Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Research Article

Oxybenzone-loaded Polymeric Nanocapsule Gel: Strategy to Reduce Skin Penetration and Drug-induced Irritation

Author(s): Ujwala A. Shinde* and Gauri V. Khanvalkar

Volume 2, 2023

Published on: 23 June, 2023

Article ID: e120423215715 Pages: 11

DOI: 10.2174/2666779702666230412140202

Price: $65

Abstract

Aim: This work aimed to determine whether the oxybenzone-loaded nanocapsule gel (NC gel) can reduce the degree of skin penetration and, thereby, the skin irritation caused by the drug.

Background: Sunscreens must be retained on the uppermost skin surface, forming a protective film throughout the entire UV exposure period. Skin penetration and/or light-induced decomposition of sunscreens is undesirable as this would decrease the expected UV protection. The changes in colour and appearance of the sunscreen, as well as the possible increase in the phototoxicity and allergenic potential of sunscreen breakdown products, are also of concern.

Furthermore, exposure to UVB radiation leads to impairment in the stratum corneum and hence enhances the skin's penetration of sunscreen actives, leading to systemic absorption. Currently, available sunscreen agents are low-molecular-weight lipophilic molecules, which make them capable of penetrating the skin and being systemically absorbed.

Oxybenzone is an organic compound widely used in commercial sunscreen preparations. The low molecular weight and lipophilic nature of oxybenzone facilitate penetration through the stratum corneum, leading to irritation and allergic reactions.

Polymeric nanocapsules (NCs) have been developed to ensure a controlled release of pharmaceutical and cosmetic agents and/or exert a preventive effect against the harmful side effects induced by direct contact of tissues with high amounts of the drug. Hence, we hypothesised that encapsulating the oxybenzone polymeric nanocapsule system would reduce the irritation and its allergic potential upon topical application.

Objective: The current study aimed to develop a polymeric nanocapsule-based gel of oxybenzone and investigate its skin deposition by ex vivo permeation studies.

Methods: The polymeric nanocapsules were prepared by the solvent displacement method using a combination of Eudragit RSPO and Eudragit RLPO polymers. Further nanocapsules were incorporated into the xanthan gum gel base. It was evaluated for particle size, PDI, zeta potential, drug content, in vitro release, ex vivo permeation, sunscreen efficacy and skin irritation potential by the HET CAM test.

Results: Particle size, PDI, zeta potential, percent encapsulation, and loading of drug-loaded nanocapsule suspension were found to be 237.1 nm, 0.189 + 58.4 mV, 852 ± 0.5%, and 19.45 ± 0.94%, respectively. DSC results indicate the suitability of selected excipients. In vitro release studies indicated 68.99% oxybenzone release from NC suspension, while NC gel showed 58.87% at the end of 24 hrs. Ex vivo permeation results showed significantly higher drug permeation from plain oxybenzone gel than NC gel. Permeation flux and reduction ratio suggest a three-fold reduction in skin permeation by NC gel. The gel offered medium-level sun protection with an SPF value of 22.12. According to the HET CAM study, there was no evidence of skin irritation caused by NC gel.

Conclusion: It is concluded that the encapsulation of oxybenzone prevents direct interaction with the skin, reducing the chances of skin irritation and penetration. Results suggest that nanocapsules in gel bases can provide a promising formula for safer topical delivery of sunscreen.

[1]
Sambandan, D.R.; Ratner, D. Sunscreens: An overview and update. J. Am. Acad. Dermatol., 2011, 64(4), 748-758.
[http://dx.doi.org/10.1016/j.jaad.2010.01.005] [PMID: 21292345]
[2]
Saito, G.P.; Bizari, M.; Cebim, M.A.; Correa, M.A.; Jafelicci Junior, M.; Davolos, M.R. Study of the colloidal stability and optical properties of sunscreen creams. Eclét. Quím., 2019, 44(2), 26-36.
[http://dx.doi.org/10.26850/1678-4618eqj.v44.2.2019.p26-36]
[3]
Damiani, E.; Puglia, C. Nanocarriers and microcarriers for enhancing the UV protection of sunscreens: An overview. J. Pharm. Sci., 2019, 108(12), 3769-3780.
[http://dx.doi.org/10.1016/j.xphs.2019.09.009] [PMID: 31521640]
[4]
Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Lipid nanoparticles as carrier for octyl-methoxycinnamate: In vitro percutaneous absorption and photostability studies. J. Pharm. Sci., 2012, 101(1), 2271-2280.
[http://dx.doi.org/10.1002/jps.23146] [PMID: 22488174]
[5]
Kothamasu, P.; Kanumur, H.; Ravur, N.; Maddu, C.; Parasuramrajam, R.; Thangavel, S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts, 2012, 2(2), 71-81.
[http://dx.doi.org/10.5681/bi.2012.011] [PMID: 23678444]
[6]
Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007, 2.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[7]
Gilbert, E.; Roussel, L.; Serre, C.; Sandouk, R.; Salmon, D.; Kirilov, P.; Haftek, M.; Falson, F.; Pirot, F. Percutaneous absorption of benzophenone-3 loaded lipid nanoparticles and polymeric nanocapsules: A comparative study. Int. J. Pharm., 2016, 504(1-2), 48-58.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.018] [PMID: 26976501]
[8]
Krause, M.; Klit, A.; Blomberg Jensen, M.; Søeborg, T.; Frederiksen, H.; Schlumpf, M.; Lichtensteiger, W.; Skakkebaek, N.E.; Drzewiecki, K.T. Sunscreens: Are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int. J. Androl., 2012, 35(3), 424-436.
[http://dx.doi.org/10.1111/j.1365-2605.2012.01280.x] [PMID: 22612478]
[9]
Jiménez, M.M.; Pelletier, J.; Bobin, M.F.; Martini, M.C.; Fessi, H. Poly-epsilon-caprolactone nanocapsules containing octyl methoxycinnamate: Preparation and characterization. Pharm. Dev. Technol., 2005, 9(3), 329-339.
[http://dx.doi.org/10.1081/PDT-200031456] [PMID: 15458238]
[10]
Elmowafy, M.; Ibrahim, H.M.; Ahmed, M.A.; Shalaby, K.; Salama, A.; Hefesha, H. Atorvastatin-loaded nanostructured lipid carriers (NLCs): Strategy to overcome oral delivery drawbacks. Drug Deliv., 2017, 24(1), 932-941.
[http://dx.doi.org/10.1080/10717544.2017.1337823] [PMID: 28617150]
[11]
Rodney, H.; López, G. Design and development of Aloe vera lotions and determination of their sun protection factor. J. Chem. Inf. Model., 2013, 53(9), 1689-1699.
[http://dx.doi.org/10.1017/CBO9781107415324.004]
[12]
Bachhav, Y.; Patravale, V. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation. Int. J. Pharm., 2009, 365(1-2), 175-179.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.021] [PMID: 18790032]
[13]
Gulbake, A.; Jain, A.; Khare, P.; Jain, S.K. Solid lipid nanoparticles bearing oxybenzone: In-vitro and in-vivo evaluation. J. Microencapsul., 2010, 27(3), 226-233.
[http://dx.doi.org/10.3109/02652040903067844] [PMID: 19622017]
[14]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[15]
Takeuchi, H.; Mano, Y.; Terasaka, S.; Sakurai, T.; Furuya, A.; Urano, H.; Sugibayashi, K. Usefulness of rat skin as a substitute for human skin in the in vitro skin permeation study. Exp. Anim., 2011, 60(4), 373-384.
[http://dx.doi.org/10.1538/expanim.60.373] [PMID: 21791877]
[16]
Beber, T.C.; de Andrade, D.F.; Santos Chaves, P.; Pohlmann, A.R.; Guterres, S.S.; Ruver Beck, R.C. Cationic polymeric nanocapsules as a strategy to target dexamethasone to viable epidermis: Skin penetration and permeation studies. J. Nanosci. Nanotechnol., 2016, 16(2), 1331-1338.
[http://dx.doi.org/10.1166/jnn.2016.11670] [PMID: 27433583]
[17]
Tampucci, S.; Burgalassi, S.; Chetoni, P.; Monti, D. Cutaneous permeation and penetration of sunscreens: Formulation strategies and in vitro methods. Cosmetics, 2017, 5(1), 1-17.
[http://dx.doi.org/10.3390/cosmetics5010001]
[18]
Bleasel, M.D.; Aldous, S. In vitro evaluation of sun protection factors of sunscreen agents using a novel UV spectrophotometric technique. Int. J. Cosmet. Sci., 2008, 30(4), 259-270.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00453.x] [PMID: 18713072]
[19]
Dutra, E.A.; Da Costa, E. Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev. Bras. Cienc. Farm. J. Pharm. Sci., 2004, 40(3), 381-385.
[20]
Reis Mansur, M.C.P.P.; Leitão, S.G.; Cerqueira-Coutinho, C.; Vermelho, A.B.; Silva, R.S.; Presgrave, O.A.F.; Leitão, Á.A.C.; Leitão, G.G.; Ricci-Júnior, E.; Santos, E.P. In vitro and in vivo evaluation of efficacy and safety of photoprotective formulations containing antioxidant extracts. Rev. Bras. Farmacogn., 2016, 26(2), 251-258.
[http://dx.doi.org/10.1016/j.bjp.2015.11.006]
[21]
ICCVAM. Recommended test method protocol: Hen’s egg test-chorioallantoic Membrane (HET-CAM) test method. Res. Triangle. Park NC Natl. Inst. Environ. Health. Sci., 2010, 1-10.
[22]
Palmeira-de-Oliveira, R.; Monteiro Machado, R.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A. Testing vaginal irritation with the Hen’s Egg Test-Chorioallantoic Membrane assay. Altern. Anim. Exp., 2018, 35(4), 495-503.
[http://dx.doi.org/10.14573/altex.1710091] [PMID: 29534246]
[23]
Chatelain, E.; Gabard, B.; Surber, C. Skin penetration and sun protection factor of five UV filters: Effect of the vehicle. Skin Pharmacol. Physiol., 2003, 16(1), 28-35.
[http://dx.doi.org/10.1159/000068291] [PMID: 12566826]
[24]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[25]
Apu, A.S.; Pathan, A.H.; Shrestha, D.; Kibria, G.; Jalil, R. Investigation of in vitro release kinetics of carbamazepine from Eudragit® RS PO and RL PO matrix tablets. Trop. J. Pharm. Res., 2009, 8(2), 145-152.
[http://dx.doi.org/10.4314/tjpr.v8i2.44523]
[26]
Baishya, H. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. J. Dev. Drugs, 2017, 6(2), 1-8.
[http://dx.doi.org/10.4172/2329-6631.1000171]
[27]
Jiang, R.; Roberts, M.S.; Collins, D.M.; Benson, H.A.E. Absorption of sunscreens across human skin: An evaluation of commercial products for children and adults. Br. J. Clin. Pharmacol., 1999, 48(4), 635-637.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00056.x] [PMID: 10583038]
[28]
Contri, R.V.; Fiel, L.A.; Alnasif, N.; Pohlmann, A.R.; Guterres, S.S.; Schäfer-Korting, M. Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle. Int. J. Pharm., 2016, 507(1-2), 12-20.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.046] [PMID: 27130364]
[29]
Mestres, J.P.; Duracher, L.; Baux, C.; Vian, L.; Marti-Mestres, G. Benzophenone-3 entrapped in solid lipid microspheres: Formulation and in vitro skin evaluation. Int. J. Pharm., 2010, 400(1-2), 1-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.028] [PMID: 20670679]
[30]
Ngoc, L.T.N.; Tran, ; Moon, J.Y.; Chae, M.; Park, D.; Lee, Y.C. Recent trends of sunscreen cosmetic: An update review. Cosmetics, 2019, 6(4), 64.
[http://dx.doi.org/10.3390/cosmetics6040064]
[31]
Nascimento, D.F.; Silva, A.C.; Mansur, C.R.E.; Presgrave, R.F.; Alves, E.N.; Silva, R.S.; Ricci-Júnior, E.; de Freitas, Z.M.F.; Santos, E.P. Characterization and evaluation of poly(ε-caprolactone) nanoparticles containing 2-ethylhexyl-p-methoxycinnamate, octocrylene, and benzophenone-3 in anti-solar preparations. J. Nanosci. Nanotechnol., 2012, 12(9), 7155-7166.
[http://dx.doi.org/10.1166/jnn.2012.5832] [PMID: 23035447]
[32]
Barbosa, T.C.; Nascimento, L.É.D.; Bani, C.; Almeida, T.; Nery, M.; Santos, R.S.; Menezes, L.R.O.; Zielińska, A.; Fernandes, A.R.; Cardoso, J.C.; Jäger, A.; Jäger, E.; Sanchez-Lopez, E.; Nalone, L.; Souto, E.B.; Severino, P. Development, cytotoxicity and eye irritation profile of a new sunscreen formulation based on benzophenone-3-poly (ε-caprolactone) nanocapsules. Toxics, 2019, 7(4), 51.
[http://dx.doi.org/10.3390/toxics7040051] [PMID: 31546707]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy