Abstract
Hydrogels are one of the most extensively studied novel drug delivery dosage forms owing to their satisfactory results in drug delivery in various conditions, including pain management, immunomodulation, carcinomas, healing of wounds, and cardiology. A crosslinked polymeric network and an optimum amount of water combine to form hydrogels. Due to their specific properties such as biocompatibility, biodegradability, hydrophilicity, and non-toxic to biological tissues, hydrogels are demanding biomaterials. Furthermore, due to their programmable physical characteristics, controlled degradation behavior, and capability to preserve unstable medicines from degradation, hydrogels serve as an advanced drug delivery system in which diverse physiochemical interactions with the polymeric matrix containing embedded medications control their release. Despite significant challenges remaining, there has been significant progress in recent years in overcoming the clinical and pharmacological constraints of hydrogels for drug delivery applications This review covers various hydrogel-forming polymers, strategies for crosslinking of gelling agents, and release mechanisms from the hydrogel. Moreover, the current work includes a few marketed hydrogel preparations and patent rights associated with it, describing its mechanism of action against the underlying diseases.
Graphical Abstract
[http://dx.doi.org/10.1016/j.addr.2021.02.002] [PMID: 33561451]
[http://dx.doi.org/10.3390/pharmaceutics12121188] [PMID: 33297493]
[http://dx.doi.org/10.1016/j.clae.2007.09.002] [PMID: 17962066]
[http://dx.doi.org/10.1016/j.ejpb.2017.01.009] [PMID: 28126393]
[http://dx.doi.org/10.1007/s10965-020-2020-1]
[http://dx.doi.org/10.1016/j.cplett.2022.139401]
[http://dx.doi.org/10.1177/0022034519831931] [PMID: 30876379]
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.026] [PMID: 20096758]
[http://dx.doi.org/10.2478/v10007-007-0024-6] [PMID: 17878110]
[http://dx.doi.org/10.3109/03639045.2013.819882] [PMID: 23875787]
[http://dx.doi.org/10.1080/10601325.2016.1189282]
[http://dx.doi.org/10.1007/s12182-017-0185-y]
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.029] [PMID: 24950367]
[http://dx.doi.org/10.1016/j.carbpol.2021.117768] [PMID: 33712126]
[http://dx.doi.org/10.3390/polym12010081] [PMID: 31947714]
[http://dx.doi.org/10.1016/j.carbpol.2018.01.093] [PMID: 29525166]
[http://dx.doi.org/10.1039/C8BM01246F] [PMID: 30648168]
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
[http://dx.doi.org/10.1016/j.addr.2012.09.009] [PMID: 11755704]
b) Alvarez-Lorenzo, C.; Blanco-Fernandez, B.; Puga, A.M.; Concheiro, A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Deliv. Rev., 2013, 65(9), 1148-1171.
[PMID: 23639519]
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.040] [PMID: 33778188]
[http://dx.doi.org/10.1016/j.jconrel.2014.04.056] [PMID: 24815421]
[http://dx.doi.org/10.1021/acs.macromol.9b01281]
[http://dx.doi.org/10.1021/jacs.2c03064] [PMID: 36084194]
[http://dx.doi.org/10.1016/j.jddst.2021.103080]
[http://dx.doi.org/10.1021/jacs.8b11351] [PMID: 30415536]
[http://dx.doi.org/10.1016/j.jconrel.2011.10.006] [PMID: 22019555]
[http://dx.doi.org/10.1021/acsapm.2c01458]
[http://dx.doi.org/10.1007/0-306-46803-4_5]
[http://dx.doi.org/10.1016/j.jconrel.2009.09.011] [PMID: 19766681]
[http://dx.doi.org/10.1002/star.202100150]
[http://dx.doi.org/10.1080/03602559.2013.823996]
[http://dx.doi.org/10.1089/jop.2015.0112] [PMID: 27249170]
[http://dx.doi.org/10.1016/j.heliyon.2020.e03719] [PMID: 32280802]
[http://dx.doi.org/10.1039/D1OB00355K] [PMID: 33908574]
[http://dx.doi.org/10.1016/B978-0-12-817640-5.00013-3]
[http://dx.doi.org/10.1021/acsabm.2c00035] [PMID: 35451829]
[http://dx.doi.org/10.1080/09546634.2018.1426823] [PMID: 29316829]
[http://dx.doi.org/10.1097/JSA.0b013e31818cdb82] [PMID: 19011550]
[http://dx.doi.org/10.1016/j.dental.2012.08.002] [PMID: 22901827]
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[http://dx.doi.org/10.3390/polym14132560] [PMID: 35808607]