Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Natural Polymers as a Carrier for the Effective Delivery of Antineoplastic Drugs

Author(s): Rajat Patel, Utkarsha Kuwar, Nidhi Dhote, Amit Alexander, Kartik Nakhate, Parag Jain and Ajazuddin*

Volume 21, Issue 2, 2024

Published on: 27 January, 2023

Page: [193 - 210] Pages: 18

DOI: 10.2174/1567201820666230112170035

Price: $65

Abstract

Cancer is a broad term for a set of disorders marked by the development of physically and functionally changed cells that proliferate uncontrollably, infect neighboring tissues, and result in malignant tumours, 'neoplasm'. Cancer remains a difficult disease to treat because of the significant adverse effects and poor pharmacokinetic profile of antineoplastic drugs, despite advancements in our understanding of the features and behavior of tumor cells in recent decades. In this series, the role of natural polymers is prominent as a component of a novel delivery system of anticancer drugs. These natural polymeric drug delivery systems (NPDDS) have many advantages over synthetic polymers like controlled delivery, biodegradability, inexpensive, low toxicity profile, and easily obtainable. These polymers further modify for the targeting of tumour cells. This review discusses and critically analyses the different natural polymers, such as chitosan, cellulose, starch, albumin, dextran, fucoidan, gelatin, etc., in terms of natural ingredient-based polymeric nanocarriers specifically for cancer therapy. It also describes benefits, drawbacks, and opinions and provides insights about the efficacy of NPDDS as well as its future perspectives and tabulated recent patents and cases under clinical trials exploited for cancer treatment.

Graphical Abstract

[1]
Moradi Kashkooli, F.; Soltani, M.; Souri, M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J. Control. Release, 2020, 327, 316-349.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.012] [PMID: 32800878]
[2]
Ilangala, A.B.; Lechanteur, A.; Fillet, M.; Piel, G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur. J. Pharm. Biopharm., 2021, 167, 140-158.
[http://dx.doi.org/10.1016/j.ejpb.2021.07.010] [PMID: 34311093]
[3]
Lin, G.; Revia, R.A.; Zhang, M. Inorganic nanomaterial‐mediated gene therapy in combination with other antitumor treatment modalities. Adv. Funct. Mater., 2021, 31(5), 2007096.
[http://dx.doi.org/10.1002/adfm.202007096] [PMID: 34366761]
[4]
Joyce, K.; Fabra, G.T.; Bozkurt, Y.; Pandit, A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct. Target. Ther., 2021, 6(1), 122.
[http://dx.doi.org/10.1038/s41392-021-00512-8] [PMID: 33384407]
[5]
Bukhari, S.I.; Imam, S.S.; Ahmad, M.Z.; Vuddanda, P.R.; Alshehri, S.; Mahdi, W.A.; Ahmad, J. Recent progress in lipid nanoparticles for cancer theranostics: Opportunity and challenges. Pharmaceutics, 2021, 13(6), 840.
[http://dx.doi.org/10.3390/pharmaceutics13060840] [PMID: 34200251]
[6]
Rawal, S.; Patel, M.M. Threatening cancer with nanoparticle aided combination oncotherapy. J. Control. Release, 2019, 301, 76-109.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.015] [PMID: 30890445]
[7]
Goel, H.; Razdan, K. Engineered Site-specific Vesicular Systems for Colonic Delivery: Trends and Implications. Ingentaconnect. Com, 2020, 26(42), 5441-5455.
[8]
Zavareh, H.S.; Pourmadadi, M.; Moradi, A.; Yazdian, F.; Omidi, M. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int. J. Biol. Macromol., 2020, 165(Pt A), 1422-1430.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.166] [PMID: 32987067]
[9]
Fathi, M.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int. J. Biol. Macromol., 2020, 154, 1175-1184.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.272] [PMID: 31730949]
[10]
Bhattacharya, S. Fabrication and characterization of chitosan-based polymeric nanoparticles of Imatinib for colorectal cancer targeting application. Int. J. Biol. Macromol., 2020, 151, 104-115.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.151] [PMID: 32070732]
[11]
Viswanadh, M.K. Vikas; Jha, A.; Reddy Adena, S.K.; Mehata, A.K.; Priya, V.; Neogi, K.; Poddar, S.; Mahto, S.K.; Muthu, M.S. Formulation and in vivo efficacy study of cetuximab decorated targeted bioadhesive nanomedicine for non-small-cell lung cancer therapy. Nanomedicine (Lond.), 2020, 15(24), 2345-2367.
[http://dx.doi.org/10.2217/nnm-2020-0167] [PMID: 32945225]
[12]
Aldawsari, H.M.; Alhakamy, N.A.; Padder, R.; Husain, M.; Md, S. Preparation and characterization of chitosan coated plga nanoparticles of resveratrol: Improved stability, antioxidant and apoptotic activities in H1299 lung cancer cells. Coatings, 2020, 10(5), 439.
[http://dx.doi.org/10.3390/coatings10050439]
[13]
Dhavale, R.P.; Dhavale, R.P.; Sahoo, S.C.; Kollu, P.; Jadhav, S.U.; Patil, P.S.; Dongale, D.; Chougale, A.D.; Patil, P.B. Chitosan coated magnetic nanoparticles as carriers of anticancer drug Telmisartan  pH-responsive controlled drug release and cytotoxicity studies. J. Phys. Chem. Solids, 2021, 148, 109749.
[http://dx.doi.org/10.1016/j.jpcs.2020.109749]
[14]
Alshehri, S.; Imam, S.S.; Rizwanullah, M.; Fakhri, K.U.; Rizvi, M.M.A.; Mahdi, W.; Kazi, M. Effect of chitosan coating on plga nanoparticles for oral delivery of thymoquinone: In vitro, ex vivo, and cancer cell line assessments. Coatings, 2020, 11(1), 6.
[http://dx.doi.org/10.3390/coatings11010006]
[15]
Chen, G.; Zhao, Y.; Xu, Y.; Zhu, C.; Liu, T.; Wang, K. Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer. Int. J. Pharm., 2020, 589, 119763.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119763] [PMID: 32898629]
[16]
Moghaddam, S.V.; Abedi, F.; Alizadeh, E.; Baradaran, B.; Annabi, N.; Akbarzadeh, A.; Davaran, S. Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. Carbohydr. Polym., 2020, 250(July), 116861.
[http://dx.doi.org/10.1016/j.carbpol.2020.116861] [PMID: 33049815]
[17]
Hosseini, S.H.; Zohreh, N.; Karimi, N.; Gaeini, N.; Alipour, S.; Seidi, F.; Gholipour, N. Magnetic nanoparticles double wrapped into cross-linked salep/PEGylated carboxymethyl cellulose; a biocompatible nanocarrier for pH-triggered release of doxorubicin. Int. J. Biol. Macromol., 2020, 158, 994-1006.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.040] [PMID: 32434748]
[18]
Abbasian, M.; Hasanzadeh, P.; Mahmoodzadeh, F.; Salehi, R. Novel cationic cellulose-based nanocomposites for targeted delivery of methotrexate to breast cancer cells. J. Macromol. Sci. Part A Pure Appl. Chem., 2020, 57(2), 99-115.
[http://dx.doi.org/10.1080/10601325.2019.1673174]
[19]
Lu, A.; Petit, E.; Wang, Y.; Su, F.; Li, S. Synthesis and self-assembly of hydroxypropyl methyl cellulose- block -poly(ε-caprolactone) copolymers as nanocarriers of lipophilic drugs. ACS Appl. Nano Mater., 2020, 3(5), 4367-4375.
[http://dx.doi.org/10.1021/acsanm.0c00498]
[20]
Yusefi, M.; Shameli, K.; Jahangirian, H.; Teow, S.Y.; Umakoshi, H.; Saleh, B.; Rafiee-moghaddam, R.; Webster, T.J. The potential anticancer activity of 5-fluorouracil loaded in cellulose fibers isolated from rice straw. Int. J. Nanomed., 2020, 15, 5417-5432.
[http://dx.doi.org/10.2147/IJN.S250047] [PMID: 32801697]
[21]
Kim, Y.M.; Lee, Y.S.; Kim, T.; Yang, K.; Nam, K.; Choe, D.; Roh, Y.H. Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydr. Polym., 2020, 247, 116684.
[http://dx.doi.org/10.1016/j.carbpol.2020.116684] [PMID: 32829812]
[22]
Alp, E.; Damkaci, F.; Guven, E.; Tenniswood, M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int. J. Nanomed., 2019, 14, 1335-1346.
[http://dx.doi.org/10.2147/IJN.S191837] [PMID: 30863064]
[23]
Sleightholm, R.; Yang, B.; Yu, F.; Xie, Y. Oupick‎, D. Chloroquine-modified hydroxyethyl starch as a polymeric drug for cancer therapy. Biomacromolecules, 2017, 18(8), 2247-2257.
[http://dx.doi.org/10.1021/acs.biomac.7b00023] [PMID: 28708385]
[24]
Alwaan, I.M.; Jafar, M.M.R.M.; Al-Kelaby, K.K.A.; Allebban, Z.S.M. Starch/gum Arabic blends for controlled drug delivery and cancer therapy: Synthesis and characterization. J. Glob. Pharma Technol., 2019, 11(2), 340-351.
[25]
Wu, H.; Hu, H.; Wan, J.; Li, Y.; Wu, Y.; Tang, Y.; Xiao, C.; Xu, H.; Yang, X.; Li, Z. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem. Eng. J., 2018, 349, 129-145.
[http://dx.doi.org/10.1016/j.cej.2018.05.082]
[26]
Zohreh, N.; Hosseini, S.H.; Pourjavadi, A. Hydrazine-modified starch coated magnetic nanoparticles as an effective pH-responsive nanocarrier for doxorubicin delivery. J. Ind. Eng. Chem., 2016, 39, 203-209.
[http://dx.doi.org/10.1016/j.jiec.2016.05.029]
[27]
Masoudipour, E.; Kashanian, S.; Azandaryani, A.H.; Omidfar, K.; Bazyar, E. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner. Cellulose, 2017, 24(10), 4217-4234.
[http://dx.doi.org/10.1007/s10570-017-1426-3]
[28]
Chen, K.; Zhang, S.; Wang, H.; Wang, X.; Zhang, Y.; Yu, L.; Ke, L.; Gong, R. Fabrication of doxorubicin-loaded glycyrrhetinic acid-biotin-starch nanoparticles and drug delivery into HepG2 cells in vitro. Starch/Staerke, 2019, 71(3-4), 1800031.
[http://dx.doi.org/10.1002/star.201800031]
[29]
Putro, J.N.; Ismadji, S.; Gunarto, C.; Soetaredjo, F.E.; Ju, Y.H. A study of anionic, cationic, and nonionic surfactants modified starch nanoparticles for hydrophobic drug loading and release. J. Mol. Liq., 2020, 298, 112034.
[http://dx.doi.org/10.1016/j.molliq.2019.112034]
[30]
Xu, Y.; Zi, Y.; Lei, J.; Mo, X.; Shao, Z.; Wu, Y.; Tian, Y.; Li, D.; Mu, C. pH-Responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery. Carbohydr. Polymers, 2020, 233, 115858.
[http://dx.doi.org/10.1016/j.carbpol.2020.115858]
[31]
Lu, Y.; Ma, Y.; Feng, C.; Zhu, D.; Liu, J.; Chen, L.; Liang, S.; Dong, C. Co-delivery of cyclopamine and doxorubicin mediated by bovine serum albumin nanoparticles reverses doxorubicin resistance in breast cancer by down-regulating p-glycoprotein expression. J. Cancer, 2019, 10(10), 2357-2368.
[http://dx.doi.org/10.7150/jca.30323] [PMID: 31258739]
[32]
Bessone, F.; Dianzani, C.; Argenziano, M.; Cangemi, L.; Spagnolo, R.; Maione, F.; Giraudo, E.; Cavalli, R. Albumin nanoformulations as an innovative solution to overcome doxorubicin chemoresistance. Cancer Drug Resist., 2021, 4(1), 192-207.
[http://dx.doi.org/10.20517/cdr.2020.65]
[33]
Desale, J.P.; Swami, R.; Kushwah, V.; Katiyar, S.S.; Jain, S. Chemosensitizer and docetaxel-loaded albumin nanoparticle: overcoming drug resistance and improving therapeutic efficacy. Nanomedicine(Lond.), 2018, 13(21), 2759-2776.
[http://dx.doi.org/10.2217/nnm-2018-0206] [PMID: 30398388]
[34]
Tang, B.; Qian, Y.; Gou, Y.; Cheng, G.; Fang, G. Ve-albumin core-shell nanoparticles for paclitaxel delivery to treat MDR breast cancer. Molecules, 2018, 23(11), 2760.
[http://dx.doi.org/10.3390/molecules23112760] [PMID: 30366367]
[35]
Motevalli, S.M.; Eltahan, A.S.; Liu, L.; Magrini, A.; Rosato, N.; Guo, W.; Bottini, M.; Liang, X.J. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys. Rep., 2019, 5(1), 19-30.
[http://dx.doi.org/10.1007/s41048-018-0079-6]
[36]
Fang, J.; Wang, Q.; Yang, G.; Xiao, X.; Li, L.; Yu, T. Albumin-MnO2 gated hollow mesoporous silica nanosystem for modulating tumor hypoxia and synergetic therapy of cervical carcinoma. Colloids Surf. B Biointerfaces, 2019, 179(February), 250-259.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.070] [PMID: 30978612]
[37]
Onafuye, H.; Pieper, S.; Mulac, D.; Jr, J.C.; Wass, M.N.; Langer, K.; Michaelis, M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J. Nanotechnol., 2019, 10, 1707-1715.
[http://dx.doi.org/10.3762/bjnano.10.166] [PMID: 31501742]
[38]
Kim, D.; Lee, S.S.; Yoo, W.Y.; Moon, H.; Cho, A.; Park, S.Y.; Kim, Y.S.; Kim, H.R.; Lee, H.J. Combination therapy with doxorubicin-loaded reduced albumin nanoparticles and focused ultrasound in mouse breast cancer xenografts. Pharmaceuticals (Basel), 2020, 13(9), 235.
[http://dx.doi.org/10.3390/ph13090235] [PMID: 32906686]
[39]
Yu, Z.; Li, X.; Duan, J.; Yang, X.D. Targeted treatment of colon cancer with aptamer-guided albumin nanoparticles loaded with docetaxel. Int. J. Nanomed., 2020, 15, 6737-6748.
[http://dx.doi.org/10.2147/IJN.S267177] [PMID: 32982230]
[40]
Sood, A.; Gupta, A.; Agrawal, G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polymer Technol. Appl., 2021, 2, 100067.
[http://dx.doi.org/10.1016/j.carpta.2021.100067]
[41]
Huang, S.; Huang, G. The dextrans as vehicles for gene and drug delivery. Future Med. Chem., 2019, 11(13), 1659-1667.
[http://dx.doi.org/10.4155/fmc-2018-0586] [PMID: 31469330]
[42]
Thambi, T.; You, D.G.; Han, H.S.; Deepagan, V.G.; Jeon, S.M.; Suh, Y.D.; Choi, K.Y.; Kim, K.; Kwon, I.C.; Yi, G.R.; Lee, J.Y.; Lee, D.S.; Park, J.H. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv. Healthc. Mater., 2014, 3(11), 1829-1838.
[http://dx.doi.org/10.1002/adhm.201300691] [PMID: 24753360]
[43]
Curcio, M.; Cirillo, G.; Tucci, P.; Farfalla, A.; Bevacqua, E.; Vittorio, O.; Iemma, F.; Nicoletta, F.P. Dextran-curcumin nanoparticles as a methotrexate delivery vehicle: A step forward in breast cancer combination therapy. Pharmaceuticals (Basel), 2019, 13(1), 2.
[http://dx.doi.org/10.3390/ph13010002] [PMID: 31881645]
[44]
Ferreira, H.; Martins, A.; Alves da Silva, M.L.; Amorim, S.; Faria, S.; Pires, R.A.; Reis, R.L.; Neves, N.M. The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(14), 2104-2115.
[http://dx.doi.org/10.1039/C7TB03273K] [PMID: 32254433]
[45]
Duan, Z.; Zhang, L. lyer, A.; Yang, X.; Kobayashi, E.; Guo, Y.; Mankin, H.; Hornicek, F.; Mansoor Amiji, M. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells. Int. J. Nanomed., 2015, 10, 2913-2924.
[http://dx.doi.org/10.2147/IJN.S79143] [PMID: 25931818]
[46]
Foerster, F.; Bamberger, D.; Schupp, J. Weilbنcher, M.; Kaps, L.; Strobl, S.; Radi, L.; Diken, M.; Strand, D.; Tuettenberg, A.; Wich, P.R.; Schuppan, D. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomed. (Lond.), 2016, 11(20), 2663-2677.
[http://dx.doi.org/10.2217/nnm-2016-0156] [PMID: 27628057]
[47]
Tang, Y.; Li, Y.; Xu, R.; Li, S.; Hu, H.; Xiao, C.; Wu, H.; Zhu, L.; Ming, J.; Chu, Z.; Xu, H.; Yang, X.; Li, Z. Self-assembly of folic acid dextran conjugates for cancer chemotherapy. Nanoscale, 2018, 10(36), 17265-17274.
[http://dx.doi.org/10.1039/C8NR04657C] [PMID: 30191943]
[48]
Huo, M.; Wang, H.; Zhang, Y.; Cai, H.; Zhang, P.; Li, L.; Zhou, J.; Yin, T. Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. J. Control. Release, 2020, 321, 198-210.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.017] [PMID: 32044390]
[49]
Oliveira, C.; Neves, N.M.; Reis, R.L.; Martins, A.; Silva, T.H. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine (Lond.), 2018, 13(16), 2037-2050.
[http://dx.doi.org/10.2217/nnm-2018-0004] [PMID: 30189774]
[50]
Huang, Y.C.; Kuo, T.H. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocoll., 2016, 53, 261-269.
[http://dx.doi.org/10.1016/j.foodhyd.2015.02.006]
[51]
Pawar, V.K.; Singh, Y.; Sharma, K.; Shrivastav, A.; Sharma, A.; Singh, A.; Meher, J.G.; Singh, P.; Raval, K.; Kumar, A.; Bora, H.K.; Datta, D.; Lal, J.; Chourasia, M.K. Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. Int. J. Biol. Macromol., 2019, 122, 1100-1114.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.059] [PMID: 30219515]
[52]
Lu, K.Y.; Li, R.; Hsu, C.H.; Lin, C.W.; Chou, S.C.; Tsai, M.L.; Mi, F.L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr. Polym., 2017, 165, 410-420.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.065] [PMID: 28363567]
[53]
Lee, K.W.; Jeong, D.; Na, K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr. Polym., 2013, 94(2), 850-856.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.018] [PMID: 23544642]
[54]
Chen, C.H.; Lin, Y.S.; Wu, S.J.; Mi, F.L. Mutlifunctional nanoparticles prepared from arginine-modified chitosan and thiolated fucoidan for oral delivery of hydrophobic and hydrophilic drugs. Carbohydr. Polym., 2018, 193, 163-172.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.080] [PMID: 29773368]
[55]
Hwang, P.A.; Lin, X.Z.; Kuo, K.L.; Hsu, F.Y. Fabrication and cytotoxicity of fucoidan-cisplatin nanoparticles for macrophage and tumor cells. Materials (Basel), 2017, 10(3), 291.
[http://dx.doi.org/10.3390/ma10030291] [PMID: 28772650]
[56]
Mizrachi, A.; Shamay, Y.; Shah, J.; Brook, S.; Soong, J.; Rajasekhar, V.K.; Humm, J.L.; Healey, J.H.; Powell, S.N.; Baselga, J.; Heller, D.A.; Haimovitz-Friedman, A.; Scaltriti, M. Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nat. Commun., 2017, 8(1), 14292.
[http://dx.doi.org/10.1038/ncomms14292] [PMID: 28194032]
[57]
Lee, J.Y.; Jo, Y.; Shin, H.; Lee, J.; Chae, S.U.; Bae, S.K.; Na, K. Anthocyanin-fucoidan nanocomplex for preventing carcinogen induced. Int. J. Pharm., 2020, 586, 119597.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119597]
[58]
Pinheiro, A.C.; Bourbon, A.I.; Cerqueira, M.A. Maricato, ة.; Nunes, C.; Coimbra, M.A.; Vicente, A.A. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym., 2015, 115, 1-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.016] [PMID: 25439860]
[59]
Jang, B.; Moorthy, M.S.; Manivasagan, P.; Xu, L.; Song, K.; Lee, K.D.; Kwak, M.; Oh, J.; Jin, J.O. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget, 2018, 9(16), 12649-12661.
[http://dx.doi.org/10.18632/oncotarget.23898] [PMID: 29560098]
[60]
Venkatesan, J.; Singh, S.; Anil, S.; Kim, S.K.; Shim, M. Preparation, characterization and biological applications of biosynthesized silver nanoparticles with chitosan-fucoidan coating. Molecules, 2018, 23(6), 1429.
[http://dx.doi.org/10.3390/molecules23061429] [PMID: 29895803]
[61]
Abdollah, M.R.A.; Carter, T.J.; Jones, C.; Kalber, T.L.; Rajkumar, V.; Tolner, B.; Gruettner, C.; Zaw-Thin, M. Baguٌa Torres, J.; Ellis, M.; Robson, M.; Pedley, R.B.; Mulholland, P.; T M de Rosales, R.; Chester, K.A. Fucoidan prolongs the circulation time of dextran-coated iron oxide nanoparticles. ACS Nano, 2018, 12(2), 1156-1169.
[http://dx.doi.org/10.1021/acsnano.7b06734] [PMID: 29341587]
[62]
Kang, S.; Hong, Y.L.; Ku, B.C.; Lee, S.; Ryu, S.; Min, D.H.; Jang, H.; Kim, Y.K. Synthesis of biologically-active reduced graphene oxide by using fucoidan as a multifunctional agent for combination cancer therapy. Nanotechnology, 2018, 29(47), 475604.
[http://dx.doi.org/10.1088/1361-6528/aadfa5] [PMID: 30191889]
[63]
Wang, P.; Gao, S.; Wang, H.; Chen, S.; Chen, X.; Wu, Z. Enhanced dual resistance to alkali metal and phosphate poisoning: Mo modifying vanadium-titanate nanotubes SCR catalyst. Appl. Catal. A Gen., 2018, 561, 68-77.
[http://dx.doi.org/10.1016/j.apcata.2018.05.023]
[64]
Etman, S.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int. J. Biol. Macromol., 2020, 147, 799-808.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.191]
[65]
Banazadeh, M.; Amirnejat, S.; Javanshir, S. Synthesis, characterization, and catalytic properties of magnetic Fe3O4@FU: A heterogeneous nanostructured mesoporous bio-based catalyst for the synthesis of imidazole derivatives. Front Chem., 2020, 8(December), 596029.
[http://dx.doi.org/10.3389/fchem.2020.596029] [PMID: 33335887]
[66]
Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel), 2019, 12(4), 617.
[http://dx.doi.org/10.3390/ma12040617] [PMID: 30791358]
[67]
Singh, A.; Xu, J.; Mattheolabakis, G.; Amiji, M. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomedicine, 2016, 12(3), 589-600.
[http://dx.doi.org/10.1016/j.nano.2015.11.010] [PMID: 26656632]
[68]
Gao, X.; Zhang, J.; Huang, Z.; Zuo, T.; Lu, Q.; Wu, G.; Shen, Q. Reducing interstitial fluid pressure and inhibiting pulmonary metastasis of breast cancer by gelatin modified cationic lipid nanoparticles. ACS Appl. Mater. Interfaces, 2017, 9(35), 29457-29468.
[http://dx.doi.org/10.1021/acsami.7b05119] [PMID: 28799743]
[69]
Nezhad-Mokhtari, P.; Arsalani, N.; Ghorbani, M.; Hamishehkar, H. Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting. J. Mater. Sci., 2018, 53(15), 10679-10691.
[http://dx.doi.org/10.1007/s10853-018-2371-8]
[70]
Ramírez-Agudelo. R.; Scheuermann, K.; Gala-Garcيa, A.; Monteiro, A.P.F.; Pinzَn-Garcيa, A.D.; Cortés, M.E.; Sinisterra, R.D. Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Mater. Sci. Eng. C, 2018, 83, 25-34.
[http://dx.doi.org/10.1016/j.msec.2017.08.012]
[71]
ElMasry, S.R.; Hathout, R.M.; Abdel-Halim, M.; Mansour, S. In vitro transdermal delivery of sesamol using oleic acid chemically-modified gelatin nanoparticles as a potential breast cancer medication. J. Drug Deliv. Sci. Technol., 2018, 48, 30-39.
[http://dx.doi.org/10.1016/j.jddst.2018.08.017]
[72]
Amjadi, S.; Hamishehkar, H.; Ghorbani, M. A novel smart PEGylated gelatin nanoparticle for co-delivery of doxorubicin and betanin: A strategy for enhancing the therapeutic efficacy of chemotherapy. Mater. Sci. Eng. C, 2019, 97, 833-841.
[http://dx.doi.org/10.1016/j.msec.2018.12.104]
[73]
Carvalho, J.A.; da Silva Abreu, A.; Tedesco, A.C.; Junior, M.B.; Simioni, A.R. Functionalized photosensitive gelatin nanoparticles for drug delivery application. J. Biomater. Sci. Polym. Ed., 2019, 30(7), 508-525.
[http://dx.doi.org/10.1080/09205063.2019.1580664] [PMID: 30776983]
[74]
Tran, D.H.N.; Nguyen, T.H.; Vo, T.N.N.; Pham, L.P.T.; Vo, D.M.H.; Nguyen, C.K.; Bach, L.G.; Nguyen, D.H. Self-assembled poly(ethylene glycol) methyl ether-grafted gelatin nanogels for efficient delivery of curcumin in cancer treatment. J. Appl. Polym. Sci., 2019, 136(20), 47544.
[http://dx.doi.org/10.1002/app.47544]
[75]
Chen, Y.J.; Wang, Z.W.; Lu, T.L.; Gomez, C.B.; Fang, H.W.; Wei, Y.; Tseng, C.L. The synergistic anticancer effect of dual drug- (cisplatin/epigallocatechin gallate) loaded gelatin nanoparticles for lung cancer treatment. J. Nanomater., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/9181549]
[76]
Jahanban-Esfahlan, R.; Derakhshankhah, H.; Haghshenas, B.; Massoumi, B.; Abbasian, M.; Jaymand, M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int. J. Biol. Macromol., 2020, 156, 438-445.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.074] [PMID: 32298719]
[77]
Lai, Y.H.; Chiang, C.S.; Kao, T.H.; Chen, S.Y. Dual-drug nanomedicine with hydrophilic F127-modified magnetic nanocarriers assembled in amphiphilic gelatin for enhanced penetration and drug delivery in deep tumor tissue. Int. J. Nanomed., 2018, 13, 3011-3026.
[http://dx.doi.org/10.2147/IJN.S161314] [PMID: 29861633]
[78]
Dongfang, Zhang Ling; Ran, Li; Feng, Feng; Wang, Weiwei; Li, Daixi; Qiong, Xiang Yan, Pingping Folic acid-chitosan-nanoselenium tumor targeted drug delivery system and preparation method thereof. CN11214460A, 2020.
[79]
Qian, J.; Ying, L.; Xu, W.; Wang, Y. Albumin/polysaccharide polymer based platinum nano prodrug and preparation method and application thereof. CN112472671B, 2020.
[80]
Fan, Yu Chitosan derivative drug delivery carrier and preparation method and application thereof. US8445465B2, 2021.
[81]
Qian, Junmin; Wang, Yaping; Xu, Weijun Hou, Guanghui Chitosanbased nano prodrug carrying indocyanine green and platinum drugs and preparation method thereof. CN112480289B, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy