Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Photocatalytic Removal of Emerging Contaminants from Water using Metal Oxide-based Nanoparticles

Author(s): Rajashekara Rakshitha, Rajesh Chethan and Nagaraju Pallavi*

Volume 20, Issue 3, 2024

Published on: 22 May, 2023

Page: [339 - 355] Pages: 17

DOI: 10.2174/1573413719666230331111906

open access plus

Abstract

Water contamination resulting from industrial and anthropogenic activities is a major problem in many countries throughout the world. Effective water treatment technologies are necessary to address this issue. Emerging pollutants (EPs) are reaching the aquatic environments from point and diffuse sources constantly. These are the substances that are not regularly monitored, yet have the potential to infiltrate the environment and harm the ecosystem and human health. Because of their ecological and sustainable properties, interest in improved photocatalytic technologies based on metal oxide-based nanomaterials has grown tremendously over the years to address this water contamination. Pollutant degradation, water splitting, carbon dioxide reduction, nitrogen reduction, and microbial inactivation are just a few of the applications of photocatalysis. However, to maintain its environmentally favourable status, new solutions must be found to assure long-term viability. Here we review, emerging organic pollutants, conventional water treatment, advanced oxidation methods, photocatalytic mechanisms, photocatalyst support materials, synthesis, and characterization of metal oxides and metal oxide nanoparticles in the removal of emerging contaminants. The purpose of this review is to reach a broader readership by giving a simple comprehension of the fundamentals and advances of metal-oxide-driven photocatalysis for environmental clean-up.

Graphical Abstract

[1]
Yang, J.; Guo, Y.; Lu, W.; Jiang, R.; Wang, J. Emerging applications of plasmons in driving CO2 reduction and N 2 fixation. Adv. Mater., 2018, 30(48), 1802227.
[http://dx.doi.org/10.1002/adma.201802227] [PMID: 30039589]
[2]
Yashas, S.R.; Shivaraju, H.P.; McKay, G.; Shahmoradi, B.; Maleki, A.; Yetilmezsoy, K. Designing bi-functional silver delafossite bridged graphene oxide interfaces: Insights into synthesis, characterization, photocatalysis and bactericidal efficiency. Chem. Eng. J., 2021, 426(July), 131729.
[http://dx.doi.org/10.1016/j.cej.2021.131729]
[3]
Nezamzadeh-Ejhieh, A.; Khorsandi, S. Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. J. Ind. Eng. Chem., 2014, 20(3), 937-946.
[http://dx.doi.org/10.1016/j.jiec.2013.06.026]
[4]
Carter, R.A.A.; Joll, C.A. Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review. J. Environ. Sci., 2017, 58, 19-50.
[http://dx.doi.org/10.1016/j.jes.2017.06.013] [PMID: 28774608]
[5]
Yashas, S.R.; Shivaraju, H.P.; Thinley, T.; Pushparaj, K.S.; Maleki, A.; Shahmoradi, B. Facile synthesis of SnO2 2D nanoflakes for ultrasound-assisted photodegradation of tetracycline hydrochloride. Int. J. Environ. Sci. Technol., 2020, 17(5), 2593-2604.
[http://dx.doi.org/10.1007/s13762-020-02636-w]
[6]
Malakootian, M.; Yaseri, M.; Faraji, M. Removal of antibiotics from aqueous solutions by nanoparticles: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int., 2019, 26(9), 8444-8458.
[http://dx.doi.org/10.1007/s11356-019-04227-w] [PMID: 30706272]
[7]
Malakootian, M.; Nasiri, A.; Mahdizadeh, H. Preparation of CoFe2O4/activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions. Water Sci. Technol., 2018, 78(10), 2158-2170.
[http://dx.doi.org/10.2166/wst.2018.494] [PMID: 30629544]
[8]
Ayappan, C.; Jayaraman, V.; Palanivel, B.; Pandikumar, A.; Mani, A. Facile preparation of novel Sb2S3 nanoparticles/rod-like α-Ag2WO4 heterojunction photocatalysts: Continuous modulation of band structure towards the efficient removal of organic contaminants. Separ. Purif. Tech., 2020, 236, 116302.
[http://dx.doi.org/10.1016/j.seppur.2019.116302]
[9]
Mousavi, M.; Soleimani, M.; Hamzehloo, M.; Badiei, A.; Ghasemi, J.B. Photocatalytic degradation of different pollutants by the novel GCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: Introducing a photodegradation model and optimization by response surface methodology (RSM). Mater. Chem. Phys., 2020, 2021, 258.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123912]
[10]
Giannakis, S.; Rtimi, S.; Pulgarin, C. Light-assisted advanced oxidation processes for the elimination of chemical and microbiological pollution of wastewaters in developed and developing countries. Molecules, 2017, 22(7), 1070.
[http://dx.doi.org/10.3390/molecules22071070] [PMID: 28672875]
[11]
Chan, S.H.S.; Yeong Wu, T.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol., 2011, 86(9), 1130-1158.
[http://dx.doi.org/10.1002/jctb.2636]
[12]
Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc., 2015, 19(5), 462-464.
[http://dx.doi.org/10.1016/j.jscs.2015.04.003]
[13]
Huang, J.; Li, D.; Liu, Y.; Li, R.; Chen, P.; Liu, H.; Lv, W.; Liu, G.; Feng, Y. Ultrathin Ag2WO4-coated P-doped g-C3N4 nanosheets with remarkable photocatalytic performance for indomethacin degradation. J. Hazard. Mater., 2020, 392(392), 122355.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122355] [PMID: 32105960]
[14]
Abdullah, A.H.; Moey, H.J.M.; Yusof, N.A. Response surface methodology analysis of the photocatalytic removal of Methylene Blue using bismuth vanadate prepared via polyol route. J. Environ. Sci., 2012, 24(9), 1694-1701.
[http://dx.doi.org/10.1016/S1001-0742(11)60966-2] [PMID: 23520879]
[15]
Rauf, M.A.; Ashraf, S.S. Radiation induced degradation of dyes-An overview. J. Hazard. Mater., 2009, 166(1), 6-16.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.043] [PMID: 19128875]
[16]
Bora, L.V.; Mewada, R.K. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renew. Sustain. Energy Rev., 2017, 76(76), 1393-1421.
[http://dx.doi.org/10.1016/j.rser.2017.01.130]
[17]
Sadeghzadeh-Attar, A. Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Sol. Energy Mater. Sol. Cells, 2018, 183(March), 16-24.
[http://dx.doi.org/10.1016/j.solmat.2018.03.046]
[18]
Senthil, R.A.; Osman, S.; Pan, J.; Khan, A.; Yang, V.; Kumar, T.R.; Sun, Y.; Lin, Y.; Liu, X.; Manikandan, A. One-pot preparation of AgBr/α-Ag2WO4 composite with superior photocatalytic activity under visible-light irradiation. Colloids Surf. A Physicochem. Eng. Asp., 2020, 586, 124079.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124079]
[19]
Huang, S.; Xu, Y.; Xie, M.; Liu, Q.; Xu, H.; Zhao, Y.; He, M.; Li, H. A Z-scheme magnetic recyclable Ag/AgBr@CoFe2O4 photocatalyst with enhanced photocatalytic performance for pollutant and bacterial elimination. RSC Advances, 2017, 7(49), 30845-30854.
[http://dx.doi.org/10.1039/C7RA03936K]
[20]
Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev., 2014, 114(14), 6949-6985.
[http://dx.doi.org/10.1021/cr500134h] [PMID: 24892491]
[21]
Wang, Y.; Ren, B.; Ou, Z. J.; Xu, K.; Yang, C.; Li, Y.; Zhang, H. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull., 2021, 66(12), 1228-1252.
[http://dx.doi.org/10.1016/j.scib.2021.02.007] [PMID: 36654357]
[22]
Raizada, P.; Soni, V.; Kumar, A.; Singh, P.; Parwaz, K.A.A.; Asiri, A.M.; Thakur, V.K.; Nguyen, V.H. Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. J Materiomics, 2021, 7(2), 388-418.
[http://dx.doi.org/10.1016/j.jmat.2020.10.009]
[23]
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 2014, 43(22), 7520-7535.
[http://dx.doi.org/10.1039/C3CS60378D] [PMID: 24413305]
[24]
Salazar, H.; Martins, P.M.; Santos, B.; Fernandes, M.M.; Reizabal, A.; Sebastián, V.; Botelho, G.; Tavares, C.J.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications. Chemosphere, 2020, 250, 126299.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126299] [PMID: 32113095]
[25]
Lei, M.; Zhang, L.; Lei, J.; Zong, L.; Li, J.; Wu, Z.; Wang, Z. Overview of emerging contaminants and associated human health effects. BioMed Res. Int., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/404796] [PMID: 26713315]
[26]
Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. N. Biotechnol., 2015, 32(1), 147-156.
[http://dx.doi.org/10.1016/j.nbt.2014.01.001] [PMID: 24462777]
[27]
Fent, K.; Weston, A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol., 2006, 76(2), 122-159.
[http://dx.doi.org/10.1016/j.aquatox.2005.09.009] [PMID: 16257063]
[28]
Halling-Sørensen, B.; Nors Nielsen, S.; Lanzky, P.F.; Ingerslev, F.; Holten Lützhøft, H.C.; Jørgensen, S.E. Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere, 1998, 36(2), 357-393.
[http://dx.doi.org/10.1016/S0045-6535(97)00354-8] [PMID: 9569937]
[29]
Li, W.C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut., 2014, 187, 193-201.
[http://dx.doi.org/10.1016/j.envpol.2014.01.015] [PMID: 24521932]
[30]
Pfluger, P.; Dietrich, D.R. Effects on pharmaceuticals in the environment-An overview and principle considerations. In: Pharmaceuticals in the Environment; Kümmerer, K., Ed.; Springer: Berlin, Heidelberg, 2001.
[http://dx.doi.org/10.1007/978-3-662-04634-0_2]
[31]
Ziylan, A.; Ince, N.H. The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: Treatability by conventional and non-conventional processes. J. Hazard. Mater., 2011, 187(1-3), 24-36.
[http://dx.doi.org/10.1016/j.jhazmat.2011.01.057] [PMID: 21315511]
[32]
González-González, R.B.; Sharma, A.; Parra-Saldívar, R.; Ramirez-Mendoza, R.A.; Bilal, M.; Iqbal, H.M.N. Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. J. Hazard. Mater., 2021, 2022, 423.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127145] [PMID: 34547693]
[33]
Wang, L.; Bian, Z. Photocatalytic degradation of paracetamol on Pd–BiVO4 under visible light irradiation. Chemosphere, 2020, 239, 124815.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124815] [PMID: 31526994]
[34]
Wu, S.; Zhang, L.; Chen, J. Paracetamol in the environment and its degradation by microorganisms. Appl. Microbiol. Biotechnol., 2012, 96(4), 875-884.
[http://dx.doi.org/10.1007/s00253-012-4414-4] [PMID: 23053075]
[35]
Roy, N.; Alex, S.A.; Chandrasekaran, N.; Mukherjee, A.; Kannabiran, K. A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts. J. Environ. Chem. Eng., 2021, 9(2), 104796.
[http://dx.doi.org/10.1016/j.jece.2020.104796]
[36]
Bembibre, A.; Benamara, M.; Hjiri, M.; Gómez, E.; Alamri, H.R.; Dhahri, R.; Serrà, A. Visible-light driven sonophotocatalytic removal of tetracycline using Ca-Doped ZnO nanoparticles. Chem. Eng. J., 2021, 2022, 427.
[http://dx.doi.org/10.1016/j.cej.2021.132006]
[37]
Aleksić S.; Žgajnar, G.A.; Premzl, K.; Kolar, M.; Turk, S.Š. Ozonation of amoxicillin and ciprofloxacin in model hospital wastewater to increase biotreatability. Antibiotics, 2021, 10(11), 1407.
[http://dx.doi.org/10.3390/antibiotics10111407] [PMID: 34827345]
[38]
Zhang, K.; Zhao, Y.; Fent, K. Cardiovascular drugs and lipid regulating agents in surface waters at global scale: Occurrence, ecotoxicity and risk assessment. Sci. Total Environ., 2020, 729, 138770.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138770] [PMID: 32361434]
[39]
Iancu, V.I.; Puiu, D.; Radu, G.L. Determination of some beta-blockers in surface water samples. UPB Sci. Bull. Ser. B Chem. Mater. Sci., 2020, 82(2), 121-130. https://doi.org/https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full6cb_150864.pdf
[40]
Valcárcel, Y.; Alonso, S.G.; Rodríguez-Gil, J.L.; Maroto, R.R.; Gil, A.; Catalá, M. Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain. Chemosphere, 2011, 82(7), 1062-1071.
[http://dx.doi.org/10.1016/j.chemosphere.2010.10.041] [PMID: 21112611]
[41]
Pacáková, V.; Loukotková, L.; Bosáková, Z.; Štulík, K. Analysis for estrogens as environmental pollutants - A review. J. Sep. Sci., 2009, 32(5-6), 867-882.
[http://dx.doi.org/10.1002/jssc.200800673] [PMID: 19219841]
[42]
Pratush, A.; Ye, X.; Yang, Q.; Kan, J.; Peng, T.; Wang, H.; Huang, T.; Xiong, G.; Hu, Z. Biotransformation strategies for steroid estrogen and androgen pollution. Appl. Microbiol. Biotechnol., 2020, 104(6), 2385-2409.
[http://dx.doi.org/10.1007/s00253-020-10374-9] [PMID: 31993703]
[43]
Rani, S.; Malik, A.K.; Kaur, R.; Kaur, R. A review for the analysis of antidepressant, antiepileptic and quinolone type drugs in pharmaceuticals and environmental samples. Crit. Rev. Anal. Chem., 2016, 46(5), 424-442.
[http://dx.doi.org/10.1080/10408347.2016.1141670] [PMID: 26939618]
[44]
Zhang, Y.; Geißen, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 2008, 73(8), 1151-1161.
[http://dx.doi.org/10.1016/j.chemosphere.2008.07.086] [PMID: 18793791]
[45]
Heye, K.; Wiebusch, J.; Becker, J.; Rongstock, L.; Bröder, K.; Wick, A.; Schulte-Oehlmann, U.; Oehlmann, J. Ecotoxicological characterization of the antiepileptic drug carbamazepine using eight aquatic species: Baseline study for future higher tier tests. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2019, 54(5), 441-451.
[http://dx.doi.org/10.1080/10934529.2018.1562819] [PMID: 30789049]
[46]
Fujii, S.; Polprasert, C.; Tanaka, S.; Lien, N.P.H.; Qiu, Y. New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds - a review paper. J. Water Supply Res. Technol. -. Aqua, 2007, 56(5), 313-326.
[http://dx.doi.org/10.2166/aqua.2007.005]
[47]
Ahrens, L. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate. J. Environ. Monit., 2011, 13(1), 20-31.
[http://dx.doi.org/10.1039/C0EM00373E] [PMID: 21031178]
[48]
Li, P.; Zhi, D.; Zhang, X.; Zhu, H.; Li, Z.; Peng, Y.; He, Y.; Luo, L.; Rong, X.; Zhou, Y. Research progress on the removal of hazardous perfluorochemicals: A review. J. Environ. Manage., 2019, 250(August), 109488.
[http://dx.doi.org/10.1016/j.jenvman.2019.109488] [PMID: 31499465]
[49]
Wang, S.; Yang, Q.; Chen, F.; Sun, J.; Luo, K.; Yao, F.; Wang, X.; Wang, D.; Li, X.; Zeng, G. Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review. Chem. Eng. J., 2017, 328, 927-942.
[http://dx.doi.org/10.1016/j.cej.2017.07.076]
[50]
Sun, Q.; Zhao, C.; Frankcombe, T.J.; Liu, H.; Liu, Y. Heterogeneous photocatalytic decomposition of per- and poly-fluoroalkyl substances: A review. Crit. Rev. Environ. Sci. Technol., 2020, 50(5), 523-547.
[http://dx.doi.org/10.1080/10643389.2019.1631988]
[51]
Asif, A.H.; Wang, S.; Sun, H. Hematite-based nanomaterials for photocatalytic degradation of pharmaceuticals and personal care products (PPCPs): A short review. Curr. Opin. Green Sustain. Chem., 2021, 28, 100447.
[http://dx.doi.org/10.1016/j.cogsc.2021.100447]
[52]
Freyria, F.; Geobaldo, F.; Bonelli, B. Nanomaterials for the abatement of pharmaceuticals and personal care products from wastewater. Appl. Sci., 2018, 8(2), 170.
[http://dx.doi.org/10.3390/app8020170]
[53]
Tahir, M.B.; Ahmad, A.; Iqbal, T.; Ijaz, M.; Muhammad, S.; Siddeeg, S.M. Advances in photo-catalysis approach for the removal of toxic personal care product in aqueous environment. Environ. Dev. Sustain., 2020, 22(7), 6029-6052.
[http://dx.doi.org/10.1007/s10668-019-00495-1]
[54]
Bagheri, A.R.; Aramesh, N.; Bilal, M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. Environ. Res., 2021, 194(194), 110654.
[http://dx.doi.org/10.1016/j.envres.2020.110654] [PMID: 33359702]
[55]
Reddy, P.V.L.; Kim, K.H. A review of photochemical approaches for the treatment of a wide range of pesticides. J. Hazard. Mater., 2015, 285, 325-335.
[http://dx.doi.org/10.1016/j.jhazmat.2014.11.036] [PMID: 25528231]
[56]
Kanan, S.; Moyet, M.A.; Arthur, R.B.; Patterson, H.H. Recent advances on TiO2 -based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal. Rev., Sci. Eng., 2020, 62(1), 1-65.
[http://dx.doi.org/10.1080/01614940.2019.1613323]
[57]
Khan, S.H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ. Nanotechnol. Monit. Manag., 2020, 13(13), 100290.
[http://dx.doi.org/10.1016/j.enmm.2020.100290]
[58]
Xia, T.; Lin, Y.; Li, W.; Ju, M. Photocatalytic degradation of organic pollutants by MOFs based materials: A review. Chin. Chem. Lett., 2021, 32(10), 2975-2984.
[http://dx.doi.org/10.1016/j.cclet.2021.02.058]
[59]
Sud, D.; Kaur, P. Heterogeneous photocatalytic degradation of selected organophosphate pesticides: A review. Crit. Rev. Environ. Sci. Technol., 2012, 42(22), 2365-2407.
[http://dx.doi.org/10.1080/10643389.2011.574184]
[60]
Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ., 2007, 377(2-3), 255-272.
[http://dx.doi.org/10.1016/j.scitotenv.2007.01.095] [PMID: 17363035]
[61]
Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ., 2021, 765, 142795.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142795] [PMID: 33572034]
[62]
Jumadi, J.; Kamari, A.; Hargreaves, J.S.J.; Yusof, N. A review of nano-based materials used as flocculants for water treatment. Int. J. Environ. Sci. Technol., 2020, 17(7), 3571-3594.
[http://dx.doi.org/10.1007/s13762-020-02723-y]
[63]
Lee, C.S.; Robinson, J.; Chong, M.F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot., 2014, 92(6), 489-508.
[http://dx.doi.org/10.1016/j.psep.2014.04.010]
[64]
Lai, H.; Fang, H.; Huang, L.; He, G.; Reible, D. A review on sediment bioflocculation: Dynamics, influencing factors and modeling. Sci. Total Environ., 2018, 642, 1184-1200.
[http://dx.doi.org/10.1016/j.scitotenv.2018.06.101] [PMID: 30045500]
[65]
Huang, H.; Schwab, K.; Jacangelo, J.G. Pretreatment for low pressure membranes in water treatment: A review. Environ. Sci. Technol., 2009, 43(9), 3011-3019.
[http://dx.doi.org/10.1021/es802473r] [PMID: 19534107]
[66]
Teodosiu, C.; Gilca, A.F.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod., 2018, 197, 1210-1221.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.247]
[67]
Urfer, D.; Huck, P.M.; Booth, S.D.J.; Coffey, B.M. Biological filtration for BOM and particle removal: a critical review. J. Am. Water Works Assoc., 1997, 89(12), 83-98.
[http://dx.doi.org/10.1002/j.1551-8833.1997.tb08342.x]
[68]
Cobzaru, C.; Inglezakis, V. Ion Exchange. Progress in Filtration and Separation; Elsevier, 2015, pp. 425-498.
[http://dx.doi.org/10.1016/B978-0-12-384746-1.00010-0]
[69]
Kansara, N.; Bhati, L.; Narang, M.; Vaishnavi, R. Wastewater treatment by ion exchange method: A review of past and recent researches. Environ. Sci. -. An Indian J., 2016, 12(4), 143-150.
[70]
Alabi, A.; AlHajaj, A.; Cseri, L.; Szekely, G.; Budd, P.; Zou, L. Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. npj Clean Water, 2018, 1, 1.
[http://dx.doi.org/10.1038/s41545-018-0009-7]
[71]
Dhangar, K.; Kumar, M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ., 2020, 738, 140320.
[http://dx.doi.org/10.1016/j.scitotenv.2020.140320] [PMID: 32806367]
[72]
Prakruthi, K.; Ujwal, M.P.; Yashas, S.R.; Mahesh, B.; Kumara Swamy, N.; Shivaraju, H.P. Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: An overview. Environ. Sci. Pollut. Res. Int., 2022, 29(4), 4930-4957.
[http://dx.doi.org/10.1007/s11356-021-17361-1] [PMID: 34797548]
[73]
Ghime, D.; Ghosh, P. Advanced oxidation processes: A powerful treatment option for the removal of recalcitrant organic compounds. Adv. Oxid. Process. - Appl. Trends; Prospect, 2020, pp. 1-12.
[http://dx.doi.org/10.5772/intechopen.90192]
[74]
Bhagawan, D.; Chandan, V.; Srilatha, K.; Shankaraiah, G.; Rani, M.Y.; Himabindu, V. Industrial wastewater treatment using electrochemical process. IOP Conf. Ser. Earth Environ. Sci., 2018, 191(1), 012022.
[http://dx.doi.org/10.1088/1755-1315/191/1/012022]
[75]
Comninellis, C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta, 1994, 39(11-12), 1857-1862.
[http://dx.doi.org/10.1016/0013-4686(94)85175-1]
[76]
Feng, Y.; Yang, L.; Liu, J.; Logan, B.E. Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci. Water Res. Technol., 2016, 2(5), 800-831.
[http://dx.doi.org/10.1039/C5EW00289C]
[77]
Ameta, R.; Chohadia, A.K.; Jain, A.; Punjabi, P.B. Fenton and Photo-Fenton Processes. In: Advanced Oxidation Processes for Waste Water Treatment; Emerging Green Chemical Technology, 2018; pp. 49-87.
[http://dx.doi.org/10.1016/B978-0-12-810499-6.00003-6]
[78]
Vorontsov, A.V. Advancing fenton and photo-fenton water treatment through the catalyst design. J. Hazard. Mater., 2019, 372, 103-112.
[http://dx.doi.org/10.1016/j.jhazmat.2018.04.033] [PMID: 29709242]
[79]
Pérez, M.; Torrades, F.; Domènech, X.; Peral, J. Fenton and photo-Fenton oxidation of textile effluents. Water Res., 2002, 36(11), 2703-2710.
[http://dx.doi.org/10.1016/S0043-1354(01)00506-1] [PMID: 12146857]
[80]
Hermosilla, D.; Cortijo, M.; Huang, C.P. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci. Total Environ., 2009, 407(11), 3473-3481.
[http://dx.doi.org/10.1016/j.scitotenv.2009.02.009] [PMID: 19278717]
[81]
Adityosulindro, S.; Barthe, L.; González-Labrada, K.; Jáuregui Haza, U.J.; Delmas, H.; Julcour, C. Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)water. Ultrason. Sonochem., 2017, 39, 889-896.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.008] [PMID: 28733020]
[82]
Márquez, G.; Rodríguez, E.M.; Maldonado, M.I.; Álvarez, P.M. Integration of ozone and solar TiO2-photocatalytic oxidation for the degradation of selected pharmaceutical compounds in water and wastewater. Separ. Purif. Tech., 2014, 136, 18-26.
[http://dx.doi.org/10.1016/j.seppur.2014.08.024]
[83]
Naddeo, V.; Landi, M.; Scannapieco, D.; Belgiorno, V. Sonochemical degradation of twenty-three emerging contaminants in urban wastewater. Desalination Water Treat., 2013, 51(34-36), 6601-6608.
[http://dx.doi.org/10.1080/19443994.2013.769696]
[84]
Moreira, N.F.F.; Orge, C.A.; Ribeiro, A.R.; Faria, J.L.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Res., 2015, 87, 87-96.
[http://dx.doi.org/10.1016/j.watres.2015.08.059] [PMID: 26397450]
[85]
Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manage., 2018, 219, 189-207.
[http://dx.doi.org/10.1016/j.jenvman.2018.04.103] [PMID: 29747102]
[86]
Metolina, P.; Lourenço, F.R.; Teixeira, A.C.S.C. UVC- and UVC/H2O2 -Driven nonribosomal peptide antibiotics degradation: Application to zinc bacitracin as a complex emerging contaminant. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2021, 56(1), 97-112.
[http://dx.doi.org/10.1080/10934529.2020.1841499] [PMID: 33174789]
[87]
Ma, E.; Wang, K.; Hu, Z.; Wang, H. Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics. J. Colloid Interface Sci., 2021, 603, 685-694.
[http://dx.doi.org/10.1016/j.jcis.2021.06.142] [PMID: 34225072]
[88]
Ghavi, A.; Bagherian, G.; Rezaei-Vahidian, H. Degradation of paraquat herbicide using hybrid AOP process: statistical optimization, kinetic study, and estimation of electrical energy consumption. Environ. Sci. Eur., 2021, 33(1), 117.
[http://dx.doi.org/10.1186/s12302-021-00555-2]
[89]
Cai, C.; Duan, X.; Xie, X.; Kang, S.; Liao, C.; Dong, J.; Liu, Y.; Xiang, S.; Dionysiou, D.D. Efficient degradation of clofibric acid by heterogeneous catalytic ozonation using CoFe2O4 catalyst in water. J. Hazard. Mater., 2021, 410, 124604.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124604] [PMID: 33277078]
[90]
Oluwole, A.O.; Olatunji, O.S. Photocatalytic degradation of tetracycline in aqueous systems under visible light irridiation using needle-like SnO2 nanoparticles anchored on exfoliated g-C3N4. Environ. Sci. Eur., 2022, 34(1), 5.
[http://dx.doi.org/10.1186/s12302-021-00588-7]
[91]
Zuo, X.; Ma, S.; Wu, Q.; Xiong, J.; He, J.; Ma, C.; Chen, Z. Nanometer CeO2 doped high silica ZSM-5 heterogeneous catalytic ozonation of sulfamethoxazole in water. J. Hazard. Mater., 2021, 411(January), 125072.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125072] [PMID: 33453668]
[92]
Qin, X.; Zhao, K.; Quan, X.; Cao, P.; Chen, S.; Yu, H. Highly efficient metal-free electro-Fenton degradation of organic contaminants on a bifunctional catalyst. J. Hazard. Mater., 2021, 416(January), 125859.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125859] [PMID: 33892384]
[93]
Thamaraiselvan, C.; Bandyopadhyay, D.; Powell, C.D.; Arnusch, C.J. Electrochemical degradation of emerging pollutants via laser-induced graphene electrodes. Adv. Chem. Eng., 2021, 8(May), 100195.
[http://dx.doi.org/10.1016/j.ceja.2021.100195]
[94]
Yang, C.; Fan, Y.; Li, P.; Gu, Q.; Li, X. Freestanding 3-dimensional macro-porous SnO2 electrodes for efficient electrochemical degradation of antibiotics in wastewater. Chem. Eng. J., 2021, 422(January), 130032.
[http://dx.doi.org/10.1016/j.cej.2021.130032]
[95]
Herrmann, J.M.; Guillard, C.; Pichat, P. Heterogeneous photocatalysis: An emerging technology for water treatment. Catal. Today, 1993, 17(1-2), 7-20.
[http://dx.doi.org/10.1016/0920-5861(93)80003-J]
[96]
Guerra, F.; Attia, M.; Whitehead, D.; Alexis, F. Nanotechnology for environmental remediation: Materials and applications. Molecules, 2018, 23(7), 1760.
[http://dx.doi.org/10.3390/molecules23071760] [PMID: 30021974]
[97]
Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. Int., 2020, 27(3), 2522-2565.
[http://dx.doi.org/10.1007/s11356-019-07193-5] [PMID: 31865580]
[98]
Herrmann, J.M.; Matos, J.; Disdier, J.; Guillard, C.; Laine, J.; Malato, S.; Blanco, J. Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal. Today, 1999, 54(2-3), 255-265.
[http://dx.doi.org/10.1016/S0920-5861(99)00187-X]
[99]
Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr Photocatalysis on TiO2 Surfaces: Principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3), 735-758.
[http://dx.doi.org/10.1021/cr00035a013]
[100]
Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep., 2011, 66(6-7), 185-297.
[http://dx.doi.org/10.1016/j.surfrep.2011.01.001]
[101]
Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells, 2006, 90(12), 1773-1787.
[http://dx.doi.org/10.1016/j.solmat.2005.11.007]
[102]
Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C.S.; Zhang, W.; Han, X. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun., 2014, 5(1), 4596.
[http://dx.doi.org/10.1038/ncomms5596] [PMID: 25105845]
[103]
Shaban, M.; Ashraf, A.M.; Abukhadra, M.R. TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci. Rep., 2018, 8(1), 781.
[http://dx.doi.org/10.1038/s41598-018-19172-w] [PMID: 29335510]
[104]
Basnet, P. Larsen, G.K.; Jadeja, R.P.; Hung, Y.C.; Zhao, Y. α-Fe2O3 nanocolumns and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications. ACS Appl. Mater. Interfaces, 2013, 5(6), 2085-2095.
[http://dx.doi.org/10.1021/am303017c] [PMID: 23448200]
[105]
Zhu, Y.; Wang, Y.; Chen, Z.; Qin, L.; Yang, L.; Zhu, L.; Tang, P.; Gao, T.; Huang, Y.; Sha, Z.; Tang, G. Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays. Appl. Catal. A Gen., 2015, 498, 159-166.
[http://dx.doi.org/10.1016/j.apcata.2015.03.035]
[106]
Suárez-Iglesias, O.; Collado, S.; Oulego, P.; Díaz, M. Graphene-family nanomaterials in wastewater treatment plants. Chem. Eng. J., 2017, 313, 121-135.
[http://dx.doi.org/10.1016/j.cej.2016.12.022]
[107]
She, P.; Yin, S.; He, Q.; Zhang, X.; Xu, K.; Shang, Y.; Men, X.; Zeng, S.; Sun, H.; Liu, Z. A self-standing macroporous Au/ZnO/reduced graphene oxide foam for recyclable photocatalysis and photocurrent generation. Electrochim. Acta, 2017, 246, 35-42.
[http://dx.doi.org/10.1016/j.electacta.2017.06.027]
[108]
Li, J.; Zhang, S.; Chen, C.; Zhao, G.; Yang, X.; Li, J.; Wang, X. Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces, 2012, 4(9), 4991-5000.
[http://dx.doi.org/10.1021/am301358b] [PMID: 22950475]
[109]
Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Catal. A Gen., 2013, 462-463, 178-195.
[http://dx.doi.org/10.1016/j.apcata.2013.04.039]
[110]
Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology, 2018, 29(34), 342001.
[http://dx.doi.org/10.1088/1361-6528/aac6ea] [PMID: 29786601]
[111]
Almeida, R.M.; Gonçalves, M.C. Sol – gel process and products. Am. Ceram. Soc., 2021, II, 969-979.
[112]
Mirvakili, S.; Davvaz, B. Applications of the α ⁎ -relation to Krasner hyperrings. J. Algebra, 2012, 362, 145-156.
[http://dx.doi.org/10.1016/j.jalgebra.2012.04.011]
[113]
Hench, L.L. The sol-gel process. Am. Chem. Soc., 1990, 90, 33-72. 0009-2665/90/0790-0031$09.50/0
[114]
Danish, M.S.S.; Estrella, L.L.; Alemaida, I.M.A.; Lisin, A.; Moiseev, N.; Ahmadi, M.; Nazari, M.; Wali, M.; Zaheb, H.; Senjyu, T. Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals, 2021, 11(1), 80.
[http://dx.doi.org/10.3390/met11010080]
[115]
Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnology, 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12951-016-0225-6] [PMID: 27776555]
[116]
Rakshitha, R.; Gurupadayya, B.; Devi, S.H.K.; Pallavi, N. Coprecipitation aided synthesis of bimetallic silver tungstate: A response surface simulation of sunlight-driven photocatalytic removal of 2,4-dichlorophenol. Environ. Sci. Pollut. Res. Int., 2022, 29(39), 59433-59443.
[http://dx.doi.org/10.1007/s11356-022-20062-y] [PMID: 35386079]
[117]
Sanchez-Dominguez, M.; Boutonnet, M.; Solans, C. A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method. J. Nanopart. Res., 2009, 11(7), 1823-1829.
[http://dx.doi.org/10.1007/s11051-009-9660-8]
[118]
Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci., 2005, 10(3-4), 102-110.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[119]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[120]
Kumar, A.; Saxena, A.; De, A.; Shankar, R.; Mozumdar, S. Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions. RSC Advances, 2013, 3(15), 5015-5021.
[http://dx.doi.org/10.1039/c3ra23455j]
[121]
Gopalakrishnan, K.; Joshi, H.M.; Kumar, P.; Panchakarla, L.S.; Rao, C.N.R. Selectivity in the photocatalytic properties of the composites of TiO2 nanoparticles with B- and N-doped graphenes. Chem. Phys. Lett., 2011, 511(4-6), 304-308.
[http://dx.doi.org/10.1016/j.cplett.2011.06.033]
[122]
Feldmann, C.; Jungk, H.O. Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed., 2001, 40(2), 359-362.
[http://dx.doi.org/10.1002/1521-3773(20010119)40:2<359:AID-ANIE359>3.0.CO;2-B]
[123]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[124]
Hussain, M. Synthesis; Characterization and Applications of Metal Oxide Nanostructures, 2014.
[http://dx.doi.org/10.3384/diss.diva-108894]
[125]
Sung, L.P.; Scierka, S.; Baghai-Anaraki, M.; Ho, D.L. Characterization of metal-oxide nanoparticles: Synthesis and dispersion in polymeric coatings. Proc. MRS, 2011, 2002(740), 147-152.
[http://dx.doi.org/10.1557/PROC-740-I5.4]
[126]
Álvarez, P.M.; Jaramillo, J.; López-Piñero, F.; Plucinski, P.K. Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water. Appl. Catal. B, 2010, 100(1-2), 338-345.
[http://dx.doi.org/10.1016/j.apcatb.2010.08.010]
[127]
Belver, C.; Bedia, J.; Rodriguez, J.J. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J. Hazard. Mater., 2017, 322(Pt A), 233-242.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.028] [PMID: 26948509]
[128]
Haider, A.J. Al- Anbari, R.; Sami, H.M.; Haider, M.J. Photocatalytic activity of nickel oxide. J. Mater. Res. Technol., 2019, 8(3), 2802-2808.
[http://dx.doi.org/10.1016/j.jmrt.2019.02.018]
[129]
Ofori, F.A.; Sheikh, F.A.; Appiah-Ntiamoah, R.; Yang, X.; Kim, H. A simple method of electrospun tungsten trioxide nanofibers with enhanced visible-light photocatalytic activity. Nano-Micro Lett., 2015, 7(3), 291-297.
[http://dx.doi.org/10.1007/s40820-015-0042-8] [PMID: 30464974]
[130]
Malefane, M.E.; Feleni, U.; Kuvarega, A.T. Cobalt (II/III) oxide and tungsten (VI) oxide p-n heterojunction photocatalyst for photodegradation of diclofenac sodium under visible light. J. Environ. Chem. Eng., 2020, 8(2), 103560.
[http://dx.doi.org/10.1016/j.jece.2019.103560]
[131]
Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front Chem., 2017, 5(October), 78.
[http://dx.doi.org/10.3389/fchem.2017.00078] [PMID: 29075626]
[132]
Nguyen, N.H.A. Padil, V.V.T.; Slaveykova, V.I.; Černík, M.; Ševců A. Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Res. Lett., 2018, 13(13), 159.
[http://dx.doi.org/10.1186/s11671-018-2575-5]
[133]
Naseem, T.; Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environ. Chem. Ecotoxicol., 2021, 3, 59-75.
[http://dx.doi.org/10.1016/j.enceco.2020.12.001]
[134]
Asri-Rezaei, S.; Dalir-Naghadeh, B.; Nazarizadeh, A.; Noori-Sabzikar, Z. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J. Trace Elem. Med. Biol., 2017, 42(February), 129-141.
[http://dx.doi.org/10.1016/j.jtemb.2017.04.013] [PMID: 28595785]
[135]
Pan, S.; Jeevanandam, J.; Acquah, C.; Tan, K.X.; Udenigwe, C.C.; Danquah, M.K. Drug Delivery Systems for Cardiovascular Ailments; Elsevier Inc., 2021.
[http://dx.doi.org/10.1016/B978-0-12-819838-4.00019-5]
[136]
Nikolova, M.P.; Chavali, M.S. Metal oxide nanoparticles as biomedical materials. Biomimetics, 2020, 5(2), 27.
[http://dx.doi.org/10.3390/biomimetics5020027] [PMID: 32521669]
[137]
Farré, M.; Barceló, D. Introduction to the analysis and risk of nanomaterials in environmental and food samples. Compr. Anal. Chem., 2012, 59, 1-32.
[http://dx.doi.org/10.1016/B978-0-444-56328-6.00001-3]
[138]
Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci., 2019, 272, 102009.
[http://dx.doi.org/10.1016/j.cis.2019.102009] [PMID: 31445351]
[139]
Shukla, S.; Pandey, H.; Singh, P.; Tiwari, A.K.; Baranwal, V.; Pandey, A.C. Synergistic impact of photocatalyst and dopants on pharmaceutical-polluted waste water treatment: A review. Environ. Pollut. Bioavail., 2021, 33(1), 347-364.
[http://dx.doi.org/10.1080/26395940.2021.1987843]
[140]
Li, X.; Shen, R.; Ma, S.; Chen, X.; Xie, J. Graphene-based heterojunction photocatalysts. Appl. Surf. Sci., 2018, 430, 53-107.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.194]
[141]
Mahlambi, M.M.; Ngila, C.J.; Mamba, B.B. Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanoparticles-A review. J. Nanomater., 2015, 2015, 1-29.
[http://dx.doi.org/10.1155/2015/790173]
[142]
Zhang, J.; Wu, Y.; Xing, M.; Leghari, S.A.K.; Sajjad, S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci., 2010, 3(6), 715-726.
[http://dx.doi.org/10.1039/b927575d]
[143]
Theerthagiri, J.; Chandrasekaran, S.; Salla, S.; Elakkiya, V.; Senthil, R.A.; Nithyadharseni, P.; Maiyalagan, T.; Micheal, K.; Ayeshamariam, A.; Arasu, M.V.; Al-Dhabi, N.A.; Kim, H-S. Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation. J. Solid State Chem., 2018, 267, 35-52.
[http://dx.doi.org/10.1016/j.jssc.2018.08.006]
[144]
Velempini, T.; Prabakaran, E.; Pillay, K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water-A review. Mater. Today Chem., 2021, 19, 100380.
[http://dx.doi.org/10.1016/j.mtchem.2020.100380]
[145]
Bamwenda, G.R.; Arakawa, H. The visible light induced photocatalytic activity of tungsten trioxide powders. Appl. Catal. A Gen., 2001, 210(1-2), 181-191.
[http://dx.doi.org/10.1016/S0926-860X(00)00796-1]
[146]
Farzaneh, F.; Haghshenas, S. Facile synthesis and characterization of nanoporous NiO with folic acid as photodegredation catalyst for congo red. Mater. Sci. Appl., 2012, 3(10), 697-703.
[http://dx.doi.org/10.4236/msa.2012.310102]
[147]
Akbari, A.; Sabouri, Z.; Hosseini, H.A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg. Chem. Commun., 2020, 115(March), 107867.
[http://dx.doi.org/10.1016/j.inoche.2020.107867]

© 2025 Bentham Science Publishers | Privacy Policy