound, on oxidative mitochondrial damage in streptozotocin-induced diabetic rats. Prog. Nutr., 2015, 17(3), 238-244.
[165]
Ajikumaran Nair, S.; Shylesh, B.S.; Gopakumar, B.; Subramoniam, A. Anti-diabetes and hypoglycaemic properties of Hemionitis arifolia (Burm.) Moore in rats. J. Ethnopharmacol., 2006, 106(2), 192-197.
[http://dx.doi.org/10.1016/j.jep.2005.12.020] [PMID: 16442253]
[166]
Ranđelović, S.; Bipat, R. A review of coumarins and coumarin-related compounds for their potential antidiabetic effect. Clin. Med. Insights Endocrinol. Diabetes, 2021, 14, 11795514211042023.
[http://dx.doi.org/10.1177/11795514211042023] [PMID: 35173509]
[167]
Li, H.; Yao, Y.; Li, L. Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol., 2017, 69(10), 1253-1264.
[http://dx.doi.org/10.1111/jphp.12774] [PMID: 28675434]
[168]
Cunha, W.R.; Arantes, G.M.; Ferreira, D.S.; Lucarini, R.; Silva, M.L.A.; Furtado, N.A.J.C.; da Silva Filho, A.A.; Crotti, A.E.M.; Araújo, A.R.B. Hypoglicemic effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia, 2008, 79(5), 356-360.
[http://dx.doi.org/10.1016/j.fitote.2008.04.002] [PMID: 18538949]
[169]
Saleem, M.; Tanvir, M.; Akhtar, M.F.; Iqbal, M.; Saleem, A. Antidiabetic Potential of Mangifera indica L. cv. Anwar ratol leaves: medicinal application of food wastes. Medicina (Kaunas), 2019, 55(7), 353.
[http://dx.doi.org/10.3390/medicina55070353] [PMID: 31323919]
[170]
Kammalla, A.K.; Ramasamy, M.K.; Inampudi, J.; Dubey, G.P.; Agrawal, A.; Kaliappan, I. Comparative pharmacokinetic study of mangiferin after oral administration of pure mangiferin and US patented polyherbal formulation to rats. AAPS PharmSciTech, 2015, 16(2), 250-258.
[http://dx.doi.org/10.1208/s12249-014-0206-8] [PMID: 25273025]
[171]
Ahamad, J.; Mir, S.R.; Amin, S. Antihyperglycemic activity of charantin isolated from fruits of Momordica charantia Linn. Int. Res. J. Pharm., 2019, 10(1), 61-64.
[http://dx.doi.org/10.7897/2230-8407.100111]
[172]
Joseph, B.; Jini, D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac. J. Trop. Dis., 2013, 3(2), 93-102.
[http://dx.doi.org/10.1016/S2222-1808(13)60052-3]
[173]
Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of chlorogenic acid against diabetes mellitus and its complications. J. Immunol. Res., 2020, 2020, 1-6.
[http://dx.doi.org/10.1155/2020/9680508] [PMID: 32566690]
[174]
Jin, S.; Chang, C.; Zhang, L.; Liu, Y.; Huang, X.; Chen, Z. Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice. PLoS One, 2015, 10(4)e0120842
[http://dx.doi.org/10.1371/journal.pone.0120842] [PMID: 25849026]
[175]
Abdel Aziz, S.M.; Ahmed, O.M. Abd EL-Twab, S.M.; Al-Muzafar, H.M.; Amin, K.A.; Abdel-Gabbar, M. Antihyperglycemic effects and mode of actions of Musa paradisiaca leaf and fruit peel hydroethanolic extracts in nicotinamide/streptozotocin-induced diabetic rats. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/9276343] [PMID: 32047529]
[176]
Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P.; Selvaraj, J. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol. Mech. Methods, 2019, 29(4), 276-290.
[http://dx.doi.org/10.1080/15376516.2018.1545815] [PMID: 30461321]
[177]
Hashim, M.; Yam, M.F.; Hor, S.Y.; Lim, C.P.; Asmawi, M.; Sadikun, A. Anti-hyperglycaemic activity of Swietenia macrophylla king (meliaceae) seed extracts in normoglycaemic rats undergoing glucose tolerance tests. Chin. Med., 2013, 8(1), 11.
[http://dx.doi.org/10.1186/1749-8546-8-11] [PMID: 23684219]
[178]
Mathur, M.L. Antidiabetic properties of a spice plant Nigella sativa. J. Endocrinol. Metab., 2011, 1(1), 1-8.
[http://dx.doi.org/10.4021/jem12e]
[179]
AbuKhader, M.M. Thymoquinone: A promising antidiabetic agent. Int. J. Diabetes Dev. Ctries., 2012, 32(2), 65-68.
[http://dx.doi.org/10.1007/s13410-012-0067-1]
[180]
Prakash, P.; Gupta, N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J. Physiol. Pharmacol., 2005, 49(2), 125-131.
[PMID: 16170979]
[181]
Singh, P.; Jayaramaiah, R.H.; Agawane, S.B.; Vannuruswamy, G.; Korwar, A.M.; Anand, A.; Dhaygude, V.S.; Shaikh, M.L.; Joshi, R.S.; Boppana, R.; Kulkarni, M.J.; Thulasiram, H.V.; Giri, A.P. Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: Proteomic and mechanistic insights. Sci. Rep., 2016, 6(1), 18798.
[http://dx.doi.org/10.1038/srep18798] [PMID: 26739611]
[182]
Annunziata, G. Oleuropein as a novel anti-diabetic nutraceutical. An overview. Arch. Diabetes Obesity, 2018, 1(3), 54-58.
[http://dx.doi.org/10.32474/ADO.2018.01.000113]
[183]
Afaneh, I.; Yateem, H.; Al-Rimawi, F. Effect of olive leaves drying on the content of oleuropein. Am. J. Anal. Chem., 2015, 6(3), 246-252.
[http://dx.doi.org/10.4236/ajac.2015.63023]
[184]
Kwon, H.W. 20(S)-ginsenoside Rg3 inhibits glycoprotein IIb/IIIa activation in human platelets. J. Appl. Biol. Chem., 2018, 61(3), 257-265.
[http://dx.doi.org/10.3839/jabc.2018.037]
[185]
Attele, A.S.; Zhou, Y.P.; Xie, J.T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes, 2002, 51(6), 1851-1858.
[http://dx.doi.org/10.2337/diabetes.51.6.1851] [PMID: 12031973]
[186]
Bhope, S.G.; Kuber, V.V.; Nagore, D.H.; Gaikwad, P.S.; Patil, M.J. Development and validation of RP-HPLC method for simultaneous analysis of andrographolide, phyllanthin, and hypophyllanthin from herbal hepatoprotective formulation. Acta Chromatogr., 2013, 25(1), 159-169.
[http://dx.doi.org/10.1556/AChrom.25.2013.1.10]
[187]
Jantan, I.; Haque, M.A.; Ilangkovan, M.; Arshad, L. An insight into the modulatory effects and mechanisms of action of phyllanthus species and their bioactive metabolites on the immune system. Front. Pharmacol., 2019, 10, 878.
[http://dx.doi.org/10.3389/fphar.2019.00878] [PMID: 31440162]
[188]
Gharib, E.; Montasser Kouhsari, S. Study of the antidiabetic activity of Punica granatum L. fruits aqueous extract on the alloxan-diabetic wistar rats. Iran. J. Pharm. Res., 2019, 18(1), 358-368.
[PMID: 31089370]
[189]
Banihani, S.; Swedan, S.; Alguraan, Z. Pomegranate and type 2 diabetes. Nutr. Res., 2013, 33(5), 341-348.
[http://dx.doi.org/10.1016/j.nutres.2013.03.003] [PMID: 23684435]
[190]
Lee, C.J.; Chen, L.G.; Liang, W.L.; Wang, C.C. Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem., 2010, 118(2), 315-322.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.123]
[191]
Kshirsagar, P.R.; Jagtap, U.B.; Gaikwad, N.B.; Bapat, V.A. Ethanopharmacology, phytochemistry and pharmacology of medicinally potent genus Swertia: An update. S. Afr. J. Bot., 2019, 124, 444-483.
[http://dx.doi.org/10.1016/j.sajb.2019.05.030]
[192]
Tian, L.Y.; Bai, X.; Chen, X.H.; Fang, J.B.; Liu, S.H.; Chen, J.C. Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism. Phytomedicine, 2010, 17(7), 533-539.
[http://dx.doi.org/10.1016/j.phymed.2009.10.007] [PMID: 19962285]
[193]
Samadder, A.; Das, S.; Das, J.; Paul, A.; Khuda-Bukhsh, A.R. Ameliorative effects of Syzygium jambolanum extract and its poly (lactic-co-glycolic) acid nano-encapsulated form on arsenic-induced hyperglycemic stress: A multi-parametric evaluation. J. Acupunct. Meridian Stud., 2012, 5(6), 310-318.
[http://dx.doi.org/10.1016/j.jams.2012.09.001] [PMID: 23265083]
[194]
Samadder, A.; Chakraborty, D.; De, A.; Bhattacharyya, S.S.; Bhadra, K.; Khuda-Bukhsh, A.R. Possible signaling cascades involved in attenuation of alloxan-induced oxidative stress and hyperglycemia in mice by ethanolic extract of Syzygium jambolanum: Drug-DNA interaction with calf thymus DNA as target. Eur. J. Pharm. Sci., 2011, 44(3), 207-217.
[http://dx.doi.org/10.1016/j.ejps.2011.07.012] [PMID: 21839831]
[195]
Mohanty, I.R.; Borde, M.; Kumar, C. S.; Maheshwari, U. Dipeptidyl peptidase IV Inhibitory activity of Terminalia arjuna attributes to its cardioprotective effects in experimental diabetes: In silico, in vitro and in vivo analyses. Phytomedicine, 2019, 57, 158-165.
[http://dx.doi.org/10.1016/j.phymed.2018.09.195] [PMID: 30668318]
[196]
Ragavan, B.; Krishnakumari, S. Antidiabetic effect ofT. arjuna bark extract in alloxan induced diabetic rats. Indian J. Clin. Biochem., 2006, 21(2), 123-128.
[http://dx.doi.org/10.1007/BF02912926] [PMID: 23105628]
[197]
Varghese, A.; Savai, J.; Pandita, N.; Gaud, R. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes. Toxicol. Rep., 2015, 2, 806-816.
[http://dx.doi.org/10.1016/j.toxrep.2015.02.008] [PMID: 28962416]
[198]
Nagappa, A.N.; Thakurdesai, P.A.; Venkat Rao, N.; Singh, J. Antidiabetic activity of Terminalia catappa Linn fruits. J. Ethnopharmacol., 2003, 88(1), 45-50.
[http://dx.doi.org/10.1016/S0378-8741(03)00208-3] [PMID: 12902049]
[199]
Behl, T.; Kotwani, A. Proposed mechanisms of Terminalia catappa in hyperglycaemia and associated diabetic complications. J. Pharm. Pharmacol., 2017, 69(2), 123-134.
[http://dx.doi.org/10.1111/jphp.12676] [PMID: 28000229]
[200]
Sharma, R.; Amin, H. Galib.; Prajapati, P.K. Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: Critical appraisal and role in therapy. Asian Pac. J. Trop. Biomed., 2015, 5(1), 68-78.
[http://dx.doi.org/10.1016/S2221-1691(15)30173-8]
[201]
Noor, H.; Ashcroft, S.J.H. Antidiabetic effects of Tinospora crispa in rats. J. Ethnopharmacol., 1989, 27(1-2), 149-161.
[http://dx.doi.org/10.1016/0378-8741(89)90087-1] [PMID: 2693839]
[202]
Baliga, M.S.; Palatty, P.L.; Adnan, M.; Naik, T.S.; Kamble, P.S.; George, T.; D’souza, J.J. Anti-Diabetic effects of leaves of Trigonella foenum-graecum L. (Fenugreek): Leads from preclinical studies. J. Food Chem. Nanotechnol., 2017, 3(2), 67-71.
[http://dx.doi.org/10.17756/jfcn.2017-039]
[203]
Shawky, E.; Nada, A.A.; Ibrahim, R.S. Potential role of medicinal plants and their constituents in the mitigation of SARS-CoV-2: Identifying related therapeutic targets using network pharmacology and molecular docking analyses. RSC Advances, 2020, 10(47), 27961-27983.
[http://dx.doi.org/10.1039/D0RA05126H] [PMID: 35519104]
[204]
Samad, M.B.; Mohsin, M.N.A.B.; Razu, B.A.; Hossain, M.T.; Mahzabeen, S.; Unnoor, N.; Muna, I.A.; Akhter, F.; Kabir, A.U.; Hannan, J.M.A. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement. Altern. Med., 2017, 17(1), 395.
[http://dx.doi.org/10.1186/s12906-017-1903-0] [PMID: 28793909]
[205]
Li, Y.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Preventive and Protective Properties of Zingiber officinale (Ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evid. Based Complement. Alternat. Med., 2012, 2012, 516870.
[http://dx.doi.org/10.1155/2012/516870] [PMID: 23243452]
[206]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 2015, 117, 554-568.
[http://dx.doi.org/10.1016/j.phytochem.2015.07.012] [PMID: 26228533]
[207]
Maqbool, M.; Gani, I.; Dar, M.A. Anti-Diabetic effects of some medicinal plants in experimental animals: A review. Asian J. Pharmaceut. Res. Develop., 2019, 7(1), 66-69.
[http://dx.doi.org/10.22270/ajprd.v7i1.469]
[208]
Kumar, S. Diabetes Mellitus and allopathic medication increase the risk of cancer malignancy, but no side effect associated with the use of antidiabetic herbal medicine. Curr. Res. Diabetes Obes. J., 2020, 13(4), 555868.
[http://dx.doi.org/10.19080/CRDOJ.2020.13.555868]
[209]
Modak, D.A. Review: Anti-diabetic activity of herbal drugs. PharmaTutor, 2015, 3(9), 36-42.
[210]
Bordoloi, R.; Dutta, K.N. A review on herbs used in the treatment of Diabetes Mellitus. J. Pharm. Chem. Bio. Sci., 2014, 2(2), 86-92.
[211]
Verma, S.; Gupta, M.; Popli, H.; Aggarwal, G. Diabetes Mellitus treatment using herbal drugs. Int. J. Phytomedicine, 2018, 10(1), 1.
[http://dx.doi.org/10.5138/09750185.2181]
[212]
Gadhiya, J.; Jaithliya, T.; Somani, S.S.M.N. Herbals and its marketed formulations to treat Diabetes Mellitus DM: An overview. Int. J. Trend Sci. Res. Develop., 2018, 2(-3), 2602-2613.
[http://dx.doi.org/10.31142/ijtsrd12884]
[213]
Khan, M.Y.; Aziz, I.; Bihari, B.; Kumar, H.; Roy, M.; Verma, V.K.A. Review-phytomedicines used in treatment of Diabetes. Int. J. Pharmacogn., 2014, 1(6), 343-365.
[214]
Venu, G.J.; Nilakash, S. Antidiabetic herbal products marketed in India: An update. J. Med. Plants Stud., 2013, 1(6), 24-26.
[215]
Rajesham, V.V.; Ravindernath, A.; Bikshapathi, D.V.R.N. A review on medicinal plant and herbal drug formulation used in Diabetes Mellitus. Indo Am. J. Pharmaceut. Res., 2012, 2(10), 1200-1212.
[216]
Rani, A.; Arora, S.; Goyal, A. Antidiabetic plants in traditional medicines: A review. Int. Res. J. Pharm., 2017, 8(6), 17-24.
[http://dx.doi.org/10.7897/2230-8407.08690]
[217]
Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol., 2016, 14(8)e1002533
[http://dx.doi.org/10.1371/journal.pbio.1002533] [PMID: 27541692]
[218]
Turnbaugh, P.J.; Bäckhed, F.; Fulton, L.; Gordon, J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 2008, 3(4), 213-223.
[http://dx.doi.org/10.1016/j.chom.2008.02.015] [PMID: 18407065]
[219]
Rothe, M.; Blaut, M. Evolution of the gut microbiota and the influence of diet. Benef. Microbes, 2013, 4(1), 31-37.
[http://dx.doi.org/10.3920/BM2012.0029] [PMID: 23257016]
[220]
Kong, L.C.; Holmes, B.A.; Cotillard, A.; Habi-Rachedi, F.; Brazeilles, R.; Gougis, S.; Gausserès, N.; Cani, P.D.; Fellahi, S.; Bastard, J.P.; Kennedy, S.P.; Doré, J.; Ehrlich, S.D.; Zucker, J.D.; Rizkalla, S.W.; Clément, K. Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS One, 2014, 9(10)e109434
[http://dx.doi.org/10.1371/journal.pone.0109434] [PMID: 25330000]
[221]
Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; Sinha, R.; Gilroy, E.; Gupta, K.; Baldassano, R.; Nessel, L.; Li, H.; Bushman, F.D.; Lewis, J.D. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334(6052), 105-108.
[http://dx.doi.org/10.1126/science.1208344] [PMID: 21885731]
[222]
Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 2011, 332(6032), 970-974.
[http://dx.doi.org/10.1126/science.1198719] [PMID: 21596990]
[223]
Gómez-Ambrosi, J.; Silva, C.; Galofré, J.C.; Escalada, J.; Santos, S.; Gil, M.J.; Valentí, V.; Rotellar, F.; Ramírez, B.; Salvador, J.; Frühbeck, G. Body adiposity and type 2 diabetes: increased risk with a high body fat percentage even having a normal BMI. Obesity (Silver Spring), 2011, 19(7), 1439-1444.
[http://dx.doi.org/10.1038/oby.2011.36] [PMID: 21394093]
[224]
Gao, R.; Zhu, C.; Li, H.; Yin, M.; Pan, C.; Huang, L.; Kong, C.; Wang, X.; Zhang, Y.; Qu, S.; Qin, H. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity (Silver Spring), 2018, 26(2), 351-361.
[http://dx.doi.org/10.1002/oby.22088] [PMID: 29280312]
[225]
Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Mannerås-Holm, L.; Ståhlman, M.; Olsson, L.M.; Serino, M.; Planas-Fèlix, M.; Xifra, G.; Mercader, J.M.; Torrents, D.; Burcelin, R.; Ricart, W.; Perkins, R.; Fernàndez-Real, J.M.; Bäckhed, F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med., 2017, 23(7), 850-858.
[http://dx.doi.org/10.1038/nm.4345] [PMID: 28530702]
[226]
Le, T.K.C.; Hosaka, T.; Nguyen, T.T.; Kassu, A.; Dang, T.O.; Tran, H.B.; Pham, T.P.; Tran, Q.B.; Le, T.H.H.; Pham, X.D. Bifidobacterium species lower serum glucose, increase expressions of insulin signaling proteins, and improve adipokine profile in diabetic mice. Biomed. Res., 2015, 36(1), 63-70.
[http://dx.doi.org/10.2220/biomedres.36.63] [PMID: 25749152]
[227]
Sun, L.; Xie, C.; Wang, G.; Wu, Y.; Wu, Q.; Wang, X.; Liu, J.; Deng, Y.; Xia, J.; Chen, B.; Zhang, S.; Yun, C.; Lian, G.; Zhang, X.; Zhang, H.; Bisson, W.H.; Shi, J.; Gao, X.; Ge, P.; Liu, C.; Krausz, K.W.; Nichols, R.G.; Cai, J.; Rimal, B.; Patterson, A.D.; Wang, X.; Gonzalez, F.J.; Jiang, C. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med., 2018, 24(12), 1919-1929.
[http://dx.doi.org/10.1038/s41591-018-0222-4] [PMID: 30397356]
[228]
Gauffin Cano, P.; Santacruz, A.; Moya, Á.; Sanz, Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One, 2012, 7(7)e41079
[http://dx.doi.org/10.1371/journal.pone.0041079] [PMID: 22844426]
[229]
Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013, 498(7452), 99-103.
[http://dx.doi.org/10.1038/nature12198] [PMID: 23719380]
[230]
Munukka, E.; Rintala, A.; Toivonen, R.; Nylund, M.; Yang, B.; Takanen, A.; Hänninen, A.; Vuopio, J.; Huovinen, P.; Jalkanen, S.; Pekkala, S. Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. ISME J., 2017, 11(7), 1667-1679.
[http://dx.doi.org/10.1038/ismej.2017.24] [PMID: 28375212]
[231]
Greer, R.L.; Dong, X.; Moraes, A.C.F.; Zielke, R.A.; Fernandes, G.R.; Peremyslova, E.; Vasquez-Perez, S.; Schoenborn, A.A.; Gomes, E.P.; Pereira, A.C.; Ferreira, S.R.G.; Yao, M.; Fuss, I.J.; Strober, W.; Sikora, A.E.; Taylor, G.A.; Gulati, A.S.; Morgun, A.; Shulzhenko, N. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat. Commun., 2016, 7(1), 13329.
[http://dx.doi.org/10.1038/ncomms13329] [PMID: 27841267]
[232]
Martinic, A.; Barouei, J.; Bendiks, Z.; Mishchuk, D.; Heeney, D.D.; Martin, R.; Marco, M.L.; Slupsky, C.M. Supplementation of Lactobacillus plantarum improves markers of metabolic dysfunction induced by a high fat diet. J. Proteome Res., 2018, 17(8), 2790-2802.
[http://dx.doi.org/10.1021/acs.jproteome.8b00282] [PMID: 29931981]
[233]
Murphy, R.; Tsai, P.; Jüllig, M.; Liu, A.; Plank, L.; Booth, M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes. Surg., 2017, 27(4), 917-925.
[http://dx.doi.org/10.1007/s11695-016-2399-2] [PMID: 27738970]
[234]
Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One, 2013, 8(8)e71108
[http://dx.doi.org/10.1371/journal.pone.0071108] [PMID: 24013136]
[235]
Kulas, T.; Bursac, D.; Zegarac, Z. PlaninicRados, G.; Hrgovic, Z. New views on cesarean section, its possible complications and long-term consequences for children’s health. Med. Arh., 2013, 67(6), 460-463.
[http://dx.doi.org/10.5455/medarh.2013.67.460-463] [PMID: 25568522]
[236]
Kuhle, S.; Tong, O.S.; Woolcott, C.G. Association between caesarean section and childhood obesity: A systematic review and meta-analysis. Obes. Rev., 2015, 16(4), 295-303.
[http://dx.doi.org/10.1111/obr.12267] [PMID: 25752886]
[237]
Cabrera-Rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Mira, A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr., 2012, 96(3), 544-551.
[http://dx.doi.org/10.3945/ajcn.112.037382] [PMID: 22836031]
[238]
Fitzstevens, J.L.; Smith, K.C.; Hagadorn, J.I.; Caimano, M.J.; Matson, A.P.; Brownell, E.A. Systematic review of the human milk microbiota. Nutr. Clin. Pract., 2017, 32(3), 354-364.
[http://dx.doi.org/10.1177/0884533616670150] [PMID: 27679525]
[239]
Panagos, P.G.; Vishwanathan, R.; Penfield-Cyr, A.; Matthan, N.R.; Shivappa, N.; Wirth, M.D.; Hebert, J.R.; Sen, S. Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors. J. Perinatol., 2016, 36(4), 284-290.
[http://dx.doi.org/10.1038/jp.2015.199] [PMID: 26741571]
[240]
Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; Spector, T.D.; Clark, A.G.; Ley, R.E. Human genetics shape the gut microbiome. Cell, 2014, 159(4), 789-799.
[http://dx.doi.org/10.1016/j.cell.2014.09.053] [PMID: 25417156]
[241]
Rehman, A.; Sina, C.; Gavrilova, O.; Häsler, R.; Ott, S.; Baines, J.F.; Schreiber, S.; Rosenstiel, P. Nod2 is essential for temporal development of intestinal microbial communities. Gut, 2011, 60(10), 1354-1362.
[http://dx.doi.org/10.1136/gut.2010.216259] [PMID: 21421666]
[242]
Seekatz, A.M.; Young, V.B. Clostridium difficile and the microbiota. J. Clin. Invest., 2014, 124(10), 4182-4189.
[http://dx.doi.org/10.1172/JCI72336] [PMID: 25036699]
[243]
Kozyrskyj, A.L.; Ernst, P.; Becker, A.B. Increased risk of childhood asthma from antibiotic use in early life. Chest, 2007, 131(6), 1753-1759.
[http://dx.doi.org/10.1378/chest.06-3008] [PMID: 17413050]
[244]
Mahana, D.; Trent, C.M.; Kurtz, Z.D.; Bokulich, N.A.; Battaglia, T.; Chung, J.; Müller, C.L.; Li, H.; Bonneau, R.A.; Blaser, M.J. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med., 2016, 8(1), 48.
[http://dx.doi.org/10.1186/s13073-016-0297-9] [PMID: 27124954]
[245]
Chang, W.; Chen, L.; Hatch, G.M. Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies. Biochem. Cell Biol., 2015, 93(5), 479-486.
[http://dx.doi.org/10.1139/bcb-2014-0107] [PMID: 25607236]
[246]
Shin, N.R.; Lee, J.C.; Lee, H.Y.; Kim, M.S.; Whon, T.W.; Lee, M.S.; Bae, J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, 63(5), 727-735.
[http://dx.doi.org/10.1136/gutjnl-2012-303839] [PMID: 23804561]
[247]
Musso, G.; Gambino, R.; Cassader, M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care, 2010, 33(10), 2277-2284.
[http://dx.doi.org/10.2337/dc10-0556] [PMID: 20876708]
[248]
Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; de Vos, W.M.; Cani, P.D. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA, 2013, 110(22), 9066-9071.
[http://dx.doi.org/10.1073/pnas.1219451110] [PMID: 23671105]
[249]
Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6), 1332-1345.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[250]
Uyeno, Y.; Sekiguchi, Y.; Kamagata, Y. Impact of consumption of probiotic lactobacilli-containing yogurt on microbial composition in human feces. Int. J. Food Microbiol., 2008, 122(1-2), 16-22.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.042] [PMID: 18077045]
[251]
Olivares, M.; Paz Díaz-Ropero, M.; Gómez, N.; Sierra, S.; Lara-Villoslada, F.; Martín, R.; Miguel Rodríguez, J.; Xaus, J. Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. J. Dairy Res., 2006, 73(4), 492-498.
[http://dx.doi.org/10.1017/S0022029906002068] [PMID: 16987435]
[252]
Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; Myridakis, A.; Delzenne, N.M.; Klievink, J.; Bhattacharjee, A.; van der Ark, K.C.H.; Aalvink, S.; Martinez, L.O.; Dumas, M.E.; Maiter, D.; Loumaye, A.; Hermans, M.P.; Thissen, J.P.; Belzer, C.; de Vos, W.M.; Cani, P.D. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med., 2017, 23(1), 107-113.
[http://dx.doi.org/10.1038/nm.4236] [PMID: 27892954]
[253]
Shen, Z.; Zhu, C.; Quan, Y.; Yang, J.; Yuan, W.; Yang, Z.; Wu, S.; Luo, W.; Tan, B.; Wang, X. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J. Gastroenterol. Hepatol., 2018, 33(10), 1751-1760.
[http://dx.doi.org/10.1111/jgh.14144] [PMID: 29532517]
[254]
Zhang, L.; Qin, Q.; Liu, M.; Zhang, X.; He, F.; Wang, G. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog. Dis., 2018, 76(4)
[http://dx.doi.org/10.1093/femspd/fty028] [PMID: 29668928]
[255]
Inan, M.S.; Rasoulpour, R.J.; Yin, L.; Hubbard, A.K.; Rosenberg, D.W.; Giardina, C. The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology, 2000, 118(4), 724-734.
[http://dx.doi.org/10.1016/S0016-5085(00)70142-9] [PMID: 10734024]
[256]
Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N.; Mizoguchi, T.; Amin, H.Z.; Hirota, Y.; Ogawa, W.; Yamada, T.; Hirata, K. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 2018, 138(22), 2486-2498.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.033714] [PMID: 30571343]
[257]
Chelakkot, C.; Choi, Y.; Kim, D.K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.S.; Jee, Y.K.; Gho, Y.S.; Park, H.S.; Kim, Y.K.; Ryu, S.H. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med., 2018, 50(2), e450-e450.
[http://dx.doi.org/10.1038/emm.2017.282] [PMID: 29472701]
[258]
Kim, S.H.; Huh, C.S.; Choi, I.D.; Jeong, J.W.; Ku, H.K.; Ra, J.H.; Kim, T.Y.; Kim, G.B.; Sim, J.H.; Ahn, Y.T. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. J. Appl. Microbiol., 2014, 117(3), 834-845.
[http://dx.doi.org/10.1111/jam.12573] [PMID: 24925305]
[259]
Kang, J.H.; Yun, S.I.; Park, M.H.; Park, J.H.; Jeong, S.Y.; Park, H.O. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One, 2013, 8(1)e54617
[http://dx.doi.org/10.1371/journal.pone.0054617] [PMID: 23382926]
[260]
Dang, F.; Jiang, Y.; Pan, R.; Zhou, Y.; Wu, S.; Wang, R.; Zhuang, K.; Zhang, W.; Li, T.; Man, C. Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct., 2018, 9(7), 3630-3639.
[http://dx.doi.org/10.1039/C8FO00081F] [PMID: 29961787]
[261]
Wang, L.; Tang, L.; Feng, Y.; Zhao, S.; Han, M.; Zhang, C.; Yuan, G.; Zhu, J.; Cao, S.; Wu, Q.; Li, L.; Zhang, Z. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8 + T cells in mice. Gut, 2020, 69(11), 1988-1997.
[http://dx.doi.org/10.1136/gutjnl-2019-320105] [PMID: 32169907]
[262]
Pineiro, M.; Asp, N.G.; Reid, G.; Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K. FAO Technical meeting on prebiotics. J. Clin. Gastroenterol., 2008, 42(8)(Suppl. 3), S156-S159.
[http://dx.doi.org/10.1097/MCG.0b013e31817f184e] [PMID: 18685504]
[263]
Kim, M-S.; Hwang, S-S.; Park, E-J.; Bae, J-W. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation: Diet therapy, gut microbiota and metabolic diseases. Environ. Microbiol. Reports, 2013, 2013, 12079.
[http://dx.doi.org/10.1111/1758-2229.12079]
[264]
McCreight, L.J.; Bailey, C.J.; Pearson, E.R. Metformin and the gastrointestinal tract. Diabetologia, 2016, 59(3), 426-435.
[http://dx.doi.org/10.1007/s00125-015-3844-9] [PMID: 26780750]
[265]
Anhê, F.F.; Zlitni, S.; Zhang, S-Y.; Choi, B. S-Y.; Chen, C.Y.; Foley, K.P.; Barra, N.G.; Surette, M.G.; Biertho, L.; Richard, D.; Tchernof, A.; Lam, T.K.T.; Marette, A.; Schertzer, J. Human gut microbiota after bariatric surgery alters intestinal morphology and glucose absorption in mice independently of obesity. Gut, 2022, 2022, 328185.
[http://dx.doi.org/10.1136/gutjnl-2022-328185]
[266]
Gruessner, A.C.; Sutherland, D.E.R.; Gruessner, R.W.G. Long-term outcome after pancreas transplantation. Curr. Opin. Organ Transplant., 2012, 17(1), 100-105.
[http://dx.doi.org/10.1097/MOT.0b013e32834ee700] [PMID: 22186094]
[267]
Kandaswamy, R.; Stock, P.G.; Gustafson, S.K.; Skeans, M.A.; Curry, M.A.; Prentice, M.A.; Fox, A.; Israni, A.K.; Snyder, J.J.; Kasiske, B.L. OPTN/SRTR 2016 Annual Data Report: Pancreas. Am. J. Transplant., 2018, 18(Suppl. 1), 114-171.
[http://dx.doi.org/10.1111/ajt.14558] [PMID: 29292605]
[268]
Fioretto, P.; Steffes, M.W.; Sutherland, D.E.R.; Goetz, F.C.; Mauer, M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med., 1998, 339(2), 69-75.
[http://dx.doi.org/10.1056/NEJM199807093390202] [PMID: 9654536]
[269]
Shapiro, A.M.J.; Pokrywczynska, M.; Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol., 2017, 13(5), 268-277.
[http://dx.doi.org/10.1038/nrendo.2016.178] [PMID: 27834384]
[270]
Eich, T.; Eriksson, O.; Lundgren, T. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N. Engl. J. Med., 2007, 356(26), 2754-2755.
[http://dx.doi.org/10.1056/NEJMc070201] [PMID: 17596618]
[271]
Barton, F.B.; Rickels, M.R.; Alejandro, R.; Hering, B.J.; Wease, S.; Naziruddin, B.; Oberholzer, J.; Odorico, J.S.; Garfinkel, M.R.; Levy, M.; Pattou, F.; Berney, T.; Secchi, A.; Messinger, S.; Senior, P.A.; Maffi, P.; Posselt, A.; Stock, P.G.; Kaufman, D.B.; Luo, X.; Kandeel, F.; Cagliero, E.; Turgeon, N.A.; Witkowski, P.; Naji, A.; O’Connell, P.J.; Greenbaum, C.; Kudva, Y.C.; Brayman, K.L.; Aull, M.J.; Larsen, C.; Kay, T.W.H.; Fernandez, L.A.; Vantyghem, M.C.; Bellin, M.; Shapiro, A.M.J. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care, 2012, 35(7), 1436-1445.
[http://dx.doi.org/10.2337/dc12-0063] [PMID: 22723582]
[272]
Moassesfar, S.; Masharani, U.; Frassetto, L.A.; Szot, G.L.; Tavakol, M.; Stock, P.G.; Posselt, A.M. A Comparative analysis of the safety, efficacy, and cost of islet versus pancreas transplantation in nonuremic patients with type 1 diabetes. Am. J. Transplant., 2016, 16(2), 518-526.
[http://dx.doi.org/10.1111/ajt.13536] [PMID: 26595767]
[273]
Weir, G.C.; Bonner-Weir, S. Islet β cell mass in diabetes and how it relates to function, birth, and death. Ann. N. Y. Acad. Sci., 2013, 1281(1), 92-105.
[http://dx.doi.org/10.1111/nyas.12031] [PMID: 23363033]
[274]
Aguayo-Mazzucato, C.; Bonner-Weir, S. Pancreatic β cell regeneration as a possible therapy for diabetes. Cell Metab., 2018, 27(1), 57-67.
[http://dx.doi.org/10.1016/j.cmet.2017.08.007] [PMID: 28889951]
[275]
Ryan, E.A.; Lakey, J.R.T.; Rajotte, R.V.; Korbutt, G.S.; Kin, T.; Imes, S.; Rabinovitch, A.; Elliott, J.F.; Bigam, D.; Kneteman, N.M.; Warnock, G.L.; Larsen, I.; Shapiro, A.M.J. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes, 2001, 50(4), 710-719.
[http://dx.doi.org/10.2337/diabetes.50.4.710] [PMID: 11289033]
[276]
Shapiro, A.M.J.; Lakey, J.R.T.; Ryan, E.A.; Korbutt, G.S.; Toth, E.; Warnock, G.L.; Kneteman, N.M.; Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med., 2000, 343(4), 230-238.
[http://dx.doi.org/10.1056/NEJM200007273430401] [PMID: 10911004]
[277]
Keymeulen, B.; Gillard, P.; Mathieu, C.; Movahedi, B.; Maleux, G.; Delvaux, G.; Ysebaert, D.; Roep, B.; Vandemeulebroucke, E.; Marichal, M. In ’t Veld, P.; Bogdani, M.; Hendrieckx, C.; Gorus, F.; Ling, Z.; van Rood, J.; Pipeleers, D. Correlation between β cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc. Natl. Acad. Sci. USA, 2006, 103(46), 17444-17449.
[http://dx.doi.org/10.1073/pnas.0608141103] [PMID: 17090674]
[278]
Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther., 2019, 10(1), 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[279]
Biehl, J.K.; Russell, B. Introduction to stem cell therapy. J. Cardiovasc. Nurs., 2009, 24(2), 98-103.
[http://dx.doi.org/10.1097/JCN.0b013e318197a6a5] [PMID: 19242274]
[280]
Chagastelles, P.C.; Nardi, N.B. Biology of stem cells: An overview. Kidney Int. Suppl., 2011, 1(3), 63-67.
[http://dx.doi.org/10.1038/kisup.2011.15] [PMID: 25028627]
[281]
Worku, M.G. Pluripotent and multipotent stem cells and current therapeutic applications: Review Stem Cells Cloning, 2021, 14, 3-7.
[http://dx.doi.org/10.2147/SCCAA.S304887] [PMID: 33880040]
[282]
Naujok, O.; Francini, F.; Picton, S.; Jörns, A.; Bailey, C.J.; Lenzen, S. A new experimental protocol for preferential differentiation of mouse embryonic stem cells into insulin-producing cells. Cell Transplant., 2008, 17(10-11), 1231-1242.
[http://dx.doi.org/10.3727/096368908787236549] [PMID: 19181217]
[283]
Kroon, E.; Martinson, L.A.; Kadoya, K.; Bang, A.G.; Kelly, O.G.; Eliazer, S.; Young, H.; Richardson, M.; Smart, N.G.; Cunningham, J.; Agulnick, A.D.; D’Amour, K.A.; Carpenter, M.K.; Baetge, E.E. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol., 2008, 26(4), 443-452.
[http://dx.doi.org/10.1038/nbt1393] [PMID: 18288110]
[284]
Sheik Abdulazeez, S. Diabetes treatment: A rapid review of the current and future scope of stem cell research. Saudi Pharm. J., 2015, 23(4), 333-340.
[http://dx.doi.org/10.1016/j.jsps.2013.12.012] [PMID: 27134533]
[285]
Ida, H.; Akiyama, T.; Ishiguro, K.; Goparaju, S.K.; Nakatake, Y.; Chikazawa-Nohtomi, N.; Sato, S.; Kimura, H.; Yokoyama, Y.; Nagino, M.; Ko, M.S.H.; Ko, S.B.H. Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors. Stem Cell Res. Ther., 2018, 9(1), 277.
[http://dx.doi.org/10.1186/s13287-018-1038-3] [PMID: 30359326]
[286]
Schroeder, I.S.; Rolletschek, A.; Blyszczuk, P.; Kania, G.; Wobus, A.M. Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat. Protoc., 2006, 1(2), 495-507.
[http://dx.doi.org/10.1038/nprot.2006.71] [PMID: 17406275]
[287]
Cai, J.; Yu, C.; Liu, Y.; Chen, S.; Guo, Y.; Yong, J.; Lu, W.; Ding, M.; Deng, H. Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells. J. Mol. Cell Biol., 2010, 2(1), 50-60.
[http://dx.doi.org/10.1093/jmcb/mjp037] [PMID: 19910415]
[288]
Vegas, A.J.; Veiseh, O.; Gürtler, M.; Millman, J.R.; Pagliuca, F.W.; Bader, A.R.; Doloff, J.C.; Li, J.; Chen, M.; Olejnik, K.; Tam, H.H.; Jhunjhunwala, S.; Langan, E.; Aresta-Dasilva, S.; Gandham, S.; McGarrigle, J.J.; Bochenek, M.A.; Hollister-Lock, J.; Oberholzer, J.; Greiner, D.L.; Weir, G.C.; Melton, D.A.; Langer, R.; Anderson, D.G. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med., 2016, 22(3), 306-311.
[http://dx.doi.org/10.1038/nm.4030] [PMID: 26808346]
[289]
Ilic, D.; Devito, L.; Miere, C.; Codognotto, S. Human embryonic and induced pluripotent stem cells in clinical trials: Table 1. Br. Med. Bull., 2015, 116, ldv045.
[http://dx.doi.org/10.1093/bmb/ldv045] [PMID: 26582538]
[290]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[291]
Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858), 1917-1920.
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[292]
Jang, J.; Yoo, J.E.; Lee, J.A.; Lee, D.R.; Kim, J.Y.; Huh, Y.J.; Kim, D.S.; Park, C.Y.; Hwang, D.Y.; Kim, H.S.; Kang, H.C.; Kim, D.W. Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp. Mol. Med., 2012, 44(3), 202-213.
[http://dx.doi.org/10.3858/emm.2012.44.3.015] [PMID: 22179105]
[293]
Alipio, Z.; Liao, W.; Roemer, E.J.; Waner, M.; Fink, L.M.; Ward, D.C.; Ma, Y. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proc. Natl. Acad. Sci. USA, 2010, 107(30), 13426-13431.
[http://dx.doi.org/10.1073/pnas.1007884107] [PMID: 20616080]
[294]
Zhang, D.; Jiang, W.; Liu, M.; Sui, X.; Yin, X.; Chen, S.; Shi, Y.; Deng, H. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res., 2009, 19(4), 429-438.
[http://dx.doi.org/10.1038/cr.2009.28] [PMID: 19255591]
[295]
Teo, A.K.K.; Windmueller, R.; Johansson, B.B.; Dirice, E.; Njolstad, P.R.; Tjora, E.; Raeder, H.; Kulkarni, R.N. Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J. Biol. Chem., 2013, 288(8), 5353-5356.
[http://dx.doi.org/10.1074/jbc.C112.428979] [PMID: 23306198]
[296]
Raikwar, S.P.; Kim, E.M.; Sivitz, W.I.; Allamargot, C.; Thedens, D.R.; Zavazava, N. Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice. PLoS One, 2015, 10(1)e0116582
[http://dx.doi.org/10.1371/journal.pone.0116582] [PMID: 25629318]
[297]
Trott, J.; Tan, E.K.; Ong, S.; Titmarsh, D.M.; Denil, S.L.I.J.; Giam, M.; Wong, C.K.; Wang, J.; Shboul, M.; Eio, M.; Cooper-White, J.; Cool, S.M.; Rancati, G.; Stanton, L.W.; Reversade, B.; Dunn, N.R. Long-Term culture of self-renewing pancreatic progenitors derived from human pluripotent stem cells. Stem Cell Reports, 2017, 8(6), 1675-1688.
[http://dx.doi.org/10.1016/j.stemcr.2017.05.019] [PMID: 28591650]
[298]
Pagliuca, F.W.; Millman, J.R.; Gürtler, M.; Segel, M.; Van Dervort, A.; Ryu, J.H.; Peterson, Q.P.; Greiner, D.; Melton, D.A. Generation of functional human pancreatic β cells in vitro. Cell, 2014, 159(2), 428-439.
[http://dx.doi.org/10.1016/j.cell.2014.09.040] [PMID: 25303535]
[299]
Kanemura, H.; Go, M.J.; Shikamura, M.; Nishishita, N.; Sakai, N.; Kamao, H.; Mandai, M.; Morinaga, C.; Takahashi, M.; Kawamata, S. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One, 2014, 9(1)e85336
[http://dx.doi.org/10.1371/journal.pone.0085336] [PMID: 24454843]
[300]
Calafiore, R.; Basta, G. Stem cells for the cell and molecular therapy of type 1 diabetes mellitus (T1D): the gap between dream and reality. Am. J. Stem Cells, 2015, 4(1), 22-31.
[PMID: 25973328]
[301]
Chen, P.Y.; Huang, L.L.H.; Hsieh, H.J. Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells. Biochem. Biophys. Res. Commun., 2007, 360(1), 1-6.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.211] [PMID: 17586465]
[302]
Wong, T.Y.; Chang, C.H.; Yu, C.H.; Huang, L.L.H. Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell, 2017, 16(3), 451-460.
[http://dx.doi.org/10.1111/acel.12567] [PMID: 28474484]
[303]
Solis, M.A.; Wei, Y.H.; Chang, C.H.; Yu, C.H.; Kuo, P.L.; Huang, L.L.H. Hyaluronan upregulates mitochondrial biogenesis and reduces adenoside triphosphate production for efficient mitochondrial function in slow-proliferating human mesenchymal stem cells. Stem Cells, 2016, 34(10), 2512-2524.
[http://dx.doi.org/10.1002/stem.2404] [PMID: 27354288]
[304]
Liu, C.M.; Chang, C.H.; Yu, C.H.; Hsu, C.C.; Huang, L.L.H. Hyaluronan substratum induces multidrug resistance in human mesenchymal stem cells via CD44 signaling. Cell Tissue Res., 2009, 336(3), 465-475.
[http://dx.doi.org/10.1007/s00441-009-0780-3] [PMID: 19350274]
[305]
Figliuzzi, M.; Bonandrini, B.; Silvani, S.; Remuzzi, A. Mesenchymal stem cells help pancreatic islet transplantation to control type 1 diabetes. World J. Stem Cells, 2014, 6(2), 163-172.
[http://dx.doi.org/10.4252/wjsc.v6.i2.163] [PMID: 24772243]
[306]
Morigi, M.; Imberti, B.; Zoja, C.; Corna, D.; Tomasoni, S.; Abbate, M.; Rottoli, D.; Angioletti, S.; Benigni, A.; Perico, N.; Alison, M.; Remuzzi, G. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J. Am. Soc. Nephrol., 2004, 15(7), 1794-1804.
[http://dx.doi.org/10.1097/01.ASN.0000128974.07460.34] [PMID: 15213267]
[307]
Nakagawa, H.; Akita, S.; Fukui, M.; Fujii, T.; Akino, K. Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br. J. Dermatol., 2005, 153(1), 29-36.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06554.x] [PMID: 16029323]
[308]
Muñoz-Elias, G.; Marcus, A.J.; Coyne, T.M.; Woodbury, D.; Black, I.B. Adult bone marrow stromal cells in the embryonic brain: Engraftment, migration, differentiation, and long-term survival. J. Neurosci., 2004, 24(19), 4585-4595.
[http://dx.doi.org/10.1523/JNEUROSCI.5060-03.2004] [PMID: 15140930]
[309]
Schwartz, R.E.; Reyes, M.; Koodie, L.; Jiang, Y.; Blackstad, M.; Lund, T.; Lenvik, T.; Johnson, S.; Hu, W.S.; Verfaillie, C.M. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest., 2002, 109(10), 1291-1302.
[http://dx.doi.org/10.1172/JCI0215182] [PMID: 12021244]
[310]
Jun, H.S.; Park, E.Y. Adult stem cells as a renewable source of insulin-producing cells. Int. J. Stem Cells, 2009, 2(2), 115-121.
[http://dx.doi.org/10.15283/ijsc.2009.2.2.115] [PMID: 24855530]
[311]
Sakata, N.; Chan, N.K.; Chrisler, J.; Obenaus, A.; Hathout, E. Bone marrow cell cotransplantation with islets improves their vascularization and function. Transplantation, 2010, 89(6), 686-693.
[http://dx.doi.org/10.1097/TP.0b013e3181cb3e8d] [PMID: 20101199]
[312]
Gao, X.; Song, L.; Shen, K.; Wang, H.; Qian, M.; Niu, W.; Qin, X. Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions. Mol. Cell. Endocrinol., 2014, 388(1-2), 41-50.
[http://dx.doi.org/10.1016/j.mce.2014.03.004] [PMID: 24667703]
[313]
Lu, L-L.; Liu, Y-J.; Yang, S-G.; Zhao, Q-J.; Wang, X.; Gong, W.; Han, Z-B.; Xu, Z-S.; Lu, Y-X.; Liu, D.; Chen, Z-Z.; Han, Z-C. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 2006, 91(8), 1017-1026.
[PMID: 16870554]
[314]
Hematti, P.; Kim, J.; Stein, A.P.; Kaufman, D. Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplant. Rev. (Orlando), 2013, 27(1), 21-29.
[http://dx.doi.org/10.1016/j.trre.2012.11.003] [PMID: 23290684]
[315]
Tang, D.Q.; Cao, L.Z.; Burkhardt, B.R.; Xia, C.Q.; Litherland, S.A.; Atkinson, M.A.; Yang, L.J. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes, 2004, 53(7), 1721-1732.
[http://dx.doi.org/10.2337/diabetes.53.7.1721] [PMID: 15220196]
[316]
Karnieli, O.; Izhar-Prato, Y.; Bulvik, S.; Efrat, S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 2007, 25(11), 2837-2844.
[http://dx.doi.org/10.1634/stemcells.2007-0164] [PMID: 17615265]
[317]
Volarevic, V.; Arsenijevic, N.; Lukic, M.L.; Stojkovic, M. Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells, 2011, 29(1), 5-10.
[http://dx.doi.org/10.1002/stem.556] [PMID: 21280154]
[318]
Welsh, M.; Welsh, N.; Nilsson, T.; Arkhammar, P.; Pepinsky, R.B.; Steiner, D.F.; Berggren, P.O. Stimulation of pancreatic islet beta-cell replication by oncogenes. Proc. Natl. Acad. Sci. USA, 1988, 85(1), 116-120.
[http://dx.doi.org/10.1073/pnas.85.1.116] [PMID: 2829167]
[319]
Li, M.; Ikehara, S. Stem cell treatment for type 1 diabetes. Front. Cell Dev. Biol., 2014, 2, 9.
[http://dx.doi.org/10.3389/fcell.2014.00009] [PMID: 25364717]
[320]
Armita Mahdavi Gorabi, A.; Jahandideh, K. Mesenchymal Stem Cells (M.S.C.) Effect in Streptozotocin (STZ) induced type I diabetic rats. Caspian Sea Journal, 2016, 1, 91-95.
[321]
Ianus, A.; Holz, G.G.; Theise, N.D.; Hussain, M.A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest., 2003, 111(6), 843-850.
[http://dx.doi.org/10.1172/JCI200316502] [PMID: 12639990]
[322]
Dang, L.T.T.; Bui, A.N.T.; Pham, V.M.; Phan, N.K.; Van Pham, P. Production of islet-like insulin-producing cell clusters in vitro from adiposederived stem cells. Biomed. Res. Ther., 2015, 2(1), 3.
[http://dx.doi.org/10.7603/s40730-015-0003-3]
[323]
Hashemian, S.J.; Kouhnavard, M.; Nasli-Esfahani, E. Mesenchymal stem cells: Rising concerns over their application in treatment of type one Diabetes Mellitus. J. Diabetes Res., 2015, 2015, 1-19.
[http://dx.doi.org/10.1155/2015/675103] [PMID: 26576437]
[324]
Kadam, S.; Muthyala, S.; Nair, P.; Bhonde, R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev. Diabet. Stud., 2010, 7(2), 168-182.
[http://dx.doi.org/10.1900/RDS.2010.7.168] [PMID: 21060975]
[325]
Ende, N.; Chen, R.; Reddi, A.S. Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in type 2 diabetic mice. Biochem. Biophys. Res. Commun., 2004, 321(1), 168-171.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.121] [PMID: 15358230]
[326]
Bieback, K.; Kern, S.; Klüter, H.; Eichler, H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells, 2004, 22(4), 625-634.
[http://dx.doi.org/10.1634/stemcells.22-4-625] [PMID: 15277708]
[327]
Koblas, T.; Harman, S.M.; Saudek, F. The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev. Diabet. Stud., 2005, 2(4), 228-234.
[http://dx.doi.org/10.1900/RDS.2005.2.228] [PMID: 17491699]
[328]
Prabakar, K.R.; Domínguez-Bendala, J.; Molano, R.D.; Pileggi, A.; Villate, S.; Ricordi, C.; Inverardi, L. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant., 2012, 21(6), 1321-1339.
[http://dx.doi.org/10.3727/096368911X612530] [PMID: 22195604]
[329]
Wu, L.F.; Wang, N.N.; Liu, Y.S.; Wei, X. Differentiation of Wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng. Part A, 2009, 15(10), 2865-2873.
[http://dx.doi.org/10.1089/ten.tea.2008.0579] [PMID: 19257811]
[330]
He, D.; Wang, J.; Gao, Y.; Zhang, Y. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro. Int. J. Mol. Med., 2011, 28(6), 1019-1024.
[http://dx.doi.org/10.3892/ijmm.2011.774] [PMID: 21837359]
[331]
Tsai, P.J.; Wang, H.S.; Shyr, Y.M.; Weng, Z.C.; Tai, L.C.; Shyu, J.F.; Chen, T.H. Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. J. Biomed. Sci., 2012, 19(1), 47.
[http://dx.doi.org/10.1186/1423-0127-19-47] [PMID: 22545626]
[332]
Tateishi, K.; He, J.; Taranova, O.; Liang, G.; D’Alessio, A.C.; Zhang, Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J. Biol. Chem., 2008, 283(46), 31601-31607.
[http://dx.doi.org/10.1074/jbc.M806597200] [PMID: 18782754]
[333]
Seeberger, K.L.; Dufour, J.M.; Shapiro, A.M.J.; Lakey, J.R.T.; Rajotte, R.V.; Korbutt, G.S. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab. Invest., 2006, 86(2), 141-153.
[http://dx.doi.org/10.1038/labinvest.3700377] [PMID: 16402034]
[334]
Stagner, J.I.; Rilo, H.L.; White, K.K. The pancreas as an islet transplantation site. Confirmation in a syngeneic rodent and canine autotransplant model. JOP, 2007, 8(5), 628-636.
[PMID: 17873472]
[335]
Nostro, M.C.; Sarangi, F.; Yang, C.; Holland, A.; Elefanty, A.G.; Stanley, E.G.; Greiner, D.L.; Keller, G. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports, 2015, 4(4), 591-604.
[http://dx.doi.org/10.1016/j.stemcr.2015.02.017] [PMID: 25843049]
[336]
Rezania, A.; Bruin, J.E.; Riedel, M.J.; Mojibian, M.; Asadi, A.; Xu, J.; Gauvin, R.; Narayan, K.; Karanu, F.; O’Neil, J.J.; Ao, Z.; Warnock, G.L.; Kieffer, T.J. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes, 2012, 61(8), 2016-2029.
[http://dx.doi.org/10.2337/db11-1711] [PMID: 22740171]
[337]
Abdelalim, E.M.; Bonnefond, A.; Bennaceur-Griscelli, A.; Froguel, P. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev., 2014, 10(3), 327-337.
[http://dx.doi.org/10.1007/s12015-014-9503-6] [PMID: 24577791]
[338]
Opara, E.C.; Mirmalek-Sani, S.H.; Khanna, O.; Moya, M.L.; Brey, E.M. Design of a bioartificial pancreas(+) J. Investig. Med., 2010, 58(7), 831-837.
[http://dx.doi.org/10.2310/JIM.0b013e3181ed3807] [PMID: 20683347]
[339]
Mallett, A.G.; Korbutt, G.S. Alginate modification improves long-term survival and function of transplanted encapsulated islets. Tissue Eng. Part A, 2009, 15(6), 1301-1309.
[http://dx.doi.org/10.1089/ten.tea.2008.0118] [PMID: 18950258]
[340]
Langlois, G.; Dusseault, J.; Bilodeau, S.; Tam, S.K.; Magassouba, D.; Hallé, J.P. Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomater., 2009, 5(9), 3433-3440.
[http://dx.doi.org/10.1016/j.actbio.2009.05.029] [PMID: 19520193]
[341]
Vegas, A.J.; Veiseh, O.; Doloff, J.C.; Ma, M.; Tam, H.H.; Bratlie, K.; Li, J.; Bader, A.R.; Langan, E.; Olejnik, K.; Fenton, P.; Kang, J.W.; Hollister-Locke, J.; Bochenek, M.A.; Chiu, A.; Siebert, S.; Tang, K.; Jhunjhunwala, S.; Aresta-Dasilva, S.; Dholakia, N.; Thakrar, R.; Vietti, T.; Chen, M.; Cohen, J.; Siniakowicz, K.; Qi, M.; McGarrigle, J.; Graham, A.C.; Lyle, S.; Harlan, D.M.; Greiner, D.L.; Oberholzer, J.; Weir, G.C.; Langer, R.; Anderson, D.G. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol., 2016, 34(3), 345-352.
[http://dx.doi.org/10.1038/nbt.3462] [PMID: 26807527]
[342]
Chen, T.; Yuan, J.; Duncanson, S.; Hibert, M.L.; Kodish, B.C.; Mylavaganam, G.; Maker, M.; Li, H.; Sremac, M.; Santosuosso, M.; Forbes, B.; Kashiwagi, S.; Cao, J.; Lei, J.; Thomas, M.; Hartono, C.; Sachs, D.; Markmann, J.; Sambanis, A.; Poznansky, M.C. Alginate encapsulant incorporating CXCL12 supports long-term allo-and xenoislet transplantation without systemic immune suppression. Am. J. Transplant., 2015, 15(3), 618-627.
[http://dx.doi.org/10.1111/ajt.13049] [PMID: 25693473]
[343]
Alagpulinsa, D.A.; Cao, J.J.L.; Driscoll, R.K.; Sîrbulescu, R.F.; Penson, M.F.E.; Sremac, M.; Engquist, E.N.; Brauns, T.A.; Markmann, J.F.; Melton, D.A.; Poznansky, M.C. Alginate-microencapsulation of Human Stem Cell-Derived β Cells with CXCL 12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am. J. Transplant., 2019, 2019, 15308.
[http://dx.doi.org/10.1111/ajt.15308]
[344]
Vaithilingam, V.; Tuch, B.E. Islet transplantation and encapsulation: an update on recent developments. Rev. Diabet. Stud., 2011, 8(1), 51-67.
[http://dx.doi.org/10.1900/RDS.2011.8.51] [PMID: 21720673]
[345]
Tuch, B.E.; Keogh, G.W.; Williams, L.J.; Wu, W.; Foster, J.L.; Vaithilingam, V.; Philips, R. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care, 2009, 32(10), 1887-1889.
[http://dx.doi.org/10.2337/dc09-0744] [PMID: 19549731]
[346]
Paredes-Juarez, G.A.; de Vos, P.; Bulte, J.W.M. Recent progress in the use and tracking of transplanted islets as a personalized treatment for type 1 diabetes. Expert Rev. Precis. Med. Drug Dev., 2017, 2(1), 57-67.
[http://dx.doi.org/10.1080/23808993.2017.1302305] [PMID: 29276781]
[347]
Hrvatin, S.; O’Donnell, C.W.; Deng, F.; Millman, J.R.; Pagliuca, F.W.; DiIorio, P.; Rezania, A.; Gifford, D.K.; Melton, D.A. Differentiated human stem cells resemble fetal, not adult, β cells. Proc. Natl. Acad. Sci. USA, 2014, 111(8), 3038-3043.
[http://dx.doi.org/10.1073/pnas.1400709111] [PMID: 24516164]
[348]
Hentze, H.; Soong, P.L.; Wang, S.T.; Phillips, B.W.; Putti, T.C.; Dunn, N.R. Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Res. (Amst.), 2009, 2(3), 198-210.
[http://dx.doi.org/10.1016/j.scr.2009.02.002] [PMID: 19393593]
[349]
van der Torren, C.R.; Zaldumbide, A.; Duinkerken, G.; Brand-Schaaf, S.H.; Peakman, M.; Stangé, G.; Martinson, L.; Kroon, E.; Brandon, E.P.; Pipeleers, D.; Roep, B.O. Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia, 2017, 60(1), 126-133.
[http://dx.doi.org/10.1007/s00125-016-4125-y] [PMID: 27787618]
[350]
Xu, H.; Wang, B.; Ono, M.; Kagita, A.; Fujii, K.; Sasakawa, N.; Ueda, T.; Gee, P.; Nishikawa, M.; Nomura, M.; Kitaoka, F.; Takahashi, T.; Okita, K.; Yoshida, Y.; Kaneko, S.; Hotta, A. Targeted disruption of HLA Genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell, 2019, 24(4), 566-578.e7.
[http://dx.doi.org/10.1016/j.stem.2019.02.005] [PMID: 30853558]
[351]
El Khatib, M.M. Sakuma, T.; Tonne, J.M.; Mohamed, M.S.; Holditch, S.J.; Lu, B.; Kudva, Y.C.; Ikeda, Y. β-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection. Gene Ther., 2015, 22(5), 430-438.
[http://dx.doi.org/10.1038/gt.2015.18] [PMID: 25786871]
[352]
Bonini, C.; Bondanza, A.; Perna, S.K.; Kaneko, S.; Traversari, C.; Ciceri, F.; Bordignon, C. The suicide gene therapy challenge: How to improve a successful gene therapy approach. Mol. Ther., 2007, 15(7), 1248-1252.
[http://dx.doi.org/10.1038/sj.mt.6300190] [PMID: 17505474]
[353]
Dor, Y.; Brown, J.; Martinez, O.I.; Melton, D.A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 2004, 429(6987), 41-46.
[http://dx.doi.org/10.1038/nature02520] [PMID: 15129273]
[354]
Georgia, S. Bhushan, A. β cell replication is the primary mechanism for maintaining postnatal β cell mass. J. Clin. Invest., 2004, 114(7), 963-968.
[http://dx.doi.org/10.1172/JCI22098] [PMID: 15467835]
[355]
Butler, A.E. Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52(1), 102-110.
[http://dx.doi.org/10.2337/diabetes.52.1.102] [PMID: 12502499]
[356]
Meier, J.J.; Bhushan, A.; Butler, A.E.; Rizza, R.A.; Butler, P.C. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia, 2005, 48(11), 2221-2228.
[http://dx.doi.org/10.1007/s00125-005-1949-2] [PMID: 16205882]
[357]
Bouwens, L.; Rooman, I. Regulation of pancreatic beta-cell mass. Physiol. Rev., 2005, 85(4), 1255-1270.
[http://dx.doi.org/10.1152/physrev.00025.2004] [PMID: 16183912]
[358]
Assche, F.A.; Aerts, L.; Prins, F.D. A morphological study of the endocrine pancreas in human pregnancy. BJOG, 1978, 85(11), 818-820.
[http://dx.doi.org/10.1111/j.1471-0528.1978.tb15835.x]
[359]
Suarez-Pinzon, W.L.; Lakey, J.R.T.; Brand, S.J.; Rabinovitch, A. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreatic duct cells and an increase in functional β-cell mass. J. Clin. Endocrinol. Metab., 2005, 90(6), 3401-3409.
[http://dx.doi.org/10.1210/jc.2004-0761] [PMID: 15769977]
[360]
Rooman, I.; Bouwens, L. Combined gastrin and epidermal growth factor treatment induces islet regeneration and restores normoglycaemia in C57Bl6/J mice treated with alloxan. Diabetologia, 2004, 47(2), 259-265.
[http://dx.doi.org/10.1007/s00125-003-1287-1] [PMID: 14666367]
[361]
Rooman, I.; Lardon, J.; Bouwens, L. Gastrin stimulates β-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes, 2002, 51(3), 686-690.
[http://dx.doi.org/10.2337/diabetes.51.3.686] [PMID: 11872667]
[362]
Buteau, J.; Foisy, S.; Joly, E.; Prentki, M. Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes, 2003, 52(1), 124-132.
[http://dx.doi.org/10.2337/diabetes.52.1.124] [PMID: 12502502]
[363]
Meier, J.J.; Nauck, M.A. Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab. Res. Rev., 2005, 21(2), 91-117.
[http://dx.doi.org/10.1002/dmrr.538] [PMID: 15759282]
[364]
Trümper, A.; Trümper, K.; Trusheim, H.; Arnold, R.; Göke, B.; Hörsch, D. Glucose-dependent insulinotropic polypeptide is a growth factor for β (INS-1) cells by pleiotropic signaling. Mol. Endocrinol., 2001, 15(9), 1559-1570.
[http://dx.doi.org/10.1210/me.15.9.1559] [PMID: 11518806]
[365]
Beattie, G.M.; Montgomery, A.M.P.; Lopez, A.D.; Hao, E.; Perez, B.; Just, M.L.; Lakey, J.R.T.; Hart, M.E.; Hayek, A. A novel approach to increase human islet cell mass while preserving β-cell function. Diabetes, 2002, 51(12), 3435-3439.
[http://dx.doi.org/10.2337/diabetes.51.12.3435] [PMID: 12453897]
[366]
Lingohr, M.K.; Dickson, L.M.; McCuaig, J.F.; Hugl, S.R.; Twardzik, D.R.; Rhodes, C.J. Activation of IRS-2-mediated signal transduction by IGF-1, but not TGF-α or EGF, augments pancreatic β-cell proliferation. Diabetes, 2002, 51(4), 966-976.
[http://dx.doi.org/10.2337/diabetes.51.4.966] [PMID: 11916914]
[367]
Rabinovitch, A.; Quigley, C.; Russell, T.; Patel, Y.; Mintz, D.H. Insulin and multiplication stimulating activity (an insulin-like growth factor) stimulate islet (β-cell replication in neonatal rat pancreatic monolayer cultures. Diabetes, 1982, 31(2), 160-164.
[http://dx.doi.org/10.2337/diab.31.2.160] [PMID: 6759233]
[368]
Rhodes, C.J. IGF-I and GH post-receptor signaling mechanisms for pancreatic beta-cell replication. J. Mol. Endocrinol., 2000, 24(3), 303-311.
[http://dx.doi.org/10.1677/jme.0.0240303] [PMID: 10828823]
[369]
Huotari, M.A.; Palgi, J.; Otonkoski, T. Growth factor-mediated proliferation and differentiation of insulin-producing INS-1 and RINm5F cells: identification of betacellulin as a novel β-cell mitogen. Endocrinology, 1998, 139(4), 1494-1499.
[http://dx.doi.org/10.1210/endo.139.4.5882] [PMID: 9528926]
[370]
Movassat, J.; Beattie, G.M.; Lopez, A.D.; Portha, B.; Hayek, A. Keratinocyte growth factor and beta-cell differentiation in human fetal pancreatic endocrine precursor cells. Diabetologia, 2003, 46(6), 822-829.
[http://dx.doi.org/10.1007/s00125-003-1117-5] [PMID: 12802496]
[371]
Dunbar, A.J.; Goddard, C. Structure-function and biological role of betacellulin. Int. J. Biochem. Cell Biol., 2000, 32(8), 805-815.
[http://dx.doi.org/10.1016/S1357-2725(00)00028-5] [PMID: 10940639]
[372]
Ritzel, R.A.; Butler, P.C. Replication increases β-cell vulnerability to human islet amyloid polypeptide-induced apoptosis. Diabetes, 2003, 52(7), 1701-1708.
[http://dx.doi.org/10.2337/diabetes.52.7.1701] [PMID: 12829636]
[373]
Meier, J.J.; Ritzel, R.A.; Maedler, K.; Gurlo, T.; Butler, P.C. Increased vulnerability of newly forming beta cells to cytokine-induced cell death. Diabetologia, 2006, 49(1), 83-89.
[http://dx.doi.org/10.1007/s00125-005-0069-3] [PMID: 16323002]
[374]
Katuchova, J.; Harvanova, D.; Spakova, T.; Kalanin, R.; Farkas, D.; Durny, P.; Rosocha, J.; Radonak, J.; Petrovic, D.; Siniscalco, D.; Qi, M.; Novak, M.; Kruzliak, P. Mesenchymal stem cells in the treatment of type 1 diabetes mellitus. Endocr. Pathol., 2015, 26(2), 95-103.
[http://dx.doi.org/10.1007/s12022-015-9362-y] [PMID: 25762503]
[375]
Li, Y.; Liu, J.; Liao, G.; Zhang, J.; Chen, Y.; Li, L.; Li, L.; Liu, F.; Chen, B.; Guo, G.; Wang, C.; Yang, L.; Cheng, J.; Lu, Y. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. Int. J. Mol. Med., 2018, 41(5), 2629-2639.
[http://dx.doi.org/10.3892/ijmm.2018.3501] [PMID: 29484379]
[376]
Nagaishi, K.; Mizue, Y.; Chikenji, T.; Otani, M.; Nakano, M.; Saijo, Y.; Tsuchida, H.; Ishioka, S.; Nishikawa, A.; Saito, T.; Fujimiya, M. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci. Rep., 2017, 7(1), 8484.
[http://dx.doi.org/10.1038/s41598-017-08921-y] [PMID: 28814814]
[377]
Ebrahim, N.; Ahmed, I.; Hussien, N.; Dessouky, A.; Farid, A.; Elshazly, A.; Mostafa, O.; Gazzar, W.; Sorour, S.; Seleem, Y.; Hussein, A.; Sabry, D. Mesenchymal Stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells, 2018, 7(12), 226.
[http://dx.doi.org/10.3390/cells7120226] [PMID: 30467302]
[378]
Rashed, L.A.; Elattar, S.; Eltablawy, N.; Ashour, H.; Mahmoud, L.M.; El-Esawy, Y. Mesenchymal stem cells pretreated with melatonin ameliorate kidney functions in a rat model of diabetic nephropathy. Biochem. Cell Biol., 2018, 96(5), 564-571.
[http://dx.doi.org/10.1139/bcb-2017-0230] [PMID: 29425466]
[379]
Sun, J.; Zhao, F.; Zhang, W.; Lv, J.; Lv, J.; Yin, A. BMSC s and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 4840-4855.
[http://dx.doi.org/10.1111/jcmm.13747] [PMID: 30024097]
[380]
Li, H.; Rong, P.; Ma, X.; Nie, W.; Chen, C.; Yang, C.; Zhang, J.; Dong, Q.; Wang, W. Paracrine effect of mesenchymal stem cell as a novel therapeutic strategy for diabetic nephropathy. Life Sci., 2018, 215, 113-118.
[http://dx.doi.org/10.1016/j.lfs.2018.11.001] [PMID: 30399376]
[381]
Kim, S.W.; Han, H.; Chae, G.T.; Lee, S.H.; Bo, S.; Yoon, J.H.; Lee, Y.S.; Lee, K.S.; Park, H.K.; Kang, K.S. Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger’s disease and ischemic limb disease animal model. Stem Cells, 2006, 24(6), 1620-1626.
[http://dx.doi.org/10.1634/stemcells.2005-0365] [PMID: 16497946]
[382]
Williams, A.R.; Trachtenberg, B.; Velazquez, D.L.; McNiece, I.; Altman, P.; Rouy, D.; Mendizabal, A.M.; Pattany, P.M.; Lopera, G.A.; Fishman, J.; Zambrano, J.P.; Heldman, A.W.; Hare, J.M. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: Functional recovery and reverse remodeling. Circ. Res., 2011, 108(7), 792-796.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.242610] [PMID: 21415390]
[383]
Xia, N.; Xu, J.M.; Zhao, N.; Zhao, Q.S.; Li, M.; Cheng, Z.F. Human mesenchymal stem cells improve the neurodegeneration of femoral nerve in a diabetic foot ulceration rats. Neurosci. Lett., 2015, 597, 84-89.
[http://dx.doi.org/10.1016/j.neulet.2015.04.038] [PMID: 25916880]
[384]
MacAskill, M.G.; Saif, J.; Condie, A.; Jansen, M.A.; MacGillivray, T.J.; Tavares, A.A.S.; Fleisinger, L.; Spencer, H.L.; Besnier, M.; Martin, E.; Biglino, G.; Newby, D.E.; Hadoke, P.W.F.; Mountford, J.C.; Emanueli, C.; Baker, A.H. Robust revascularization in models of limb ischemia using a clinically translatable human stem cell-derived endothelial cell product. Mol. Ther., 2018, 26(7), 1669-1684.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.017] [PMID: 29703701]
[385]
Liang, L.; Li, Z.; Ma, T.; Han, Z.; Du, W.; Geng, J.; Jia, H.; Zhao, M.; Wang, J.; Zhang, B.; Feng, J.; Zhao, L.; Rupin, A.; Wang, Y.; Han, Z.C. Transplantation of Human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats. Cell Transplant., 2017, 26(1), 45-61.
[http://dx.doi.org/10.3727/096368916X692726] [PMID: 27501782]
[386]
Ezquer, F.; Ezquer, M.; Arango-Rodriguez, M.; Conget, P. Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol., 2014, 92(2), e86-e95.
[http://dx.doi.org/10.1111/aos.12113] [PMID: 23773776]
[387]
Chen, S.; Zhang, W.; Wang, J-M.; Duan, H-T.; Kong, J-H.; Wang, Y-X.; Dong, M.; Bi, X.; Song, J. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells. Int. J. Ophthalmol., 2016, 9(1), 41-47.
[http://dx.doi.org/10.18240/ijo.2016.01.07]
[388]
Zhang, W.; Wang, Y.; Kong, J.; Dong, M.; Duan, H.; Chen, S. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci. Rep., 2017, 7(1), 408.
[http://dx.doi.org/10.1038/s41598-017-00298-2] [PMID: 28341839]
[389]
Elshaer, S.L.; Evans, W.; Pentecost, M.; Lenin, R.; Periasamy, R.; Jha, K.A.; Alli, S.; Gentry, J.; Thomas, S.M.; Sohl, N.; Gangaraju, R. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2Akita mouse. Stem Cell Res. Ther., 2018, 9(1), 322.
[http://dx.doi.org/10.1186/s13287-018-1059-y] [PMID: 30463601]
[390]
Kim, J.M.; Hong, K.S.; Song, W.K.; Bae, D.; Hwang, I.K.; Kim, J.S.; Chung, H.M. Perivascular progenitor cells derived from human embryonic stem cells exhibit functional characteristics of pericytes and improve the retinal vasculature in a rodent model of diabetic retinopathy. Stem Cells Transl. Med., 2016, 5(9), 1268-1276.
[http://dx.doi.org/10.5966/sctm.2015-0342] [PMID: 27388242]
[391]
Gu, X.; Yu, X.; Zhao, C.; Duan, P.; Zhao, T.; Liu, Y.; Li, S.; Yang, Z.; Li, Y.; Qian, C.; Yin, Z.; Wang, Y. Efficacy and safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cell. Physiol. Biochem., 2018, 49(1), 40-52.
[http://dx.doi.org/10.1159/000492838] [PMID: 30134223]
[392]
Greig, M.; Tesfaye, S.; Selvarajah, D.; Wilkinson, I.D. Insights into the pathogenesis and treatment of painful diabetic neuropathy. In: Handbook of Clinical Neurology; Elsevier: Amsterdam, 2014; Vol. 126, pp. 559-578.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00037-0]
[393]
Kaku, M.; Vinik, A.; Simpson, D.M. Pathways in the diagnosis and management of diabetic polyneuropathy. Curr. Diab. Rep., 2015, 15(6), 35.
[http://dx.doi.org/10.1007/s11892-015-0609-2] [PMID: 25899758]
[394]
Shibata, T.; Naruse, K.; Kamiya, H.; Kozakae, M.; Kondo, M.; Yasuda, Y.; Nakamura, N.; Ota, K.; Tosaki, T.; Matsuki, T.; Nakashima, E.; Hamada, Y.; Oiso, Y.; Nakamura, J. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes, 2008, 57(11), 3099-3107.
[http://dx.doi.org/10.2337/db08-0031] [PMID: 18728233]
[395]
Monfrini, M.; Donzelli, E.; Rodriguez-Menendez, V.; Ballarini, E.; Carozzi, V.A.; Chiorazzi, A.; Meregalli, C.; Canta, A.; Oggioni, N.; Crippa, L.; Avezza, F.; Silvani, S.; Bonandrini, B.; Figliuzzi, M.; Remuzzi, A.; Porretta-Serapiglia, C.; Bianchi, R.; Lauria, G.; Tredici, G.; Cavaletti, G.; Scuteri, A. Therapeutic potential of mesenchymal stem cells for the treatment of diabetic peripheral neuropathy. Exp. Neurol., 2017, 288, 75-84.
[http://dx.doi.org/10.1016/j.expneurol.2016.11.006] [PMID: 27851902]
[396]
Suncion, V.Y.; Ghersin, E.; Fishman, J.E.; Zambrano, J.P.; Karantalis, V.; Mandel, N.; Nelson, K.H.; Gerstenblith, G.; DiFede Velazquez, D.L.; Breton, E.; Sitammagari, K.; Schulman, I.H.; Taldone, S.N.; Williams, A.R.; Sanina, C.; Johnston, P.V.; Brinker, J.; Altman, P.; Mushtaq, M.; Trachtenberg, B.; Mendizabal, A.M.; Tracy, M.; Da Silva, J.; McNiece, I.K.; Lardo, A.C.; George, R.T.; Hare, J.M.; Heldman, A.W. Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: An analysis from the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) randomized trial. Circ. Res., 2014, 114(8), 1292-1301.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302854] [PMID: 24449819]
[397]
Karantalis, V.; DiFede, D.L.; Gerstenblith, G.; Pham, S.; Symes, J.; Zambrano, J.P.; Fishman, J.; Pattany, P.; McNiece, I.; Conte, J.; Schulman, S.; Wu, K.; Shah, A.; Breton, E.; Davis-Sproul, J.; Schwarz, R.; Feigenbaum, G.; Mushtaq, M.; Suncion, V.Y.; Lardo, A.C.; Borrello, I.; Mendizabal, A.; Karas, T.Z.; Byrnes, J.; Lowery, M.; Heldman, A.W.; Hare, J.M. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ. Res., 2014, 114(8), 1302-1310.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303180] [PMID: 24565698]
[398]
Hu, S.C.S.; Lan, C.C.E. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing. J. Dermatol. Sci., 2016, 84(2), 121-127.
[http://dx.doi.org/10.1016/j.jdermsci.2016.07.008] [PMID: 27461757]
[399]
Tecilazich, F.; Dinh, T.; Pradhan-Nabzdyk, L.; Leal, E.; Tellechea, A.; Kafanas, A.; Gnardellis, C.; Magargee, M.L.; Dejam, A.; Toxavidis, V.; Tigges, J.C.; Carvalho, E.; Lyons, T.E.; Veves, A. Role of endothelial progenitor cells and inflammatory cytokines in healing of diabetic foot ulcers. PLoS One, 2013, 8(12)e83314
[http://dx.doi.org/10.1371/journal.pone.0083314] [PMID: 24358275]
[400]
Gerami-Naini, B.; Smith, A.; Maione, A.G.; Kashpur, O.; Carpinito, G.; Veves, A.; Mooney, D.J.; Garlick, J.A. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative sendai virus. Cell. Reprogram., 2016, 18(4), 214-223.
[http://dx.doi.org/10.1089/cell.2015.0087] [PMID: 27328415]
[401]
Khamaisi, M.; Katagiri, S.; Keenan, H.; Park, K.; Maeda, Y.; Li, Q.; Qi, W.; Thomou, T.; Eschuk, D.; Tellechea, A.; Veves, A.; Huang, C.; Orgill, D.P.; Wagers, A.; King, G.L. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J. Clin. Invest., 2016, 126(3), 837-853.
[http://dx.doi.org/10.1172/JCI82788] [PMID: 26808499]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy