Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Type 2 Diabetes and HDL Dysfunction: A Key Contributor to Glycemic Control

Author(s): Noemi Rotllan, Josep Julve* and Joan Carles Escolà-Gil*

Volume 31, Issue 3, 2024

Published on: 20 March, 2023

Page: [280 - 285] Pages: 6

DOI: 10.2174/0929867330666230201124125

Price: $65

Abstract

High-density lipoproteins (HDL) have been shown to exert multiple cardioprotective and antidiabetic functions, such as their ability to promote cellular cholesterol efflux and their antioxidant, anti-inflammatory, and antiapoptotic properties. Type 2 diabetes (T2D) is usually associated with low high-density lipoprotein cholesterol (HDL-C) levels as well as with significant alterations in the HDL composition, thereby impairing its main functions. HDL dysfunction also negatively impacts both pancreatic β-cell function and skeletal muscle insulin sensitivity, perpetuating this adverse self-feeding cycle. The impairment of these pathways is partly dependent on cellular ATP-binding cassette transporter (ABC) A1-mediated efflux to lipid-poor apolipoprotein (apo) A-I in the extracellular space. In line with these findings, experimental interventions aimed at improving HDL functions, such as infusions of synthetic HDL or lipid-poor apoA-I, significantly improved glycemic control in T2D patients and experimental models of the disease. Cholesteryl ester transfer protein (CETP) inhibitors are specific drugs designed to increase HDLC and HDL functions. Posthoc analyses of large clinical trials with CETP inhibitors have demonstrated their potential anti-diabetic properties. Research on HDL functionality and HDL-based therapies could be a crucial step toward improved glycemic control in T2D subjects.

[1]
Lee-Rueckert, M.; Escola-Gil, J.C.; Kovanen, P.T. HDL functionality in reverse cholesterol transport — Challenges in translating data emerging from mouse models to human disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(7), 566-583.
[http://dx.doi.org/10.1016/j.bbalip.2016.03.004] [PMID: 26968096]
[2]
Rohatgi, A.; Westerterp, M.; Von Eckardstein, A.; Remaley, A.; Rye, K.A. HDL in the 21st century: A multifunctional roadmap for future hdl research. Circulation, 2021, 143(23), 2293-2309.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.044221] [PMID: 34097448]
[3]
Mora, S.; Otvos, J.D.; Rosenson, R.S.; Pradhan, A.; Buring, J.E.; Ridker, P.M. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes, 2010, 59(5), 1153-1160.
[http://dx.doi.org/10.2337/db09-1114] [PMID: 20185808]
[4]
Rashid, S.; Watanabe, T.; Sakaue, T.; Lewis, G.F. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: The combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin. Biochem., 2003, 36(6), 421-429.
[http://dx.doi.org/10.1016/S0009-9120(03)00078-X] [PMID: 12951168]
[5]
Sparks, D.L.; Davidson, W.S.; Lund-Katz, S.; Phillips, M.C. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J. Biol. Chem., 1995, 270(45), 26910-26917.
[http://dx.doi.org/10.1074/jbc.270.45.26910] [PMID: 7592936]
[6]
Kheniser, K.G.; Osme, A.; Kim, C.; Ilchenko, S.; Kasumov, T.; Kashyap, S.R. Temporal dynamics of high-density lipoprotein proteome in diet-controlled subjects with type 2 diabetes. Biomolecules, 2020, 10(4), 520.
[http://dx.doi.org/10.3390/biom10040520] [PMID: 32235466]
[7]
Peng, D.Q.; Brubaker, G.; Wu, Z.; Zheng, L.; Willard, B.; Kinter, M.; Hazen, S.L.; Smith, J.D. Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler. Thromb. Vasc. Biol., 2008, 28(11), 2063-2070.
[http://dx.doi.org/10.1161/ATVBAHA.108.173815] [PMID: 18688016]
[8]
Nobécourt, E.; Tabet, F.; Lambert, G.; Puranik, R.; Bao, S.; Yan, L.; Davies, M.J.; Brown, B.E.; Jenkins, A.J.; Dusting, G.J.; Bonnet, D.J.; Curtiss, L.K.; Barter, P.J.; Rye, K.A. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 766-772.
[http://dx.doi.org/10.1161/ATVBAHA.109.201715] [PMID: 20110571]
[9]
Pu, L.J.; Lu, L.; Zhang, R.Y.; Du, R.; Shen, Y.; Zhang, Q.; Yang, Z.K.; Chen, Q.J.; Shen, W.F. Glycation of apoprotein A-I is associated with coronary artery plaque progression in type 2 diabetic patients. Diabetes Care, 2013, 36(5), 1312-1320.
[http://dx.doi.org/10.2337/dc12-1411] [PMID: 23230102]
[10]
Wu, Z.; Wagner, M.A.; Zheng, L.; Parks, J.S.; Shy, J.M., III; Smith, J.D.; Gogonea, V.; Hazen, S.L. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol., 2007, 14(9), 861-868.
[http://dx.doi.org/10.1038/nsmb1284] [PMID: 17676061]
[11]
Mastorikou, M.; Mackness, B.; Liu, Y.; Mackness, M. Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides. Diabet. Med., 2008, 25(9), 1049-1055.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02546.x] [PMID: 18937674]
[12]
Waldman, B.; Jenkins, A.J.; Davis, T.M.E.; Taskinen, M.R.; Scott, R.; O’Connell, R.L.; Gebski, V.J.; Ng, M.K.C.; Keech, A.C.; Investigators, F.S. HDL-C and HDL-C/ApoAI predict long-term progression of glycemia in established type 2 diabetes. Diabetes Care, 2014, 37(8), 2351-2358.
[http://dx.doi.org/10.2337/dc13-2738] [PMID: 24804699]
[13]
Feng, X.; Gao, X.; Yao, Z.; Xu, Y. Low apoA-I is associated with insulin resistance in patients with impaired glucose tolerance: A cross-sectional study. Lipids Health Dis., 2017, 16(1), 69.
[http://dx.doi.org/10.1186/s12944-017-0446-1] [PMID: 28372564]
[14]
Drew, B.G.; Duffy, S.J.; Formosa, M.F.; Natoli, A.K.; Henstridge, D.C.; Penfold, S.A.; Thomas, W.G.; Mukhamedova, N.; de Courten, B.; Forbes, J.M.; Yap, F.Y.; Kaye, D.M.; van Hall, G.; Febbraio, M.A.; Kemp, B.E.; Sviridov, D.; Steinberg, G.R.; Kingwell, B.A. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation, 2009, 119(15), 2103-2111.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.843219] [PMID: 19349317]
[15]
Barter, P.J.; Rye, K.A.; Tardif, J.C.; Waters, D.D.; Boekholdt, S.M.; Breazna, A.; Kastelein, J.J.P. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation, 2011, 124(5), 555-562.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.018259] [PMID: 21804130]
[16]
Menon, V.; Kumar, A.; Patel, D.R.; St John, J.; Riesmeyer, J.; Weerakkody, G.; Ruotolo, G.; Wolski, K.E.; McErlean, E.; Cremer, P.C.; Nicholls, S.J.; Lincoff, A.M.; Nissen, S.E. Effect of CETP inhibition with evacetrapib in patients with diabetes mellitus enrolled in the ACCELERATE trial. BMJ Open Diabetes Res. Care, 2020, 8(1), e000943.
[http://dx.doi.org/10.1136/bmjdrc-2019-000943] [PMID: 32179516]
[17]
Perego, C.; Da Dalt, L.; Pirillo, A.; Galli, A.; Catapano, A.L.; Norata, G.D. Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2149-2156.
[http://dx.doi.org/10.1016/j.bbadis.2019.04.012] [PMID: 31029825]
[18]
Vergeer, M.; Brunham, L.R.; Koetsveld, J.; Kruit, J.K.; Verchere, C.B.; Kastelein, J.J.P.; Hayden, M.R.; Stroes, E.S.G. Carriers of loss-of-function mutations in ABCA1 display pancreatic beta-cell dysfunction. Diabetes Care, 2010, 33(4), 869-874.
[http://dx.doi.org/10.2337/dc09-1562] [PMID: 20067955]
[19]
Villarreal-Molina, M.T.; Flores-Dorantes, M.T.; Arellano-Campos, O.; Villalobos-Comparan, M.; Rodríguez-Cruz, M.; Miliar-García, A.; Huertas-Vazquez, A.; Menjivar, M.; Romero-Hidalgo, S.; Wacher, N.H.; Tusie-Luna, M.T.; Cruz, M.; Aguilar-Salinas, C.A.; Canizales-Quinteros, S. Association of the ATP-binding cassette transporter A1 R230C variant with early-onset type 2 diabetes in a Mexican population. Diabetes, 2008, 57(2), 509-513.
[http://dx.doi.org/10.2337/db07-0484] [PMID: 18003760]
[20]
Kruit, J.K.; Brunham, L.R.; Verchere, C.B.; Hayden, M.R. HDL and LDL cholesterol significantly influence β-cell function in type 2 diabetes mellitus. Curr. Opin. Lipidol., 2010, 21(3), 178-185.
[http://dx.doi.org/10.1097/MOL.0b013e328339387b] [PMID: 20463468]
[21]
Schou, J.; Tybjærg-Hansen, A.; Møller, H.J.; Nordestgaard, B.G.; Frikke-Schmidt, R. ABC transporter genes and risk of type 2 diabetes: A study of 40,000 individuals from the general population. Diabetes Care, 2012, 35(12), 2600-2606.
[http://dx.doi.org/10.2337/dc12-0082] [PMID: 23139370]
[22]
Cochran, B.J.; Hou, L.; Manavalan, A.P.C.; Moore, B.M.; Tabet, F.; Sultana, A.; Cuesta Torres, L.; Tang, S.; Shrestha, S.; Senanayake, P.; Patel, M.; Ryder, W.J.; Bongers, A.; Maraninchi, M.; Wasinger, V.C.; Westerterp, M.; Tall, A.R.; Barter, P.J.; Rye, K.A. Impact of perturbed pancreatic β-cell cholesterol homeostasis on adipose tissue and skeletal muscle metabolism. Diabetes, 2016, 65(12), 3610-3620.
[http://dx.doi.org/10.2337/db16-0668] [PMID: 27702832]
[23]
Manandhar, B.; Cochran, B.J.; Rye, K.A. Role of high‐density lipoproteins in cholesterol homeostasis and glycemic control. J. Am. Heart Assoc., 2020, 9(1), e013531.
[http://dx.doi.org/10.1161/JAHA.119.013531] [PMID: 31888429]
[24]
Yalcinkaya, M.; Kerksiek, A.; Gebert, K.; Annema, W.; Sibler, R.; Radosavljevic, S.; Lütjohann, D.; Rohrer, L.; von Eckardstein, A. HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic β-cells in vitro by activation of Smoothened. J. Lipid Res., 2020, 61(4), 492-504.
[http://dx.doi.org/10.1194/jlr.RA119000509] [PMID: 31907205]
[25]
Habegger, K.M.; Hoffman, N.J.; Ridenour, C.M.; Brozinick, J.T.; Elmendorf, J.S. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology, 2012, 153(5), 2130-2141.
[http://dx.doi.org/10.1210/en.2011-2099] [PMID: 22434076]
[26]
White, J.; Swerdlow, D.I.; Preiss, D.; Fairhurst-Hunter, Z.; Keating, B.J.; Asselbergs, F.W.; Sattar, N.; Humphries, S.E.; Hingorani, A.D.; Holmes, M.V. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol., 2016, 1(6), 692-699.
[http://dx.doi.org/10.1001/jamacardio.2016.1884] [PMID: 27487401]
[27]
Fall, T.; Xie, W.; Poon, W.; Yaghootkar, H.; Mägi, R.; Knowles, J.W.; Lyssenko, V.; Weedon, M.; Frayling, T.M.; Ingelsson, E.; Ingelsson, E. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes, 2015, 64(7), 2676-2684.
[http://dx.doi.org/10.2337/db14-1710] [PMID: 25948681]
[28]
Haase, C.L.; Tybjærg-Hansen, A.; Nordestgaard, B.G.; Frikke-Schmidt, R. HDL cholesterol and risk of type 2 diabetes: A mendelian randomization study. Diabetes, 2015, 64(9), 3328-3333.
[http://dx.doi.org/10.2337/db14-1603] [PMID: 25972569]
[29]
Abbasi, A.; Corpeleijn, E.; Gansevoort, R.T.; Gans, R.O.B.; Hillege, H.L.; Stolk, R.P.; Navis, G.; Bakker, S.J.L.; Dullaart, R.P.F. Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: The PREVEND study. J. Clin. Endocrinol. Metab., 2013, 98(8), E1352-E1359.
[http://dx.doi.org/10.1210/jc.2013-1680] [PMID: 23690306]
[30]
Tabara, Y.; Arai, H.; Hirao, Y.; Takahashi, Y.; Setoh, K.; Kawaguchi, T.; Kosugi, S.; Ito, Y.; Nakayama, T.; Matsuda, F. Different inverse association of large high-density lipoprotein subclasses with exacerbation of insulin resistance and incidence of type 2 diabetes: The Nagahama study. Diabetes Res. Clin. Pract., 2017, 127, 123-131.
[http://dx.doi.org/10.1016/j.diabres.2017.03.018] [PMID: 28365559]
[31]
Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; Landray, M.J.; Landray, M.J. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med., 2017, 377(13), 1217-1227.
[http://dx.doi.org/10.1056/NEJMoa1706444] [PMID: 28847206]
[32]
Schwartz, G.G.; Leiter, L.A.; Ballantyne, C.M.; Barter, P.J.; Black, D.M.; Kallend, D.; Laghrissi-Thode, F.; Leitersdorf, E.; McMurray, J.J.V.; Nicholls, S.J.; Olsson, A.G.; Preiss, D.; Shah, P.K.; Tardif, J.C.; Kittelson, J. Dalcetrapib reduces risk of new-onset diabetes in patients with coronary heart disease. Diabetes Care, 2020, 43(5), 1077-1084.
[http://dx.doi.org/10.2337/dc19-2204] [PMID: 32144166]
[33]
Masson, W.; Lobo, M.; Siniawski, D.; Huerín, M.; Molinero, G.; Valéro, R.; Nogueira, J.P. Therapy with cholesteryl ester transfer protein (CETP) inhibitors and diabetes risk. Diabetes Metab., 2018, 44(6), 508-513.
[http://dx.doi.org/10.1016/j.diabet.2018.02.005] [PMID: 29523487]
[34]
Siebel, A.L.; Natoli, A.K.; Yap, F.Y.T.; Carey, A.L.; Reddy-Luthmoodoo, M.; Sviridov, D.; Weber, C.I.K.; Meneses-Lorente, G.; Maugeais, C.; Forbes, J.M.; Kingwell, B.A. Effects of high-density lipoprotein elevation with cholesteryl ester transfer protein inhibition on insulin secretion. Circ. Res., 2013, 113(2), 167-175.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300689] [PMID: 23676183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy