Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Calixarene: A Supramolecular Material for Treating Cancer

Author(s): Rui Li, Ning Liu, Rui Liu*, Xin Jin* and Zheng Li

Volume 21, Issue 2, 2024

Published on: 05 May, 2023

Page: [184 - 192] Pages: 9

DOI: 10.2174/1567201820666230417084210

Price: $65

Abstract

Cancer is a disease with a high mortality rate; therefore, research on new treatment strategies is essential. There has been increased interest in novel drug delivery systems (DDS) in recent years, such as calixarene, one of the most important principal molecules in supramolecular chemistry. Calixarene is a cyclic oligomer of phenolic units linked by methylene bridges that belongs to the third generation of supramolecular compounds. By modifying the phenolic hydroxyl end (lower edge) or the para-position, a wide range of calixarene derivatives can be obtained (upper edge). Drugs are combined with calixarenes to modify and have new properties, such as strong water solubility, the ability to bond with guest molecules, and excellent biocompatibility. In this review, we summarize the applications of calixarene in the construction of anticancer drug delivery systems and its application in clinical treatment and diagnosis. It provides theoretical support for the diagnosis and treatment of cancer in the future.

Graphical Abstract

[1]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036] [PMID: 31790602]
[2]
Zaimy, M.A.; Saffarzadeh, N.; Mohammadi, A.; Pourghadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L.K.; Paschepari, S.R.; Azizi, H.; Torkamandi, S.; Tavakkoly-Bazzaz, J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther., 2017, 24(6), 233-243.
[http://dx.doi.org/10.1038/cgt.2017.16] [PMID: 28574057]
[3]
Global Burden of Disease Cancer Collaboration. Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; Dandona, L.; Fleming, T.; Forouzanfar, M.H.; Hancock, J.; Hay, R.J.; Hunter-Merrill, R.; Huynh, C.; Hosgood, H.D.; Johnson, C.O.; Jonas, J.B.; Naghavi, M. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol., 2017, 3, 524-548.
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Fan, X.; Guo, X. Development of calixarene-based drug nanocarriers. J. Mol. Liq., 2021, 325, 115246.
[http://dx.doi.org/10.1016/j.molliq.2020.115246]
[6]
Tan, S.Y.; Ang, C.Y.; Zhao, Y. Smart therapeutics achieved via host – guest assemblies. In: Comprehensive Supramolecular Chemistry II; Elsevier Oxford, 2017; pp. 391-420.
[7]
Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-treating fields: A fourth modality in cancer treatment. Clin. Cancer Res., 2018, 24(2), 266-275.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1117] [PMID: 28765323]
[8]
Wyld, L.; Audisio, R.A.; Poston, G.J. The evolution of cancer surgery and future perspectives. Nat. Rev. Clin. Oncol., 2015, 12(2), 115-124.
[http://dx.doi.org/10.1038/nrclinonc.2014.191] [PMID: 25384943]
[9]
Aguirre-Ghiso, J.A. Translating the science of cancer dormancy to the clinic. Cancer Res., 2021, 81(18), 4673-4675.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1407] [PMID: 34429327]
[10]
Gorbet, M.J.; Ranjan, A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol. Ther., 2020, 207, 107456.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107456] [PMID: 31863820]
[11]
Guo, D.S.; Liu, Y. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc. Chem. Res., 2014, 47(7), 1925-1934.
[http://dx.doi.org/10.1021/ar500009g] [PMID: 24666259]
[12]
Hussain, M.A.; Ashraf, M.U.; Muhammad, G.; Tahir, M.N.; Bukhari, S.N.A. Calixarene: A versatile material for drug design and applications. Curr. Pharm. Des., 2017, 23(16), 2377-2388.
[PMID: 27779081]
[13]
Guven, I.; Gezici, O.; Bayrakci, M.; Morbidelli, M. Calixarene-immobilized monolithic cryogels for preparative protein chromatography. J. Chromatogr. A, 2018, 1558, 59-68.
[http://dx.doi.org/10.1016/j.chroma.2018.05.026] [PMID: 29778445]
[14]
Giuliani, M.; Faroldi, F.; Morelli, L.; Torre, E.; Lombardi, G.; Fallarini, S.; Sansone, F.; Compostella, F. Exploring calixarene-based clusters for efficient functional presentation of Streptococcus pneumoniae saccharides. Bioorg. Chem., 2019, 93, 103305.
[http://dx.doi.org/10.1016/j.bioorg.2019.103305] [PMID: 31586712]
[15]
Spagnul, A.; Bouvier-Capely, C.; Adam, M.; Phan, G.; Rebière, F.; Fattal, E. Quick and efficient extraction of uranium from a contaminated solution by a calixarene nanoemulsion. Int. J. Pharm., 2010, 398(1-2), 179-184.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.016] [PMID: 20656002]
[16]
Doolan, A.M.; Rennie, M.L.; Crowley, P.B. Protein recognition by functionalized sulfonatocalix[4]arenes. Chemistry, 2018, 24(4), 984-991.
[http://dx.doi.org/10.1002/chem.201704931] [PMID: 29125201]
[17]
Ukhatskaya, E.V.; Kurkov, S.V.; Matthews, S.E.; Loftsson, T. Encapsulation of drug molecules into calix[n]arene nanobaskets. role of aminocalix[n]arenes in biopharmaceutical field. J. Pharm. Sci., 2013, 102(10), 3485-3512.
[http://dx.doi.org/10.1002/jps.23681] [PMID: 23925981]
[18]
Phan, G.; Semili, N.; Bouvier-Capely, C.; Landon, G.; Mekhloufi, G.; Huang, N.; Rebière, F.; Agarande, M.; Fattal, E. Calixarene cleansing formulation for uranium skin contamination. Health Phys., 2013, 105(4), 382-389.
[http://dx.doi.org/10.1097/HP.0b013e318298e8d3] [PMID: 23982616]
[19]
Wang, J.; Ding, X.; Guo, X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv. Colloid Interface Sci., 2019, 269, 187-202.
[http://dx.doi.org/10.1016/j.cis.2019.04.004] [PMID: 31082545]
[20]
Rodik, R.; Boyko, V.; Kalchenko, V. Calixarenes in bio-medical researches. Curr. Med. Chem., 2009, 16(13), 1630-1655.
[http://dx.doi.org/10.2174/092986709788186219] [PMID: 19442137]
[21]
Yousaf, A.; Hamid, S.A.; Bunnori, N.M.; Ishola, A.A. Applications of calixarenes in cancer chemotherapy: Facts and perspectives. Drug Des. Devel. Ther., 2015, 9, 2831-2838.
[PMID: 26082613]
[22]
Astorgues-Xerri, L.; Riveiro, M.E.; Tijeras-Raballand, A.; Serova, M.; Rabinovich, G.A.; Bieche, I.; Vidaud, M.; de Gramont, A.; Martinet, M.; Cvitkovic, E.; Faivre, S.; Raymond, E. OTX008, a selective small-molecule inhibitor of galectin-1, downregulates cancer cell proliferation, invasion and tumour angiogenesis. Eur. J. Cancer, 2014, 50(14), 2463-2477.
[http://dx.doi.org/10.1016/j.ejca.2014.06.015] [PMID: 25042151]
[23]
Dienstmann, R.; Salazar, R.; Tabernero, J. Personalizing colon cancer adjuvant therapy: Selecting optimal treatments for individual patients. J. Clin. Oncol., 2015, 33(16), 1787-1796.
[http://dx.doi.org/10.1200/JCO.2014.60.0213] [PMID: 25918287]
[24]
Blind, N.; Strigård, K.; Gunnarsson, U.; Brännström, F. Distance to hospital is not a risk factor for emergency colon cancer surgery. Int. J. Colorectal Dis., 2018, 33(9), 1195-1200.
[http://dx.doi.org/10.1007/s00384-018-3074-y] [PMID: 29797050]
[25]
Li, M.; Mao, L.; Chen, M.; Li, M.; Wang, K.; Mo, J. Characterization of an amphiphilic phosphonated calixarene carrier loaded with carboplatin and paclitaxel: A preliminary study to treat colon cancer in vitro and in vivo. Front. Bioeng. Biotechnol., 2019, 7, 238.
[http://dx.doi.org/10.3389/fbioe.2019.00238] [PMID: 31632958]
[26]
Aldape, K.; Zadeh, G.; Mansouri, S.; Reifenberger, G.; von Deimling, A. Glioblastoma: Pathology, molecular mechanisms and markers. Acta Neuropathol., 2015, 129(6), 829-848.
[http://dx.doi.org/10.1007/s00401-015-1432-1] [PMID: 25943888]
[27]
Li, H.; Chen, L.; Li, J.; Zhou, Q.; Huang, A.; Liu, W.; Wang, K.; Gao, L.; Qi, S.; Lu, Y. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J. Hematol. Oncol., 2018, 11(1), 70.
[http://dx.doi.org/10.1186/s13045-018-0618-0] [PMID: 29843746]
[28]
Karachi, A.; Dastmalchi, F.; Mitchell, D.A.; Rahman, M. Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro-oncol., 2018, 20(12), 1566-1572.
[http://dx.doi.org/10.1093/neuonc/noy072] [PMID: 29733389]
[29]
Renziehausen, A.; Tsiailanis, A.D.; Perryman, R.; Stylos, E.K.; Chatzigiannis, C.; O’Neill, K.; Crook, T.; Tzakos, A.G.; Syed, N. Encapsulation of temozolomide in a calixarene nanocapsule improves its stability and enhances its therapeutic efficacy against glioblastoma. Mol. Cancer Ther., 2019, 18(9), 1497-1505.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1250] [PMID: 31213505]
[30]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[31]
Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in TNBC. Cancers (Basel), 2020, 12(4), 916.
[http://dx.doi.org/10.3390/cancers12040916] [PMID: 32276534]
[32]
Chen, W.; Li, L.; Zhang, X.; Liang, Y.; Pu, Z.; Wang, L.; Mo, J. Curcumin: A calixarene derivative micelle potentiates anti-breast cancer stem cells effects in xenografted, triple-negative breast cancer mouse models. Drug Deliv., 2017, 24(1), 1470-1481.
[http://dx.doi.org/10.1080/10717544.2017.1381198] [PMID: 28956452]
[33]
Kaizerman-Kane, D.; Hadar, M.; Tal, N.; Dobrovetsky, R.; Zafrani, Y.; Cohen, Y. pH‐Responsive Pillar[6]arene‐based Water‐. Soluble Supramolecular Hexagonal Boxes. Angew. Chem. Int. Ed., 2019, 58(16), 5302-5306.
[http://dx.doi.org/10.1002/anie.201900217] [PMID: 30786135]
[34]
Li, Z.Y.; Zhang, Y.; Zhang, C.W.; Chen, L.J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H.B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc., 2014, 136(24), 8577-8589.
[http://dx.doi.org/10.1021/ja413047r] [PMID: 24571308]
[35]
Zhao, W.; Zhao, Y.; Wang, Q.; Liu, T.; Sun, J.; Zhang, R. Remote light-responsive nanocarriers for controlled drug delivery: Advances and perspectives. Small, 2019, 15(45), 1903060.
[http://dx.doi.org/10.1002/smll.201903060] [PMID: 31599125]
[36]
Mi, P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10), 4557-4588.
[http://dx.doi.org/10.7150/thno.38069] [PMID: 32292515]
[37]
Wang, K.P.; Chen, Y.; Liu, Y. A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior. Chem. Commun. (Camb.), 2015, 51(9), 1647-1649.
[http://dx.doi.org/10.1039/C4CC08721F] [PMID: 25503572]
[38]
Liao, J.; Peng, H.; Liu, C.; Li, D.; Yin, Y.; Lu, B.; Zheng, H.; Wang, Q. Dual pH-responsive-charge-reversal micelle platform for enhanced anticancer therapy. Mater. Sci. Eng. C, 2021, 118, 111527.
[http://dx.doi.org/10.1016/j.msec.2020.111527] [PMID: 33255080]
[39]
Iyer, R.; Nguyen, T.; Padanilam, D.; Xu, C.; Saha, D.; Nguyen, K.T.; Hong, Y. Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment. J. Control. Release, 2020, 321, 363-371.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.021] [PMID: 32061622]
[40]
Yan, Y.; Ding, H. pH-responsive nanoparticles for cancer immunotherapy: A brief review. Nanomaterials (Basel), 2020, 10(8), 1613.
[http://dx.doi.org/10.3390/nano10081613] [PMID: 32824578]
[41]
Wang, D.; Sun, F.; Lu, C.; Chen, P.; Wang, Z.; Qiu, Y.; Mu, H.; Miao, Z.; Duan, J. Inulin based glutathione-responsive delivery system for colon cancer treatment. Int. J. Biol. Macromol., 2018, 111, 1264-1272.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.071] [PMID: 29366899]
[42]
Rahimi, M.; Karimian, R.; Bahojb Noruzi, E.; Ganbarov, K.; Zarei, M.; Kamounah, F.S.; Yousefi, B.; Bastami, M.; Yousefi, M.; Samadi Kafil, H. Needle-shaped amphoteric calix[4]arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells. Int. J. Nanomedicine, 2019, 14, 2619-2636.
[http://dx.doi.org/10.2147/IJN.S194596] [PMID: 31043778]
[43]
Gong, M.; Yang, J.; Li, Y.; Gu, J. Glutathione-responsive nanoscale MOFs for effective intracellular delivery of the anticancer drug 6-mercaptopurine. Chem. Commun. (Camb.), 2020, 56(47), 6448-6451.
[http://dx.doi.org/10.1039/D0CC02872J] [PMID: 32393947]
[44]
Shen, Z.; Xia, J.; Ma, Q.; Zhu, W.; Gao, Z.; Han, S.; Liang, Y.; Cao, J.; Sun, Y. Tumor microenvironment-triggered nanosystems as dual-relief tumor hypoxia immunomodulators for enhanced phototherapy. Theranostics, 2020, 10(20), 9132-9152.
[http://dx.doi.org/10.7150/thno.46076] [PMID: 32802183]
[45]
Mirhadi, E.; Mashreghi, M.; Faal Maleki, M.; Alavizadeh, S.H.; Arabi, L.; Badiee, A.; Jaafari, M.R. Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int. J. Pharm., 2020, 589, 119882.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119882] [PMID: 32941986]
[46]
Cheng, Q.; Yin, H.; Sun, C.; Yue, L.; Ding, Y.; Dehaen, W.; Wang, R. Glutathione-responsive homodithiacalix[4]arene-based nanoparticles for selective intracellular drug delivery. Chem. Commun. (Camb.), 2018, 54(58), 8128-8131.
[http://dx.doi.org/10.1039/C8CC05031G] [PMID: 29974903]
[47]
Cryer, A.M.; Thorley, A.J. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol. Ther., 2019, 198, 189-205.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.010] [PMID: 30796927]
[48]
Wang, J.; Li, X.; Chen, H. Organoid models in lung regeneration and cancer. Cancer Lett., 2020, 475, 129-135.
[http://dx.doi.org/10.1016/j.canlet.2020.01.030] [PMID: 32032677]
[49]
Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. North Am., 2019, 103(3), 463-473.
[http://dx.doi.org/10.1016/j.mcna.2018.12.006] [PMID: 30955514]
[50]
An, L.; Wang, C.; Zheng, Y.G.; Liu, J.; Huang, T. Design, synthesis and evaluation of calix[4]arene-based carbonyl amide derivatives with antitumor activities. Eur. J. Med. Chem., 2021, 210, 112984.
[http://dx.doi.org/10.1016/j.ejmech.2020.112984] [PMID: 33183867]
[51]
Wang, L.; Li, L.; Fan, Y.; Wang, H. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater., 2013, 25(28), 3888-3898.
[http://dx.doi.org/10.1002/adma.201301202] [PMID: 24048975]
[52]
Lech, G. Słotwiński, R.; Słodkowski, M.; Krasnodębski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol., 2016, 22(5), 1745-1755.
[http://dx.doi.org/10.3748/wjg.v22.i5.1745] [PMID: 26855534]
[53]
Basilotta, R.; Mannino, D.; Filippone, A.; Casili, G.; Prestifilippo, A.; Colarossi, L.; Raciti, G.; Esposito, E.; Campolo, M. Role of calixarene in chemotherapy delivery strategies. Molecules, 2021, 26(13), 3963.
[http://dx.doi.org/10.3390/molecules26133963] [PMID: 34209495]
[54]
Baldini, L.; Casnati, A.; Sansone, F.; Ungaro, R. Calixarene-based multivalent ligands. Chem. Soc. Rev., 2007, 36(2), 254-266.
[http://dx.doi.org/10.1039/B603082N] [PMID: 17264928]
[55]
Joyce, D.P.; Kerin, M.J.; Dwyer, R.M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. Int. J. Cancer, 2016, 139(7), 1443-1448.
[http://dx.doi.org/10.1002/ijc.30179] [PMID: 27170104]
[56]
Rapado-González, Ó.; López-López, R.; López-Cedrún, J.L.; Triana-Martínez, G.; Muinelo-Romay, L.; Suárez-Cunqueiro, M.M. Cell-free microRNAs as potential oral cancer biomarkers: From diagnosis to therapy. Cells, 2019, 8(12), 1653.
[http://dx.doi.org/10.3390/cells8121653] [PMID: 31861130]
[57]
Melchardt, T.; Magnes, T.; Hufnagl, C.; Thorner, A.R.; Ducar, M.; Neureiter, D.; Tränkenschuh, W.; Klieser, E.; Gaggl, A.; Rösch, S.; Rasp, G.; Hartmann, T.N.; Pleyer, L.; Rinnerthaler, G.; Weiss, L.; Greil, R.; Egle, A. Clonal evolution and heterogeneity in metastatic head and neck cancer-An analysis of the Austrian Study Group of Medical Tumour Therapy study group. Eur. J. Cancer, 2018, 93, 69-78.
[http://dx.doi.org/10.1016/j.ejca.2018.01.064] [PMID: 29477794]
[58]
Yao, D.; Lin, Z.; Wu, J. Near-infrared fluorogenic probes with polarity-sensitive emission for in vivo imaging of an ovarian cancer biomarker. ACS Appl. Mater. Interfaces, 2016, 8(9), 5847-5856.
[http://dx.doi.org/10.1021/acsami.5b11826] [PMID: 26910257]
[59]
Wang, J.; Sun, Y.; Qu, J.; Yan, Y.; Yang, Y.; Cai, H. Roles of LPA receptor signaling in breast cancer. Expert Rev. Mol. Diagn., 2016, 16(10), 1103-1111.
[http://dx.doi.org/10.1080/14737159.2016.1238763] [PMID: 27644846]
[60]
Li, J.; Ji, C.; Lü, B.; Rodin, M.; Paradies, J.; Yin, M.; Kuckling, D. Dually crosslinked supramolecular hydrogel for cancer biomarker sensing. ACS Appl. Mater. Interfaces, 2020, 12(33), 36873-36881.
[http://dx.doi.org/10.1021/acsami.0c08722] [PMID: 32701258]
[61]
Zheng, Z.; Geng, W.C.; Gao, J.; Wang, Y.Y.; Sun, H.; Guo, D.S. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene. Chem. Sci. (Camb.), 2018, 9(8), 2087-2091.
[http://dx.doi.org/10.1039/C7SC04989G] [PMID: 29675249]
[62]
Saha, P.; Yeoh, B.S.; Xiao, X.; Golonka, R.M.; Kumarasamy, S.; Vijay-Kumar, M. Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation. Biochem. Pharmacol., 2019, 168, 71-81.
[http://dx.doi.org/10.1016/j.bcp.2019.06.017] [PMID: 31228465]
[63]
Sreedevi, P.; Nair, J.B.; Preethanuj, P.; Jeeja, B.S.; Suresh, C.H.; Maiti, K.K.; Varma, R.L. Calix[4]arene based redox sensitive molecular probe for SERS guided recognition of labile iron pool in tumor cells. Anal. Chem., 2018, 90(12), 7148-7153.
[http://dx.doi.org/10.1021/acs.analchem.8b01982] [PMID: 29792682]
[64]
Yu, H.; Geng, W.C.; Zheng, Z.; Gao, J.; Guo, D.S.; Wang, Y. Facile fluorescence monitoring of gut microbial metabolite trimethylamine N-oxide via molecular recognition of guanidinium-modified calixarene. Theranostics, 2019, 9(16), 4624-4632.
[http://dx.doi.org/10.7150/thno.33459] [PMID: 31367245]
[65]
Duffy, M.J.; Synnott, N.C.; Crown, J. Mutant p53 as a target for cancer treatment. Eur. J. Cancer, 2017, 83, 258-265.
[http://dx.doi.org/10.1016/j.ejca.2017.06.023] [PMID: 28756138]
[66]
Parrales, A.; Iwakuma, T. Targeting oncogenic mutant p53 for cancer therapy. Front. Oncol., 2015, 5, 288.
[http://dx.doi.org/10.3389/fonc.2015.00288] [PMID: 26732534]
[67]
Kanapathipillai, M. Treating p53 mutant aggregation-associated cancer. Cancers (Basel), 2018, 10(6), 154.
[http://dx.doi.org/10.3390/cancers10060154] [PMID: 29789497]
[68]
Wang, D.; Lee, M.M.S.; Xu, W.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Theranostics based on AIEgens. Theranostics, 2018, 8(18), 4925-4956.
[http://dx.doi.org/10.7150/thno.27787] [PMID: 30429878]
[69]
Gu, X.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. AIEgens for biological process monitoring and disease theranostics. Biomaterials, 2017, 146, 115-135.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.004] [PMID: 28915410]
[70]
Lou, X.; Zhao, Z.; Tang, B.Z. Organic dots based on AIEgens for two-photon fluorescence bioimaging. Small, 2016, 12(47), 6430-6450.
[http://dx.doi.org/10.1002/smll.201600872] [PMID: 27356782]
[71]
Chen, C.; Ni, X.; Tian, H.W.; Liu, Q.; Guo, D.S.; Ding, D. Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew. Chem. Int. Ed., 2020, 59(25), 10008-10012.
[http://dx.doi.org/10.1002/anie.201916430] [PMID: 31981392]
[72]
Tommasone, S.; Talotta, C.; Gaeta, C.; Margarucci, L.; Monti, M.C.; Casapullo, A.; Macchi, B.; Prete, S.P.; Ladeira De Araujo, A.; Neri, P. Biomolecular fishing for calixarene partners by a chemoproteomic approach. Angew. Chem. Int. Ed., 2015, 54(51), 15405-15409.
[http://dx.doi.org/10.1002/anie.201508651] [PMID: 26511099]
[73]
Wang, Y.; Yang, G.; You, L.; Yang, J.; Feng, M.; Qiu, J.; Zhao, F.; Liu, Y.; Cao, Z.; Zheng, L.; Zhang, T.; Zhao, Y. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol. Cancer, 2019, 18(1), 173.
[http://dx.doi.org/10.1186/s12943-019-1103-2] [PMID: 31785619]
[74]
Rocha-Brito, K.J.P.; Fonseca, E.M.B.; Oliveira, B.G.F.; Fátima, Â.; Ferreira-Halder, C.V. Calix[6]arene diminishes receptor tyrosine kinase lifespan in pancreatic cancer cells and inhibits their migration and invasion efficiency. Bioorg. Chem., 2020, 100, 103881.
[http://dx.doi.org/10.1016/j.bioorg.2020.103881] [PMID: 32388429]
[75]
Läppchen, T.; Dings, R.P.M.; Rossin, R.; Simon, J.F.; Visser, T.J.; Bakker, M.; Walhe, P.; van Mourik, T.; Donato, K.; van Beijnum, J.R.; Griffioen, A.W.; Lub, J.; Robillard, M.S.; Mayo, K.H.; Grüll, H. Novel analogs of antitumor agent calixarene 0118: Synthesis, cytotoxicity, click labeling with 2-[18F]fluoroethylazide, and in vivo evaluation. Eur. J. Med. Chem., 2015, 89, 279-295.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.048] [PMID: 25462244]
[76]
Dings, R.P.M.; Miller, M.C.; Nesmelova, I.; Astorgues-Xerri, L.; Kumar, N.; Serova, M.; Chen, X.; Raymond, E.; Hoye, T.R.; Mayo, K.H. Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding. J. Med. Chem., 2012, 55(11), 5121-5129.
[http://dx.doi.org/10.1021/jm300014q] [PMID: 22575017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy