Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Eupatorin from Orthosiphon aristatus: A Review of The Botanical Origin, Pharmacological Effects and Isolation Methods

Author(s): Erika Chriscensia, Alya Aqila Arham*, Elizabeth Chrestella Wibowo, Lavisiony Gracius, Joshua Nathanael and Pietradewi Hartrianti

Volume 19, Issue 8, 2023

Published on: 12 May, 2023

Article ID: e310323215364 Pages: 16

DOI: 10.2174/1573407219666230331122318

Price: $65

Abstract

Orthosiphon aristatus has been known for its medicinal uses. One of the compounds responsible for the pharmacological activities of O. aristatus is a flavonoid called Eupatorin (EUP). EUP has been studied for its pharmacological activities, including anti-inflammatory, vasodilating, antiproliferative, hepatoprotective, analgesic, and antidiabetic properties. Despite its importance and abundance, currently, there is no published paper that reviews the characteristics, pharmacological activities and isolation methods of EUP. This review summarizes the botanical origin, phytochemical characteristics, pharmacological activities, isolation, as well as identification and characterization methods of EUP from O. aristatus. This paper also compares different isolation methods based on the parameters and the resulting yields. Various isolation methods had been used to obtain EUP. Reverse-phase high-performance liquid chromatography (HPLC) is the most commonly used method to isolate EUP, followed by preparative thin layer chromatography (TLC) and crystallization for the purification. Various spectroscopic methods, including UV-Vis, FT-IR, Mass, and NMR spectroscopy have been commonly used to identify and characterize EUP. This paper provides a comprehensive insight into EUP from O. aristatus which might be beneficial for future research using this compound.

Graphical Abstract

[1]
Chung, Y.S.; Choo, B.K.M.; Ahmed, P.K.; Othman, I.; Shaikh, M.F. A systematic review of the protective actions of cat’s whiskers (misai kucing) on the central nervous system. Front. Pharmacol., 2020, 11, 692.
[http://dx.doi.org/10.3389/fphar.2020.00692] [PMID: 32477146]
[2]
Lai, Keng C.; Poay Siong, L. Morphological similarities and differences between the two varieties of cat’s whiskers (Orthosiphon stamineus Benth.) grown in Malaysia. Int. J. Bot., 2005, 2(1), 1-6.
[http://dx.doi.org/10.3923/ijb.2006.1.6]
[3]
Ashraf, K.; Sultan, S.; Adam, A. Orthosiphon stamineus Benth. is an outstanding food medicine: Review of phytochemical and pharmacological activities. J. Pharm. Bioallied Sci., 2018, 10(3), 109-118.
[http://dx.doi.org/10.4103/JPBS.JPBS_253_17] [PMID: 30237681]
[4]
Yam, M.F.; Asmawi, M.Z.; Basir, R. An investigation of the anti-inflammatory and analgesic effects of Orthosiphon stamineus leaf] extract. J. Med. Food, 2008, 11(2), 362-368.
[http://dx.doi.org/10.1089/jmf.2006.065] [PMID: 18598181]
[5]
Daryanto, D. Orthosiphon stamineus as anti-inflammatory and diuretic in gout arthritis disease. Penelitian Perawat Profesional, 2019, Nov 28; 2(3), 295-300.
[http://dx.doi.org/10.37287/jppp.v2i3.140]
[6]
Yam, M.F.; Tan, C.S.; Ahmad, M.; Shibao, R. Mechanism of vasorelaxation induced by eupatorin in the rats aortic ring. Eur. J. Pharmacol., 2016, 789, 27-36.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.047] [PMID: 27370961]
[7]
Dolečková, I.; Rárová, L.; Grúz, J.; Vondrusová, M.; Strnad, M.; Kryštof, V. Antiproliferative and antiangiogenic effects of flavone eupatorin, an active constituent of chloroform extract of Orthosiphon stamineus leaves. Fitoterapia, 2012, 83(6), 1000-1007.
[http://dx.doi.org/10.1016/j.fitote.2012.06.002] [PMID: 22698713]
[8]
Razak, N.A.; Abu, N.; Ho, W.Y.; Zamberi, N.R.; Tan, S.W.; Alitheen, N.B.; Long, K.; Yeap, S.K. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci. Rep., 2019, 9(1), 1514.
[http://dx.doi.org/10.1038/s41598-018-37796-w] [PMID: 30728391]
[9]
Alshawsh, M.A.; Abdulla, M.A.; Ismail, S.; Amin, Z.A. Hepatoprotective effects of Orthosiphon stamineus extract on thioacetamide-induced liver cirrhosis in rats. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-6.
[http://dx.doi.org/10.1155/2011/103039] [PMID: 21647311]
[10]
Yam, M.F.; Lim, V.; Salman, I.M.; Ameer, O.Z.; Ang, L.F.; Rosidah, N.; Abdulkarim, M.F.; Abdullah, G.Z.; Basir, R.; Sadikun, A.; Asmawi, M.Z. HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of Orthosiphon stamineus leaves. Molecules, 2010, 15(6), 4452-4466.
[http://dx.doi.org/10.3390/molecules15064452] [PMID: 20657453]
[11]
Han, Jie L.; Jantan, I.; Yusoff, S.D.; Jalil, J.; Husain, K. Sinensetin: An insight on its pharmacological activities, mechanisms of action and toxicity. Front. Pharmacol., 2021, 11, 553404.
[http://dx.doi.org/10.3389/fphar.2020.553404] [PMID: 33628166]
[12]
Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A comprehensive review of rosmarinic acid: From phytochemistry to pharmacology and its new insight. Molecules, 2022, 27(10), 3292.
[http://dx.doi.org/10.3390/molecules27103292] [PMID: 35630768]
[13]
Abd Razak, N.; Yeap, S.K.; Alitheen, N.B.; Ho, W.Y.; Yong, C.Y.; Tan, S.W.; Tan, W.S.; Long, K. Eupatorin suppressed tumor progression and enhanced immunity in a 4T1 murine breast cancer model. Integr. Cancer Ther., 2020, 19, 1534735420935625.
[http://dx.doi.org/10.1177/1534735420935625] [PMID: 32830560]
[14]
Li, L.; Chen, Y.; Feng, X.; Yin, J.; Li, S.; Sun, Y.; Zhang, L. Identification of metabolites of eupatorin in vivo and in vitro based on UHPLC-Q-TOF-MS/MS. Molecules, 2019, 24(14), 2658.
[http://dx.doi.org/10.3390/molecules24142658] [PMID: 31340434]
[15]
Cai, X.; Xiao, C.; Xue, H.; Xiong, H.; Hang, Y.; Xu, J.; Lu, Y. A comparative study of the antioxidant and intestinal protective effects of extracts from different parts of Java tea ( Orthosiphon stamineus ). Food Sci. Nutr., 2018, 6(3), 579-584.
[http://dx.doi.org/10.1002/fsn3.584] [PMID: 29876108]
[16]
Chua, L.S.; Lau, C.H.; Chew, C.Y.; Ismail, N.I.M.; Soontorngun, N. Phytochemical profile of Orthosiphon aristatus extracts after storage: Rosmarinic acid and other caffeic acid derivatives. Phytomedicine, 2018, 39, 49-55.
[http://dx.doi.org/10.1016/j.phymed.2017.12.015] [PMID: 29433683]
[17]
Chen, L.; Kang, Y.H. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions. J. Agric. Food Chem., 2014, 62(10), 2190-2197.
[http://dx.doi.org/10.1021/jf404570s] [PMID: 24422962]
[18]
Grigore, A.; Neagu, G.; Dobre, N.; Albulescu, A.; Ionita, L.; Ionita, C.; Albulescu, R. Evaluation of antiproliferative and protective effects of Eupatorium cannabinum L. extracts. Turk. J. Biol., 2018, 42(4), 334-344.
[http://dx.doi.org/10.3906/biy-1803-72] [PMID: 30814897]
[19]
Wang, Q.; Wang, J.; Li, N.; Liu, J.; Zhou, J.; Zhuang, P.; Chen, H. A systematic review of Orthosiphon stamineus Benth. in the treatment of diabetes and its complications. Molecules, 2022, 27(2), 444.
[http://dx.doi.org/10.3390/molecules27020444] [PMID: 35056765]
[20]
Chen, X.Q.; Wang, M.; Zhang, X.; Guo, W.W.; Wu, X. Study on chemical constituents of Achillea alpina. Zhongguo Zhongyao Zazhi, 2015, 40(7), 1330-1333.
[PMID: 26281557]
[21]
Moradkhani, S.; Kobarfard, F.; Ayatollahi, S.A.M. Phytochemical investigations on chemical constituents of Achillea tenuifolia Lam. Iran. J. Pharm. Res., 2014, 13(3), 1049-1054.
[PMID: 25276207]
[22]
Segneanu, A.E.; Marin, C.N.; Ghirlea, I.O.F.; Feier, C.V.I.; Muntean, C.; Grozescu, I. Artemisia annua growing wild in Romania-A metabolite profile approach to target a drug delivery system based on magnetite nanoparticles. Plants, 2021, 10(11), 2245.
[http://dx.doi.org/10.3390/plants10112245] [PMID: 34834609]
[23]
Rashid, M.U.; Alamzeb, M.; Ali, S.; Shah, Z.A.; Naz, I.; Khan, A.A.; Semaan, D.; Khan, M.R. A new irregular monoterpene acetate along with eight known compounds with antifungal potential from the aerial parts of Artemisia incisa Pamp (Asteraceae). Nat. Prod. Res., 2017, 31(4), 428-435.
[http://dx.doi.org/10.1080/14786419.2016.1185718] [PMID: 27187805]
[24]
Sahid, E.D.N.; Claudino, J.C.; Oda, F.B.; Carvalho, F.A.; Santos, A.G.; Graminha, M.A.S.; Clementino, L.C. Baccharis trimera (Less.) DC leaf derivatives and eupatorin activities against Leishmania amazonensis. Nat. Prod. Res., 2022, 36(6), 1599-1603.
[http://dx.doi.org/10.1080/14786419.2021.1887175] [PMID: 33586545]
[25]
Csapi, B.; Hajdú, Z.; Zupkó, I.; Berényi, Á.; Forgo, P.; Szabó, P.; Hohmann, J. Bioactivity-guided isolation of antiproliferative compounds from Centaurea arenaria. Phytother. Res., 2010, 24(11), 1664-1669.
[http://dx.doi.org/10.1002/ptr.3187] [PMID: 21031625]
[26]
Karamenderes, C.; Bedir, E.; Abou-Gazar, H.; Khan, I.A. Chemical constituents of Centaurea cadmea. Chem. Nat. Compd., 2007, 43(6), 694-695.
[http://dx.doi.org/10.1007/s10600-007-0232-9]
[27]
Forgo, P.; Zupkó, I.; Molnár, J.; Vasas, A.; Dombi, G.; Hohmann, J. Bioactivity-guided isolation of antiproliferative compounds from Centaurea jacea L. Fitoterapia, 2012, 83(5), 921-925.
[http://dx.doi.org/10.1016/j.fitote.2012.04.006] [PMID: 22537643]
[28]
Sen, A.; Ozbas Turan, S.; Bitis, L. Bioactivity-guided isolation of anti-proliferative compounds from endemic Centaurea kilaea. Pharm. Biol., 2017, 55(1), 541-546.
[http://dx.doi.org/10.1080/13880209.2016.1255980] [PMID: 27938087]
[29]
Tuzun, B.S.; Hajdu, Z.; Orban-Gyapai, O.; Zomborszki, Z.P.; Jedlinszki, N.; Forgo, P.; Kıvcak, B.; Hohmann, J. Isolation of chemical constituents of Centaurea virgata Lam. and xanthine oxidase inhibitory activity of the plant extract and compounds. Med. Chem., 2017, 13(5), 498-502.
[PMID: 27991400]
[30]
Peron, G.; Hošek, J.; Prasad Phuyal, G.; Raj Kandel, D.; Adhikari, R.; Dall’Acqua, S. Comprehensive characterization of secondary metabolites from Colebrookea oppositifolia (Smith) leaves from Nepal and assessment of cytotoxic effect and anti-Nf-κB and AP-1 activities in vitro. Int. J. Mol. Sci., 2020, 21(14), 4897.
[http://dx.doi.org/10.3390/ijms21144897] [PMID: 32664524]
[31]
Morales-Flores, F.; Olivares-Palomares, K.S.; Aguilar-Laurents, M.I.; Rivero-Cruz, J.F.; Lotina-Hennsen, B.; King-Díaz, B. Flavonoids affect the light reaction of photosynthesis in vitro and in vivo as well as the growth of plants. J. Agric. Food Chem., 2015, 63(37), 8106-8115.
[http://dx.doi.org/10.1021/acs.jafc.5b02842] [PMID: 26322527]
[32]
Wollenweber, E.; Dörr, M.; Rustiyan, A. Dorema aucheri, the first umbelliferous plant found to produce exudate flavonoids. Phytochemistry, 1995, 38(6), 1417.
[http://dx.doi.org/10.1016/0031-9422(94)00840-P]
[33]
Dobberstein, R.H.; Tin-Wa, M.; Fong, H.H.S.; Crane, F.A.; Farnsworth, N.R. Flavonoid constituents from Eupatorium altissimum L. (Compositae). J. Pharm. Sci., 1977, 66(4), 600-602.
[http://dx.doi.org/10.1002/jps.2600660441] [PMID: 856983]
[34]
Kupchan, S.M.; Knox, J.R.; Udayamurthy, M.S. Tumor inhibitors. 8. Eupatorin, new cytotoxic flavone from Eupatorium semiserratum. J. Pharm. Sci., 1965, 54(6), 929-930.
[http://dx.doi.org/10.1002/jps.2600540632] [PMID: 5847037]
[35]
Fernández-Galleguillos, C.; Quesada-Romero, L.; Puerta, A.; Padrón, J.M.; Souza, E.; Romero-Parra, J.; Simirgiotis, M.J. UHPLC-MS chemical fingerprinting and antioxidant, antiproliferative, and enzyme inhibition potential of Gaultheria pumila berries. Metabolites, 2021, 11(8), 523.
[http://dx.doi.org/10.3390/metabo11080523] [PMID: 34436464]
[36]
Nagao, T.; Abe, F.; Kinjo, J.; Okabe, H. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biol. Pharm. Bull., 2002, 25(7), 875-879.
[http://dx.doi.org/10.1248/bpb.25.875] [PMID: 12132661]
[37]
Valentão, P.; Andrade, P.B.; Areias, F.; Ferreres, F.; Seabra, R.M. Analysis of vervain flavonoids by HPLC/Diode array detector method. Its application to quality control. J. Agric. Food Chem., 1999, 47(11), 4579-4582.
[http://dx.doi.org/10.1021/jf990444i] [PMID: 10552853]
[38]
Ono, M.; Morinaga, H.; Masuoka, C.; Ikeda, T.; Okawa, M.; Kinjo, J.; Nohara, T. New bisabolane-type sesquiterpenes from the aerial parts of Lippia dulcis. Chem. Pharm. Bull., 2005, 53(9), 1175-1177.
[http://dx.doi.org/10.1248/cpb.53.1175] [PMID: 16141591]
[39]
Maroyi, A. Lippia javanica (Burm.f.) Spreng.: Traditional and commercial uses and phytochemical and pharmacological significance in the African and Indian subcontinent. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-34.
[http://dx.doi.org/10.1155/2017/6746071] [PMID: 28115974]
[40]
Tüfekçi, A.R.; Küçük, S.; Gül, F.; Demirtaş, İ. Determination of phytochemical contents of some medicinal aromatic plants (Echinacea pallida, Melissa officinalis, Hypericum perforatum and Sideritis syriaca) belonging to Antalya region. Eurasian J. Bio. Chem. Sci., 2018, 1(1), 29-32.
[41]
Adams, J.; Lewis, J. Eupatorin, a constituent of Merrillia caloxylon. Planta Med., 1977, 32(5), 86-87.
[http://dx.doi.org/10.1055/s-0028-1097564] [PMID: 905420]
[42]
Bensaid, A.; Boudard, F.; Servent, A.; Morel, S.; Portet, K.; Guzman, C.; Vitou, M.; Bichon, F.; Poucheret, P. Differential nutrition-health properties of Ocimum basilicum leaf and stem extracts. Foods, 2022, 11(12), 1699.
[http://dx.doi.org/10.3390/foods11121699] [PMID: 35741897]
[43]
Grayer, R.J.; Eckert, M.R.; Lever, A.; Veitch, N.C.; Kite, G.C.; Paton, A.J. Distribution of exudate flavonoids in the genus Plectranthus. Biochem. Syst. Ecol., 2010, 38(3), 335-341.
[http://dx.doi.org/10.1016/j.bse.2010.01.014]
[44]
Kulkarni, R.R.; Shurpali, K.D.; Gawde, R.L.; Sarkar, D.; Puranik, V.G.; Oshi, S.P.J. Chemical investigation of Plectranthus mollis. Curr. Res. Med. Aromat. Plants, 2012, 34(3 & 4), 125-131.
[45]
González-Chávez, M.M.; Ramos-Velázquez, C.S.; Serrano-Vega, R.; Pérez-González, C.; Sánchez-Mendoza, E.; Pérez-Gutiérrez, S. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS. Pharm. Biol., 2017, 55(1), 1467-1472.
[http://dx.doi.org/10.1080/13880209.2017.1305423] [PMID: 28347190]
[46]
Maldonado, E.; Galicia, L.; Chávez, M.I.; Hernández-Ortega, S. neo -Clerodane diterpenoids and other constituents of Salvia filipes. J. Nat. Prod., 2016, 79(10), 2667-2673.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00605] [PMID: 27679866]
[47]
Moridi Farimani, M.; Mazarei, Z. Sesterterpenoids and other constituents from Salvia lachnocalyx Hedge. Fitoterapia, 2014, 98, 234-240.
[http://dx.doi.org/10.1016/j.fitote.2014.08.009] [PMID: 25128428]
[48]
González-Cortazar, M.; Salinas-Sánchez, D.O.; Herrera-Ruiz, M.; Román-Ramos, D.C.; Zamilpa, A.; Jiménez-Ferrer, E.; Ble-González, E.A.; Álvarez-Fitz, P.; Castrejón-Salgado, R.; Pérez-García, M.D. Eupatorin and salviandulin-A, with antimicrobial and anti-inflammatory effects from Salvia lavanduloides Kunth leaves. Plants, 2022, 11(13), 1739.
[http://dx.doi.org/10.3390/plants11131739] [PMID: 35807691]
[49]
Martínez-Francés, V.; Hahn, E.; Ríos, S.; Rivera, D.; Reich, E.; Vila, R.; Cañigueral, S. Ethnopharmacological and chemical characterization of Salvia species used in Valencian traditional herbal preparations. Front. Pharmacol., 2017, 8, 467.
[http://dx.doi.org/10.3389/fphar.2017.00467] [PMID: 28790914]
[50]
Gohari, A.R.; Saeidnia, S.; Malmir, M.; Hadjiakhoondi, A.; Ajani, Y. Flavones and rosmarinic acid from Salvia limbata. Nat. Prod. Res., 2010, 24(20), 1902-1906.
[http://dx.doi.org/10.1080/14786411003766912] [PMID: 21108116]
[51]
Gohari, A.R.; Ebrahimi, H.; Saeidnia, S.; Foruzani, M.; Ebrahimi, P.; Ajani, Y. Flavones and flavone glycosides from Salvia macrosiphon Boiss. Iran. J. Pharm. Res., 2011, 10(2), 247-251.
[PMID: 24250350]
[52]
Ali, Z.; Radhakrishnan, S.; Avula, B.; Chittiboyina, A.G.; Li, J.; Wu, C. Eupatorin 3′- O -glucopyranoside, a trimethoxyflavonoid glucoside from the aerial parts of Salvia mellifera. Nat. Prod. Res., 2023, 37(2), 269-276.
[53]
Moghaddam, F.M.; Amiri, R.; Alam, M.; Hossain, M.B.; van der Helm, D. Structure and absolute stereochemistry of salvimirzacolide, a new sesterterpene from Salvia mirzayanii. J. Nat. Prod., 1998, 61(2), 279-281.
[http://dx.doi.org/10.1021/np970378j] [PMID: 9514012]
[54]
Hafez Ghoran, S.; Firuzi, O.; Asadollahi, M.; Stuppner, H.; Alilou, M.; Jassbi, A.R. Dammarane-type triterpenoid saponins from Salvia russellii Benth. Phytochemistry, 2021, 184, 112653.
[http://dx.doi.org/10.1016/j.phytochem.2020.112653] [PMID: 33524860]
[55]
Moghaddam, F.M.; Farimani, M.M.; Seirafi, M.; Taheri, S.; Khavasi, H.R.; Sendker, J.; Proksch, P.; Wray, V.; Edrada, R. Sesterterpenoids and other constituents of Salvia sahendica. J. Nat. Prod., 2010, 73(9), 1601-1605.
[http://dx.doi.org/10.1021/np1002516] [PMID: 20735065]
[56]
Shojaeifard, Z.; Hemmateenejad, B.; Jassbi, A.R. Chemometrics-based LC-UV-ESIMS analyses of 50 Salvia species for detecting their anti-oxidant constituents. J. Pharm. Biomed. Anal., 2021, 193, 113745.
[http://dx.doi.org/10.1016/j.jpba.2020.113745] [PMID: 33190082]
[57]
Bisio, A.; Schito, A.M.; Pedrelli, F.; Danton, O.; Reinhardt, J.K.; Poli, G.; Tuccinardi, T.; Bürgi, T.; De Riccardis, F.; Giacomini, M.; Calzia, D.; Panfoli, I.; Schito, G.C.; Hamburger, M.; De Tommasi, N. Antibacterial and ATP synthesis modulating compounds from Salvia tingitana. J. Nat. Prod., 2020, 83(4), 1027-1042.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01024] [PMID: 32182064]
[58]
Fernandez, C.; Fraga, B.M.; Hernandez, M.G.; Arteaga, J.M. Flavonoid aglycones from some canary islands species of sideritis. J. Nat. Prod., 1988, 51(3), 591-593.
[http://dx.doi.org/10.1021/np50057a027] [PMID: 21401173]
[59]
Sosa, V.E.; Gil, R.; Oberti, J.C.; Kulanthaivel, P.; Herz, W. Sesquiterpene lactones and flavones from Stevia procumbens. J. Nat. Prod., 1985, 48(2), 340-341.
[http://dx.doi.org/10.1021/np50038a037]
[60]
Beer, M.F.; Frank, F.M.; Germán Elso, O.; Ernesto Bivona, A.; Cerny, N.; Giberti, G.; Luis Malchiodi, E.; Susana Martino, V.; Alonso, M.R.; Patricia Sülsen, V.; Cazorla, S.I. Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharm. Biol., 2016, 54(10), 2188-2195.
[http://dx.doi.org/10.3109/13880209.2016.1150304] [PMID: 26983579]
[61]
Schinella, G.R.; Giner, R.M.; Recio, M.D.C.; de Buschiazzo, P.M.; Ríos, J.; Máñez, S. Anti-inflammatory effects of South American Tanacetum vulgare. J. Pharm. Pharmacol., 2011, 50(9), 1069-1074.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06924.x] [PMID: 9811170]
[62]
Gallardo, O.V.; Tonn, C.E.; Nieto, M.; Morales, G.B.; Giordano, O.S. Bioactive neo-Clerodane diterpenoids toward Tenebrio molitor larvae from Teucrium nudicaule H. and Baccharis spicata (Lam.). Beill. Nat. Prod. Lett., 1996, 8(3), 189-197.
[http://dx.doi.org/10.1080/10575639608044893]
[63]
Shahat, A.A.; Alsaid, M.S.; Khan, J.A.; Higgins, M.; Dinkova-Kostova, A.T. Chemical constituents and NAD(P)H: Quinone oxidoreductase 1 (NQO1) inducer activity of Teucrium oliverianum Ging. ex Benth. Indian J. Tradit. Knowl., 2016, 15(2), 232-236.
[64]
Verykokidou-Vitsaropoulou, E.; Vajias, C. Methylated flavones from Teucrium polium. Planta Med., 1986, 52(5), 401-402.
[http://dx.doi.org/10.1055/s-2007-969198] [PMID: 17345353]
[65]
Pacifico, S.; Piccolella, S.; Papale, F.; Nocera, P.; Lettieri, A.; Catauro, M. A polyphenol complex from Thymus vulgaris L. plants cultivated in the campania region (Italy): New perspectives against neuroblastoma. J. Funct. Foods, 2016, 20, 253-266.
[http://dx.doi.org/10.1016/j.jff.2015.11.008]
[66]
Yamazaki, K.; Iwashina, T.; Kitajima, J.; Gamou, Y.; Yoshida, A.; Tannowa, T. External and internal flavonoids from Madagascarian Uncarina species (Pedaliaceae). Biochem. Syst. Ecol., 2007, 35(11), 743-749.
[http://dx.doi.org/10.1016/j.bse.2007.04.013]
[67]
Mocan, A.; Vodnar, D.; Vlase, L.; Crișan, O.; Gheldiu, A.M.; Crișan, G. Phytochemical characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and their antioxidant and antimicrobial properties. Int. J. Mol. Sci., 2015, 16(9), 21109-21127.
[http://dx.doi.org/10.3390/ijms160921109] [PMID: 26404257]
[68]
Hajdú, Z.; Hohmann, J.; Forgo, P.; Martinek, T.; Dervarics, M.; Zupkó, I.; Falkay, G.; Cossuta, D.; Máthé, I. Diterpenoids and flavonoids from the fruits of Vitex agnus-castus and antioxidant activity of the fruit extracts and their constituents. Phytother. Res., 2007, 21(4), 391-394.
[http://dx.doi.org/10.1002/ptr.2021] [PMID: 17262892]
[69]
Chai, T.; Wong, F.; Manan, F.; Ooh, K.; Ismail, N. Orthosiphon aristatus: A review of traditional uses, phytochemical profile, and pharmacological properties. Traditional and Folk Herbal Medicine: Recent Researches., 2014, 2, 153-187.
[70]
Orthosiphon aristatus; Centre for Agriculture and Bioscience International, 2022. Available from: https://www.cabi.org/isc/datasheet/110535
[71]
POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2023. Available from: http://www.plantsoftheworldonline.org/ (Accessed 24 January 2023).
[72]
Ho, C.H.; Noryati, I.; Sulaiman, S.F.; Rosma, A. In vitro antibacterial and antioxidant activities of Orthosiphon stamineus Benth. extracts against food-borne bacteria. Food Chem., 2010, 122(4), 1168-1172.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.110]
[73]
National Center for Biotechnology Information. PubChem Compound Summary for CID 97214, Eupatorin., 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Eupatorin
[74]
Showing compound Eupatorin (FDB001539); The Metabolomics Innovation Center (TMIC), 2019. Available from: https://foodb.ca/compounds/FDB001539
[75]
ChemRsc. Eupatorin. Available from: https://www.chemsrc.com/en/cas/855-96-9_1031869.html (Accessed on: on 27 January 2023).
[76]
Guo, Z.; Li, B.; Gu, J.; Zhu, P.; Su, F.; Bai, R.; Liang, X.; Xie, Y. Simultaneous quantification and pharmacokinetic study of nine bioactive components of Orthosiphon stamineus Benth. extract in rat plasma by UHPLC-MS/MS. Molecules, 2019, 24(17), 3057.
[http://dx.doi.org/10.3390/molecules24173057] [PMID: 31443519]
[77]
Feng, R.; Li, L.; Zhang, X.; Zhang, Y.; Chen, Y.; Feng, X.; Zhang, L.; Zhang, G. Assessment of a developed HPLC-MS/MS approach for determining plasma eupatorin in rats and its application in pharmacokinetics analysis. RSC Advances, 2020, 10(53), 32020-32026.
[http://dx.doi.org/10.1039/D0RA03350B] [PMID: 35518153]
[78]
Shafaei, A.; Saeed, M.A.A.; Aisha, A.F.A.; Ismail, Z. Pharmacokinetics and bioavailability of Orthosiphon stamineus ethanolic extract and its nano liposomes in Sprague-Dawley rats. Int. J. Pharm. Pharm. Sci., 2016, 9(1), 199.
[http://dx.doi.org/10.22159/ijpps.2017v9i1.12407]
[79]
Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; Rostagno, M.A. Extraction of flavonoids from natural sources using modern techniques. Front Chem., 2020, 8507887.
[http://dx.doi.org/10.3389/fchem.2020.507887] [PMID: 33102442]
[80]
MacGowan, A.P. Role of pharmacokinetics and pharmacodynamics: does the dose matter? Clin. Infect. Dis., 2001, 33(S3), S238-S239.
[http://dx.doi.org/10.1086/321855] [PMID: 11524725]
[81]
Pandey, R.P.; Parajuli, P.; Koffas, M.A.G.; Sohng, J.K. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv., 2016, 34(5), 634-662.
[http://dx.doi.org/10.1016/j.biotechadv.2016.02.012] [PMID: 26946281]
[82]
Koirala, N.; Thuan, N.H.; Ghimire, G.P.; Thang, D.V.; Sohng, J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme] Microb. Technol., 2016, 86, 103-116.
[http://dx.doi.org/10.1016/j.enzmictec.2016.02.003] [PMID: 26992799]
[83]
Akowuah, G.; Zhari, I.; Norhayati, I.; Sadikun, A.; Khamsah, S. Sinensetin, eupatorin, 3′-hydroxy-5, 6, 7, 4′-tetramethoxyflavone and rosmarinic acid contents and antioxidative effect of Orthosiphon stamineus from Malaysia. Food Chem., 2004, 87(4), 559-566.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.008]
[84]
Mansor, C.N.A.N.C.; Latip, J.; Markom, M. Preparation of Orthosiphon stamineus enriched-extracts and evaluation of their free radical scavenging activity. AIP Conference Proceedings, 2016, 1784, 030013.
[http://dx.doi.org/10.1063/1.4966751]
[85]
Huang, H.W.; Hsu, C.P.; Yang, B.B.; Wang, C.Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol., 2013, 33(1), 54-62.
[http://dx.doi.org/10.1016/j.tifs.2013.07.001]
[86]
Muhamad, N.; Muhmed, S.; Yusoff, M.; Gimbun, J. Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from Averrhoa bilimbi. J. Food Sci. Eng., 2014, 4, 255-260.
[87]
Hossain, M.A.; Mizanur Rahman, S.M. Isolation and characterisation of flavonoids from the leaves of medicinal plant Orthosiphon stamineus. Arab. J. Chem., 2015, 8(2), 218-221.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.016]
[88]
Tüzün, B.S.; Hohmann, J.; Kivcak, B. Green bio-inspired synthesis, characterization and activity of silver nanoparticle forms of Centaurea virgata Lam. and the isolated flavonoid eupatorin. Green] Process. Synth., 2018, 7(4), 372-379.
[http://dx.doi.org/10.1515/gps-2017-0027]
[89]
See, T.Y.; Tee, S.I.; Ang, T.N.; Chan, C.H.; Yusoff, R.; Ngoh, G.C. Assessment of various pretreatment and extraction methods for the extraction of bioactive compounds from Orthosiphon stamineus leaf via microstructures analysis. Int. J. Food Eng., 2016, 12(7), 711-717.
[http://dx.doi.org/10.1515/ijfe-2016-0094]
[90]
Suhaimi, S.H.; Hasham, R.; Hafiz Idris, M.K.; Ismail, H.F.; Mohd Ariffin, N.H.; Abdul Majid, F.A. Optimization of ultrasound-assisted extraction conditions followed by solid phase extraction fractionation from Orthosiphon stamineus Benth (Lamiace) leaves for antiproliferative effect on prostate cancer cells. Molecules, 2019, 24(22), 4183.
[http://dx.doi.org/10.3390/molecules24224183] [PMID: 31752230]
[91]
Hossain, M.A.; Rahman, A.; Kang, S.C. A new prenylated flavanone from the arial part of Orthosiphon stamineus. Indonesian J. Chem., 2010, 8(1), 101-103.
[http://dx.doi.org/10.22146/ijc.21661]
[92]
Yuliana, N.; Khatib, A.; Link-Struensee, A.; Ijzerman, A.; Rungkat-Zakaria, F.; Choi, Y.; Verpoorte, R. Adenosine A1 receptor binding activity of methoxy flavonoids from Orthosiphon stamineus. Planta Med., 2009, 75(2), 132-136.
[http://dx.doi.org/10.1055/s-0028-1088379] [PMID: 19137497]
[93]
Ismail, Z.; Saidan, N.H.; Aisha, A.F.A.; Hamil, M.S.R.; Majid, A.A.M.S. A novel reverse phase high-performance liquid chromatography method for standardization of Orthosiphon stamineus leaf] extracts. Pharmacognosy Res., 2015, 7(1), 23-31.
[http://dx.doi.org/10.4103/0974-8490.147195] [PMID: 25598631]
[94]
Majid, A.M.S.A.; Hashim, S.; Beh, H.K.; Hamil, M.S.R.; Ismail, Z. High-performance thin-layer chromatography method development, validation, and simultaneous quantification of four compounds identified in standardized extracts of Orthosiphon stamineus. Pharmacognosy Res., 2016, 8(4), 238-243.
[http://dx.doi.org/10.4103/0974-8490.188872] [PMID: 27695261]
[95]
Nagy, V.; Agócs, A.; Turcsi, E.; Deli, J. Isolation and purification of acid-labile carotenoid 5,6-epoxides on modified silica gels. Phytochem. Anal., 2009, 20(2), 143-148.
[http://dx.doi.org/10.1002/pca.1109] [PMID: 19140110]
[96]
Liu, Q.T.; Kinderlerer, J.L. Preparative thin-layer chromatographic separation and subsequent gas chromatographic–mass spectrometric analysis of monoacylglycerols derived from butter oil by fungal degradation. J. Chromatogr. A, 1999, 855(2), 617-624.
[http://dx.doi.org/10.1016/S0021-9673(99)00726-8] [PMID: 10519098]
[97]
Abu-Niaaj, L.; Katampe, I. Isolation and characterization of flavones from Artemisia monosperma. Pharmacogn. J., 2018, 10(5), 1018-1023.
[http://dx.doi.org/10.5530/pj.2018.5.173]
[98]
Ramaraj, D.; Rathinasamy, G.; Vairathevar Sivasamy, V. Isolation of eupatorin (3′,5-dihydroxy-4′,6,7-trimethoxyflavone) from Albizia odoratissima and its application for l-tryptophan sensing. Res. Chem. Intermed., 2018, 44(11), 6917-6931.
[http://dx.doi.org/10.1007/s11164-018-3530-x]
[99]
Laavola, M.; Nieminen, R.; Yam, M.; Sadikun, A.; Asmawi, M.; Basir, R.; Welling, J.; Vapaatalo, H.; Korhonen, R.; Moilanen, E. Flavonoids eupatorin and sinensetin present in Orthosiphon stamineus leaves inhibit inflammatory gene expression and STAT1 activation. Planta Med., 2012, 78(8), 779-786.
[http://dx.doi.org/10.1055/s-0031-1298458] [PMID: 22516932]
[100]
Claesson-Welsh, L. Vascular permeability-the essentials. Ups. J. Med. Sci., 2015, 120(3), 135-143.
[http://dx.doi.org/10.3109/03009734.2015.1064501] [PMID: 26220421]
[101]
Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol., 2013, 14(1), 32.
[http://dx.doi.org/10.1186/1471-2121-14-32] [PMID: 23834359]
[102]
Ceci, C.; Atzori, M.G.; Lacal, P.M.; Graziani, G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models. Int. J. Mol. Sci., 2020, 21(4), 1388.
[http://dx.doi.org/10.3390/ijms21041388] [PMID: 32085654]
[103]
Lee, K.; Hyun Lee, D.; Jung, Y.J.; Shin, S.Y.; Lee, Y.H. The natural flavone eupatorin induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Appl. Biolog. Chem., 2016, 59(2), 193-199.
[http://dx.doi.org/10.1007/s13765-016-0160-0]
[104]
Namazi Sarvestani, N.; Sepehri, H.; Delphi, L.; Moridi Farimani, M. Eupatorin and salvigenin potentiate Doxorubicin-induced apoptosis and cell cycle arrest in HT-29 and SW948 human colon cancer cells. Asian Pac. J. Cancer Prev., 2018, 19(1), 131-139.
[PMID: 29373904]
[105]
Ku, B.; Liang, C.; Jung, J.U.; Oh, B.H. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res., 2011, 21(4), 627-641.
[http://dx.doi.org/10.1038/cr.2010.149] [PMID: 21060336]
[106]
Androutsopoulos, V.; Arroo, R.R.J.; Hall, J.F.; Surichan, S.; Potter, G.A. Antiproliferative and cytostatic effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism. Breast Cancer Res., 2008, 10(3), R39.
[http://dx.doi.org/10.1186/bcr2090] [PMID: 18454852]
[107]
Monteiro, L.S.; Diniz-Freitas, M.; Warnakulasuriya, S.; Garcia-Caballero, T.; Forteza-Vila, J.; Fraga, M. Prognostic significance of cyclins A2, B1, D1, and E1 and CCND1 numerical aberrations in oral squamous cell carcinomas. Anal. Cell. Pathol., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/7253510] [PMID: 29785357]
[108]
Salmela, A.L.; Pouwels, J.; Kukkonen-Macchi, A.; Waris, S.; Toivonen, P.; Jaakkola, K.; Mäki-Jouppila, J.; Kallio, L.; Kallio, M.J. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis. Exp. Cell Res., 2012, 318(5), 578-592.
[http://dx.doi.org/10.1016/j.yexcr.2011.12.014] [PMID: 22227008]
[109]
Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules, 2022, 27(4), 1149.
[http://dx.doi.org/10.3390/molecules27041149] [PMID: 35208939]
[110]
Isobe, T.; Doe, M.; Morimoto, Y.; Nagata, K.; Ohsaki, A. The anti-Helicobacter pylori flavones in a Brazilian plant, Hyptis fasciculata, and the activity of methoxyflavones. Biol. Pharm. Bull., 2006, 29(5), 1039-1041.
[http://dx.doi.org/10.1248/bpb.29.1039] [PMID: 16651742]
[111]
Behrendt, D.; Ganz, P. Endothelial function. Am. J. Cardiol., 2002, 90(10), L40-L48.
[http://dx.doi.org/10.1016/S0002-9149(02)02963-6] [PMID: 12459427]
[112]
Poli, G.; Albano, E.; Dianzani, M.U. The role of lipid peroxidation in liver damage. Chem. Phys. Lipids, 1987, 45(2-4), 117-142.
[http://dx.doi.org/10.1016/0009-3084(87)90063-6] [PMID: 3319224]
[113]
Gupta, M.; Mazumder, U.K.; Kumar, R.S.; Gomathi, P.; Rajeshwar, Y.; Kakoti, B.B.; Selven, V.T. Anti-inflammatory, analgesic and antipyretic effects of methanol extract from Bauhinia racemosa stem bark in animal models. J. Ethnopharmacol., 2005, 98(3), 267-273.
[http://dx.doi.org/10.1016/j.jep.2005.01.018] [PMID: 15814258]
[114]
Mohamed, E.A.H.; Yam, M.F.; Ang, L.F.; Mohamed, A.J.; Asmawi, M.Z. Antidiabetic properties and mechanism of action of Orthosiphon stamineus Benth bioactive sub-fraction in streptozotocin-induced diabetic rats. J. Acupunct. Meridian Stud., 2013, 6(1), 31-40.
[http://dx.doi.org/10.1016/j.jams.2013.01.005] [PMID: 23433053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy