[1]
World Organization Health. Weekly epidemiological update on COVID-19., 2022. Available from: www.who.int/publica-tions/m/item/weekly-epidemiological-update-on-covid-19-6-july-2022
[2]
Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol., 2022, 20(5), 270-284.
[http://dx.doi.org/10.1038/s41579-022-00713-0] [PMID: 35354968]
[http://dx.doi.org/10.1038/s41579-022-00713-0] [PMID: 35354968]
[3]
Medina-Enríquez, M.M.; Lopez-León, S.; Carlos-Escalante, J.A.; Aponte-Torres, Z.; Cuapio, A.; Wegman-Ostrosky, T. ACE2: The molecular doorway to SARS-CoV-2. Cell Biosci., 2020, 10(1), 148.
[http://dx.doi.org/10.1186/s13578-020-00519-8] [PMID: 33380340]
[http://dx.doi.org/10.1186/s13578-020-00519-8] [PMID: 33380340]
[4]
Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol., 2020, 41(12), 1100-1115.
[http://dx.doi.org/10.1016/j.it.2020.10.004] [PMID: 33132005]
[http://dx.doi.org/10.1016/j.it.2020.10.004] [PMID: 33132005]
[5]
Cosar, B.; Karagulleoglu, Z.Y.; Unal, S.; Ince, A.T.; Uncuoglu, D.B.; Tuncer, G.; Kilinc, B.R.; Ozkan, Y.E.; Ozkoc, H.C.; Demir, I.N.; Eker, A.; Karagoz, F.; Simsek, S.Y.; Yasar, B.; Pala, M.; Demir, A.; Atak, I.N.; Mendi, A.H.; Bengi, V.U.; Cengiz Seval, G.; Gunes Altuntas, E.; Kilic, P.; Demir-Dora, D. SARS-CoV-2 mutations and their viral variants. Cytokine Growth Factor Rev., 2022, 63, 10-22.
[http://dx.doi.org/10.1016/j.cytogfr.2021.06.001] [PMID: 34580015]
[http://dx.doi.org/10.1016/j.cytogfr.2021.06.001] [PMID: 34580015]
[6]
Mannar, D.; Saville, J.W.; Zhu, X.; Srivastava, S.S.; Berezuk, A.M.; Tuttle, K.S.; Marquez, A.C.; Sekirov, I.; Subramaniam, S. SARS-CoV-2 omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex. Science, 2022, 375(6582), 760-764.
[http://dx.doi.org/10.1126/science.abn7760] [PMID: 35050643]
[http://dx.doi.org/10.1126/science.abn7760] [PMID: 35050643]
[7]
Yin, W.; Xu, Y.; Xu, P.; Cao, X.; Wu, C.; Gu, C.; He, X.; Wang, X.; Huang, S.; Yuan, Q.; Wu, K.; Hu, W.; Huang, Z.; Liu, J.; Wang, Z.; Jia, F.; Xia, K.; Liu, P.; Wang, X.; Song, B.; Zheng, J.; Jiang, H.; Cheng, X.; Jiang, Y.; Deng, S.J.; Xu, H.E. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science, 2022, 375(6584), 1048-1053.
[http://dx.doi.org/10.1126/science.abn8863] [PMID: 35133176]
[http://dx.doi.org/10.1126/science.abn8863] [PMID: 35133176]
[8]
Santos, I.d.A.; Grosche, V.R.; Bergamini, F.R.G.; Sabino-Silva, R.; Jardim, A.C.G. Antivirals against coronaviruses: Candidate drugs for SARS-CoV-2 treatment? Front. Microbiol., 2020, 11, 1818.
[http://dx.doi.org/10.3389/fmicb.2020.01818]
[http://dx.doi.org/10.3389/fmicb.2020.01818]
[9]
Röthlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev., 2018, 134, 3-21.
[http://dx.doi.org/10.1016/j.addr.2018.04.007] [PMID: 29626546]
[http://dx.doi.org/10.1016/j.addr.2018.04.007] [PMID: 29626546]
[10]
Zhang, L.; Cao, L.; Gao, X.S.; Zheng, B.Y.; Deng, Y.Q.; Li, J.X.; Feng, R.; Bian, Q.; Guo, X.L.; Wang, N.; Qiu, H.Y.; Wang, L.; Cui, Z.; Ye, Q.; Chen, G.; Lu, K.K.; Chen, Y.; Chen, Y.T.; Pan, H.X.; Yu, J.; Yao, W.; Zhu, B.L.; Chen, J.; Liu, Y.; Qin, C.F.; Wang, X.; Zhu, F.C. A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. Natl. Sci. Rev., 2021, 8(8), nwab053.
[http://dx.doi.org/10.1093/nsr/nwab053] [PMID: 34676098]
[http://dx.doi.org/10.1093/nsr/nwab053] [PMID: 34676098]
[11]
Wandtke, T.; Wędrowska, E.; Szczur, M.; Przybylski, G.; Libura, M.; Kopiński, P. Aptamers-diagnostic and therapeutic solution in SARS-CoV-2. Int. J. Mol. Sci., 2022, 23(3), 1412.
[http://dx.doi.org/10.3390/ijms23031412]
[http://dx.doi.org/10.3390/ijms23031412]
[12]
Di Domenico, M.; De Rosa, A.; Di Gaudio, F.; Internicola, P.; Bettini, C.; Salzano, N.; Castrianni, D.; Marotta, A.; Boccellino, M. Diagnostic accuracy of a new antigen test for SARS-CoV-2 detection. Int. J. Environ. Res. Public Health, 2021, 18(12), 6310.
[http://dx.doi.org/10.3390/ijerph18126310]
[http://dx.doi.org/10.3390/ijerph18126310]
[13]
Padoan, A.; Cosma, C.; Aita, A.; Navaglia, F.; Basso, D.; Giannella, G.; Plebani, M. Hyris bCUBE SARS-CoV-2 rapid molecular saliva testing: A POCT innovation on its way. Clin. Chem. Lab. Med., 2022, 60(5), 766-770.
[http://dx.doi.org/10.1515/cclm-2022-0008] [PMID: 35041302]
[http://dx.doi.org/10.1515/cclm-2022-0008] [PMID: 35041302]
[14]
Mak, G.C.K.; Lau, S.S.Y.; Wong, K.K.Y.; Chow, N.L.S.; Lau, C.S.; Ng, K.H.L.; Lam, E.T.K.; Chan, R.C.W.; Tsang, D.N.C. Evaluation of automated antigen detection test for detection of SARS-CoV-2. Diagn. Microbiol. Infect. Dis., 2021, 101(4), 115490.
[http://dx.doi.org/10.1016/j.diagmicrobio.2021.115490] [PMID: 34399380]
[http://dx.doi.org/10.1016/j.diagmicrobio.2021.115490] [PMID: 34399380]
[15]
Cerutti, F.; Burdino, E.; Milia, M.G.; Allice, T.; Gregori, G.; Bruzzone, B.; Ghisetti, V. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J. Clin. Virol., 2020, 132, 104654.
[http://dx.doi.org/10.1016/j.jcv.2020.104654] [PMID: 33053494]
[http://dx.doi.org/10.1016/j.jcv.2020.104654] [PMID: 33053494]
[16]
de Michelena, P.; Torres, I.; Ramos-García, Á.; Gozalbes, V.; Ruiz, N.; Sanmartín, A.; Botija, P.; Poujois, S.; Huntley, D.; Albert, E.; Navarro, D. Real-life performance of a COVID-19 rapid antigen detection test targeting the SARS-CoV-2 nucleoprotein for diagnosis of COVID-19 due to the Omicron variant. J. Infect., 2022, 84(5), e64-e66.
[http://dx.doi.org/10.1016/j.jinf.2022.02.022] [PMID: 35217106]
[http://dx.doi.org/10.1016/j.jinf.2022.02.022] [PMID: 35217106]
[17]
Terpos, E.; Ntanasis-Stathopoulos, I.; Skvarč, M. Clinical application of a new SARS-CoV-2 antigen detection kit (Colloidal Gold) in the detection of COVID-19. Diagnostics, 2021, 11(6), 995.
[http://dx.doi.org/10.3390/diagnostics11060995] [PMID: 34070844]
[http://dx.doi.org/10.3390/diagnostics11060995] [PMID: 34070844]
[18]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[19]
Chauhan, N.; Xiong, Y.; Ren, S.; Dwivedy, A.; Magazine, N.; Zhou, L.; Jin, X.; Zhang, T.; Cunningham, B.T.; Yao, S.; Huang, W.; Wang, X. Net-Shaped DNA nanostructures designed for rapid/sensitive detection and potential inhibition of the SARS-CoV-2 virus. J. Am. Chem. Soc., 2022. jacs.2c04835
[http://dx.doi.org/10.1021/jacs.2c04835] [PMID: 35881910]
[http://dx.doi.org/10.1021/jacs.2c04835] [PMID: 35881910]
[20]
Svobodova, M.; Skouridou, V.; Jauset-Rubio, M.; Viéitez, I.; Fernández-Villar, A.; Cabrera Alvargonzalez, J.J.; Poveda, E.; Bofill, C.B.; Sans, T.; Bashammakh, A.; Alyoubi, A.O.; O’Sullivan, C.K. Aptamer sandwich assay for the detection of SARS-CoV-2 spike protein antigen. ACS Omega, 2021, 6(51), 35657-35666.
[http://dx.doi.org/10.1021/acsomega.1c05521] [PMID: 34957366]
[http://dx.doi.org/10.1021/acsomega.1c05521] [PMID: 34957366]
[21]
Liu, X.; Wang, Y-l.; Wu, J.; Qi, J.; Zeng, Z.; Wan, Q.; Chen, Z.; Manandhar, P.; Cavener, V.S.; Boyle, N.R.; Fu, X.; Salazar, E.; Kuchipudi, S.V.; Kapur, V.; Zhang, X.; Umetani, M.; Sen, M.; Willson, R.C.; Chen, S-h.; Zu, Y. Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection. Angew. Chem. Weinheim. Bergstr. Ger., 2021, 133(18), 10361-10366.
[http://dx.doi.org/10.1002/ange.202100345]
[http://dx.doi.org/10.1002/ange.202100345]
[22]
Panera, N.; Tozzi, A.E.; Alisi, A. The g-quadruplex/helicase world as a potential antiviral approach against COVID-19. Drugs, 2020, 80(10), 941-946.
[http://dx.doi.org/10.1007/s40265-020-01321-z] [PMID: 32451923]
[http://dx.doi.org/10.1007/s40265-020-01321-z] [PMID: 32451923]
[23]
Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem., 2020, 92(14), 9895-9900.
[http://dx.doi.org/10.1021/acs.analchem.0c01394] [PMID: 32551560]
[http://dx.doi.org/10.1021/acs.analchem.0c01394] [PMID: 32551560]
[24]
Liu, J.; Mao, J.; Hou, M.; Hu, Z.; Sun, G.; Zhang, S. A rapid SARS-CoV-2 nucleocapsid protein profiling assay with high sensitivity comparable to nucleic acid detection. Anal. Chem., 2022, 94(42), 14627-14634.
[http://dx.doi.org/10.1021/acs.analchem.2c02670] [PMID: 36226357]
[http://dx.doi.org/10.1021/acs.analchem.2c02670] [PMID: 36226357]
[25]
Liu, Y.; Ou, H.; Pei, X.; Jiang, B.; Ma, Y.; Liu, N.; Wen, C.; Peng, C.; Hu, X. Chemo-drug controlled-release strategies of nanocarrier in the development of cancer therapeutics. Curr. Med. Chem., 2021, 28(31), 6307-6322.
[http://dx.doi.org/10.2174/0929867327666200605153919] [PMID: 32503398]
[http://dx.doi.org/10.2174/0929867327666200605153919] [PMID: 32503398]
[26]
Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther., 2020, 5(1), 237.
[http://dx.doi.org/10.1038/s41392-020-00352-y] [PMID: 33051445]
[http://dx.doi.org/10.1038/s41392-020-00352-y] [PMID: 33051445]
[27]
Machhi, J.; Shahjin, F.; Das, S.; Patel, M.; Abdelmoaty, M.M.; Cohen, J.D.; Singh, P.A.; Baldi, A.; Bajwa, N.; Kumar, R.; Vora, L.K.; Patel, T.A.; Oleynikov, M.D.; Soni, D.; Yeapuri, P.; Mukadam, I.; Chakraborty, R.; Saksena, C.G.; Herskovitz, J.; Hasan, M.; Oupicky, D.; Das, S.; Donnelly, R.F.; Hettie, K.S.; Chang, L.; Gendelman, H.E.; Kevadiya, B.D. Nanocarrier vaccines for SARS-CoV-2. Adv. Drug Deliv. Rev., 2021, 171, 215-239.
[http://dx.doi.org/10.1016/j.addr.2021.01.002] [PMID: 33428995]
[http://dx.doi.org/10.1016/j.addr.2021.01.002] [PMID: 33428995]
[28]
Pishesha, N.; Harmand, T.J.; Rothlauf, P.W.; Praest, P.; Alexander, R.K.; van den Doel, R.; Liebeskind, M.J.; Vakaki, M.A.; McCaul, N.; Wijne, C.; Verhaar, E.; Pinney, W., III; Heston, H.; Bloyet, L.M.; Pontelli, M.C.; Ilagan, M.X.G.; Jan Lebbink, R.; Buchser, W.J.; Wiertz, E.J.H.J.; Whelan, S.P.J.; Ploegh, H.L. A class II MHC-targeted vaccine elicits immunity against SARS-CoV-2 and its variants. Proc. Natl. Acad. Sci., 2021, 118(44), e2116147118.
[http://dx.doi.org/10.1073/pnas.2116147118] [PMID: 34654739]
[http://dx.doi.org/10.1073/pnas.2116147118] [PMID: 34654739]
[29]
Chen, Z.; Wu, Q.; Chen, J.; Ni, X.; Dai, J. A DNA aptamer based method for detection of SARS-CoV-2 nucleocapsid protein. Virol. Sin., 2020, 35(3), 351-354.
[http://dx.doi.org/10.1007/s12250-020-00236-z] [PMID: 32451881]
[http://dx.doi.org/10.1007/s12250-020-00236-z] [PMID: 32451881]
[30]
Kacherovsky, N.; Yang, L.F.; Dang, H.V.; Cheng, E.L.; Cardle, I.I.; Walls, A.C.; McCallum, M.; Sellers, D.L.; DiMaio, F.; Salipante, S.J.; Corti, D.; Veesler, D.; Pun, S.H. Discovery and characterization of spike N-terminal domain-binding aptamers for rapid SARS-CoV-2 detection. Angew. Chem. Int. Ed. Engl., 2021, 60(39), 21211-21215.
[http://dx.doi.org/10.1002/anie.202107730] [PMID: 34328683]
[http://dx.doi.org/10.1002/anie.202107730] [PMID: 34328683]
[31]
Li, J.; Zhang, Z.; Gu, J.; Stacey, H.D.; Ang, J.C.; Capretta, A.; Filipe, C.D.M.; Mossman, K.L.; Balion, C.; Salena, B.J.; Yamamura, D.; Soleymani, L.; Miller, M.S.; Brennan, J.D.; Li, Y. Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Res., 2021, 49(13), 7267-7279.
[http://dx.doi.org/10.1093/nar/gkab574] [PMID: 34232998]
[http://dx.doi.org/10.1093/nar/gkab574] [PMID: 34232998]
[32]
Gupta, A.; Anand, A.; Jain, N.; Goswami, S.; Anantharaj, A.; Patil, S.; Singh, R.; Kumar, A.; Shrivastava, T.; Bhatnagar, S.; Medigeshi, G.R.; Sharma, T.K. A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2. Mol. Ther. Nucleic Acids, 2021, 26, 321-332.
[http://dx.doi.org/10.1016/j.omtn.2021.06.014] [PMID: 34188971]
[http://dx.doi.org/10.1016/j.omtn.2021.06.014] [PMID: 34188971]
[33]
Villa, A.; Brunialti, E.; Dellavedova, J.; Meda, C.; Rebecchi, M.; Conti, M.; Donnici, L.; De Francesco, R.; Reggiani, A.; Lionetti, V.; Ciana, P. DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic. Pharmacol. Res., 2022, 175, 105982.
[http://dx.doi.org/10.1016/j.phrs.2021.105982] [PMID: 34798263]
[http://dx.doi.org/10.1016/j.phrs.2021.105982] [PMID: 34798263]
[34]
Murtaza, G.; Rizvi, A.S.; Xue, M.; Qiu, L.; Meng, Z. Consensus receptor-binding domain-targeted aptamer selection and designing of a photonic crystal-decorated aptasensor for SARS-CoV-2. Anal. Chem., 2022, 94(20), 7391-7399.
[http://dx.doi.org/10.1021/acs.analchem.2c00937] [PMID: 35544380]
[http://dx.doi.org/10.1021/acs.analchem.2c00937] [PMID: 35544380]
[35]
Wang, D.; Zhang, J.; huang, Z.; Yang, Y.; Fu, T.; Yang, Y.; Lyu, Y.; Jiang, J.; Qiu, L.; Cao, Z.; Zhang, X.; You, Q.; Lin, Y.; Zhao, Z.; Tan, W. Robust covalent aptamer strategy enables sensitive detection and enhanced inhibition of SARS-CoV-2 proteins. ACS Cent. Sci., 2023, 9(1), 72-83.
[http://dx.doi.org/10.1021/acscentsci.2c01263]
[http://dx.doi.org/10.1021/acscentsci.2c01263]
[36]
Sun, M.; Wu, Z.; Zhang, J.; Chen, M.; Lu, Y.; Yang, C.; Song, Y. Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape. Nano Today, 2022, 44, 101499.
[http://dx.doi.org/10.1016/j.nantod.2022.101499] [PMID: 35542182]
[http://dx.doi.org/10.1016/j.nantod.2022.101499] [PMID: 35542182]
[37]
Tan, J.; Zhao, M.; Wang, J.; Li, Z.; Liang, L.; Zhang, L.; Yuan, Q.; Tan, W. Regulation of protein activity and cellular functions mediated by molecularly evolved nucleic acids. Angew. Chem. Int. Ed., 2019, 58(6), 1621-1625.
[http://dx.doi.org/10.1002/anie.201809010] [PMID: 30556364]
[http://dx.doi.org/10.1002/anie.201809010] [PMID: 30556364]
[38]
Zhou, F.; Wang, P.; Chen, J.; Zhu, Z.; Li, Y.; Wang, S.; Wu, S.; Sima, Y.; Fu, T.; Tan, W.; Zhao, Z. A photochemically covalent lock stabilizes aptamer conformation and strengthens its performance for biomedicine. Nucleic Acids Res., 2022, 50(16), 9039-9050.
[http://dx.doi.org/10.1093/nar/gkac703] [PMID: 35993818]
[http://dx.doi.org/10.1093/nar/gkac703] [PMID: 35993818]
[39]
Kuai, H.; Zhao, Z.; Mo, L.; Liu, H.; Hu, X.; Fu, T.; Zhang, X.; Tan, W. Circular bivalent aptamers enable in vivo stability and recognition. J. Am. Chem. Soc., 2017, 139(27), 9128-9131.
[http://dx.doi.org/10.1021/jacs.7b04547] [PMID: 28635257]
[http://dx.doi.org/10.1021/jacs.7b04547] [PMID: 28635257]
[40]
Amraei, R.; Yin, W.; Napoleon, M.A.; Suder, E.L.; Berrigan, J.; Zhao, Q.; Olejnik, J.; Chandler, K.B.; Xia, C.; Feldman, J.; Hauser, B.M.; Caradonna, T.M.; Schmidt, A.G.; Gummuluru, S.; Mühlberger, E.; Chitalia, V.; Costello, C.E.; Rahimi, N. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. ACS Cent. Sci., 2021, 7(7), 1156-1165.
[http://dx.doi.org/10.1021/acscentsci.0c01537] [PMID: 34341769]
[http://dx.doi.org/10.1021/acscentsci.0c01537] [PMID: 34341769]
[41]
Bohan, D.; Van Ert, H.; Ruggio, N.; Rogers, K.J.; Badreddine, M.; Aguilar Briseño, J.A.; Elliff, J.M.; Rojas Chavez, R.A.; Gao, B.; Stokowy, T.; Christakou, E.; Kursula, P.; Micklem, D.; Gausdal, G.; Haim, H.; Minna, J.; Lorens, J.B.; Maury, W. Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathog., 2021, 17(11), e1009743.
[http://dx.doi.org/10.1371/journal.ppat.1009743] [PMID: 34797899]
[http://dx.doi.org/10.1371/journal.ppat.1009743] [PMID: 34797899]
[42]
Dormoy, V.; Perotin, J.M.; Gosset, P.; Maskos, U.; Polette, M.; Deslée, G. Nicotinic receptors as SARS-CoV-2 spike co-receptors? Med. Hypotheses, 2022, 158, 110741.
[http://dx.doi.org/10.1016/j.mehy.2021.110741] [PMID: 34924680]
[http://dx.doi.org/10.1016/j.mehy.2021.110741] [PMID: 34924680]
[43]
Wu, J.; Chen, L.; Qin, C.; Huo, F.; Liang, X.; Yang, X.; Zhang, K.; Lin, P.; Liu, J.; Feng, Z.; Zhou, J.; Pei, Z.; Wang, Y.; Sun, X.X.; Wang, K.; Geng, J.; Zheng, Z.; Fu, X.; Liu, M.; Wang, Q.; Zhang, Z.; Bian, H.; Zhu, P.; Chen, Z.N. CD147 contributes to SARS-CoV-2-induced pulmonary fibrosis. Signal Transduct. Target. Ther., 2022, 7(1), 382.
[http://dx.doi.org/10.1038/s41392-022-01230-5] [PMID: 36424379]
[http://dx.doi.org/10.1038/s41392-022-01230-5] [PMID: 36424379]
[44]
Hirose, K.; Tsuchida, M.; Asakura, H.; Wakui, K.; Yoshimoto, K.; Iida, K.; Sato, M.; Shibukawa, M.; Suganuma, M.; Saito, S. A single-round selection of selective DNA aptamers for mammalian cells by polymer-enhanced capillary transient isotachophoresis. Analyst, 2017, 142(21), 4030-4038.
[http://dx.doi.org/10.1039/C7AN00909G] [PMID: 28875191]
[http://dx.doi.org/10.1039/C7AN00909G] [PMID: 28875191]
[45]
Song, J.; Zheng, Y.; Huang, M.; Wu, L.; Wang, W.; Zhu, Z.; Song, Y.; Yang, C. A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning. Anal. Chem., 2020, 92(4), 3307-3314.
[http://dx.doi.org/10.1021/acs.analchem.9b05203] [PMID: 31876151]
[http://dx.doi.org/10.1021/acs.analchem.9b05203] [PMID: 31876151]
[46]
Jing, L.; Qin, M.; Zhang, X.; Song, Y.; Zhang, J.; Xia, X.; Gao, K.; Han, Q. A novel borax-specific ssDNA aptamer screened by high-throughput SELEX and its colorimetric assay with aggregation of AuNPs. J. Food Compos. Anal., 2021, 101, 103947.
[http://dx.doi.org/10.1016/j.jfca.2021.103947]
[http://dx.doi.org/10.1016/j.jfca.2021.103947]