Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Review on the Application of Nanofluids in Enhanced Oil Recovery

Author(s): Manjakuppam Malika and Shriram Sonawane*

Volume 20, Issue 3, 2024

Published on: 14 March, 2023

Page: [328 - 338] Pages: 11

DOI: 10.2174/1573413719666230206140415

Price: $65

Abstract

Oil mobility has been a significant issue since the recovery of a heavy crude reservoir. It is determined by two factors: oil rheological properties and penetrability. Nanofluids (NFs) are a distinct class of engineered fluids characterized by the dispersion of nanoparticles ranging in size from 1 to 100 nanometers (nm) into a working fluid. They are divided into groups based on physicochemical characteristics, including nanoparticle morphology, and thermal and rheological properties. The well-known nanofluids composed of metal (e.g., ZrO2) and ceramic (e.g., SiO2) had the best physicochemical performance in terms of oil mobility. This chapter examines the inundation of metal and nonmetal based nanofluids as a new enhanced oil extraction (EOR) method for extracting primary and secondary oil from more than 45% of confined reservoir fluids. Furthermore, new developments in the utilization of these materials on EOR approaches to combat significant interfacial adhesion across sandstone and fluid interfaces are summarized.

Graphical Abstract

[1]
Varjani, S.; Joshi, R.; Srivastava, V.K.; Ngo, H.H.; Guo, W. Treatment of wastewater from petroleum industry: Current practices and perspectives. Environ. Sci. Pollut. Res. Int., 2020, 27(22), 27172-27180.
[http://dx.doi.org/10.1007/s11356-019-04725-x] [PMID: 30868465]
[2]
Zhang, K.; Li, Y.; Hong, A.; Wu, K.; Jing, G.; Torsæter, O.; Chen, S.; Chen, Z. Nanofluid alternating gas for tight oil exploitation. Soc. Pet. Eng. SPE/IATMI Asia Pacific Oil Gas Conf. Exhib. APOGCE 2015, 2015, pp. 1-17.
[http://dx.doi.org/10.2118/176241-MS]
[3]
Zhou, S.; Chen, Z.; Ma, W.; Li, S.; Li, C.; Wu, J.; Yang, X. Effect of K2CO3 as an additive agent on the carbothermic reduction process of silicon production. Silicon, 2020, 12(7), 1575-1584.
[http://dx.doi.org/10.1007/s12633-019-00254-x]
[4]
Bhanvase, B.A.; Barai, D.P.; Sonawane, S.H.; Kumar, N.; Sonawane, S.S. Intensified Heat Transfer Rate with the use of Nanofluids; Elsevier Inc., 2018.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00042-0]
[5]
Kumar, N.; Sonawane, S.S.; Sonawane, S.H. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int. Commun. Heat Mass Transf., 2018, 90, 1-10.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.10.001]
[6]
Esmaeili, A. Applications of nanotechnology in oil and gas industry importance of nanotechnology in industry nanotechnology and gas industry. Nanotechnology, 2009, 1-6.
[7]
Chandane, V.S.; Rathod, A.P.; Wasewar, K.L.; Sonawane, S.S. Synthesis of cenosphere supported heterogeneous catalyst and its performance in esterification reaction. Chem. Eng. Commun., 2018, 205(2), 238-248.
[http://dx.doi.org/10.1080/00986445.2017.1384922]
[8]
Zakaria, M.F.; Husein, M.; Hareland, G. Novel nanoparticle-based drilling fluid with improved characteristics. Soc. Pet. Eng. - SPE Int. Oilf. Nanotechnol. Conf, 2012, 2012, pp. 232-237.
[http://dx.doi.org/10.2118/1112-0100-JPT]
[9]
Nishant, K.; Sonawane Shriram, S.S. Influence of CuO and TiO2 nanoparticles in enhancing the overall heat transfer coefficient and thermal conductivity of water and ethylene glycol based nanofluids. Res. J. Chem. Environ., 2016, 20, 24-30.
[10]
Sonawane, S.S.; Juwar, V. Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl. Therm. Eng., 2016, 109, 121-129.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.08.066]
[11]
Kumar, N.; Sonawane, S.S. Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger. Int. Commun. Heat Mass Transf., 2016, 78, 277-284.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.09.009]
[12]
Zheng, J.; Aziz, T.; Fan, H.; Haq, F.; Ullah Khan, F.; Ullah, R.; Ullah, B.; Saeed Khattak, N.; Wei, J. Synergistic impact of cellulose nanocrystals with multiple resins on thermal and mechanical behavior. Z. Phys. Chem., 2021, 235(10), 1247-1262.
[http://dx.doi.org/10.1515/zpch-2020-1697]
[13]
Sarve, A.N.; Varma, M.N.; Sonawane, S.S. Ultrasound assisted two-stage biodiesel synthesis from non-edible Schleichera triguga oil using heterogeneous catalyst: Kinetics and thermodynamic analysis. Ultrason. Sonochem., 2016, 29, 288-298.
[http://dx.doi.org/10.1016/j.ultsonch.2015.09.016] [PMID: 26585009]
[14]
Blanton, B. Enhanced oil recovery using silica nanoparticles : Sandpack flooding experiments in a low salinity environment. 2019.
[15]
Alomair, O.; Abdullah Alajmi, A. Experimental Study for Enhancing Heavy Oil Recovery by Nanofluid Followed by Steam Flooding NFSF. Paper presented at the SPE Heavy Oil Conference and Exhibition, Kuwait City, Kuwait, December 2016.
[http://dx.doi.org/10.2118/184117-MS]
[16]
Malika, M.; Rao, C.V.; Das, R.K.; Giri, A.S.; Golder, A.K. Evaluation of bimetal doped TiO2 in dye fragmentation and its comparison to mono-metal doped and bare catalysts. Appl. Surf. Sci., 2016, 368, 316-324.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.230]
[17]
Thakur, P.P.; Sonawane, S.S.; Sonawane, S.H. Nano-particle-enhanced ionic liquids (NEIL) for the wastewater treatment. In: Novel Approaches Towards Wastewater Treatment and Resource Recovery Technologies; Elsevier, 2022; pp. 325-338. ISBN 9780323906272
[http://dx.doi.org/10.1016/B978-0-323-90627-2.00020-4]
[18]
Sonawane, S.S.; Malika, M.; Thakur, P.P.; Sonawane, S.H. Carbon nano tubes (CNT) based hybrid nano fluids for the wastewater treatment plants in the industry. In: Novel Approaches Towards Wastewater Treatment and Resource Recovery Technologies; Elsevier, 2022; pp. 313-324. ISBN 9780323906272
[http://dx.doi.org/10.1016/B978-0-323-90627-2.00021-6]
[19]
Malika, M.; Sonawane, S.S. Review on CNT based hybrid nanofluids performance in the nano lubricant application. J. Indian Assoc. Environ. Manag., 2021, 41, 1-16.
[20]
Mohammadi, M.; Akbari, M.; Fakhroueian, Z.; Bahramian, A.; Azin, R.; Arya, S. Inhibition of asphaltene precipitation by TiO2, SiO2, and ZrO2 nanofluids. Energy, 2011, 25, 3150-3156.
[21]
William, J.K.M.; Ponmani, S.; Samuel, R.; Nagarajan, R.; Sangwai, J.S. Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids. J. Petrol. Sci. Eng., 2014, 117, 15-27.
[http://dx.doi.org/10.1016/j.petrol.2014.03.005]
[22]
Wang, D.; Tian, B.; Cao, M.; Sun, Y.; Li, S.; Lu, T.; Wang, J. Mechanism discussion of nanofluid for enhanced oil recovery: Adhesion work evaluation and direct force measurements between nanoparticles and surfaces. Energy Fuels, 2018, 32(11), 11390-11397.
[http://dx.doi.org/10.1021/acs.energyfuels.8b02825]
[23]
Vryzas, Z.; Kelessidis, V.C. Nano-based drilling fluids: A review. Energies, 2017, 10(4), 540.
[http://dx.doi.org/10.3390/en10040540]
[24]
Aziz, T.; Fan, H.; Khan, F.U.; Haroon, M.; Cheng, L. Modified silicone oil types, mechanical properties and applications. Polym. Bull., 2019, 76(4), 2129-2145.
[http://dx.doi.org/10.1007/s00289-018-2471-2]
[25]
Thakur, P.; Uslu, H.; Sonawane, S.S. Experimental investigation of CO2 absorption process using nanofluids. In: Applications of Nanofluids in Chemical and Bio-medical Process Industry; Elsevier, 2022; pp. 227-250. ISBN 9780323905640
[http://dx.doi.org/10.1016/B978-0-323-90564-0.00001-5]
[26]
Sonawane, S.S.; Thakur, P.; Chaudhary, R.G. Thermo-physical and optical properties of the nanofluids. In: Applications of Nanofluids in Chemical and Bio-medical Process Industry; Elsevier, 2022; pp. 27-52. ISBN 9780323905640
[http://dx.doi.org/10.1016/B978-0-323-90564-0.00006-4]
[27]
Malika, M.; Sonawane, S.S. MSG extraction using silicon carbide-based emulsion nanofluid membrane: Desirability and RSM optimisation. Colloids Surf. A Physicochem. Eng. Asp., 2022, 651, 129594.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129594]
[28]
Sonawane, S.S.; Thakur, P.P.; Malika, M.; Ali, H.M. Recent advances in the applications of green synthesized nanoparticle based nanofluids for the environmental remediation. Curr. Pharm. Biotechnol., 2023, 24(1), 188-198.
[http://dx.doi.org/10.2174/1389201023666220411114620] [PMID: 35410597]
[29]
Ramezanpour, M.; Siavashi, M. Application of SiO2–water nanofluid to enhance oil recovery. J. Therm. Anal. Calorim., 2019, 135(1), 565-580.
[http://dx.doi.org/10.1007/s10973-018-7156-4]
[30]
Ali, J.A.; Kolo, K.; Manshad, A.K.; Mohammadi, A.H. Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egyptian. J. Petrol., 2018, 27(4), 1371-1383.
[http://dx.doi.org/10.1016/j.ejpe.2018.09.006]
[31]
Roustaei, A.; Saffarzadeh, S.; Mohammadi, M. An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs. Egyptian. J. Petrol., 2013, 22(3), 427-433.
[http://dx.doi.org/10.1016/j.ejpe.2013.06.010]
[32]
Joshi, D.; Maurya, N.K.; Kumar, N.; Mandal, A. Experimental investigation of silica nanoparticle assisted Surfactant and polymer systems for enhanced oil recovery. J. Petrol. Sci. Eng., 2022, 216, 110791.
[http://dx.doi.org/10.1016/j.petrol.2022.110791]
[33]
Díez-Pascual, M.; Khoramian, R.; Kharrat, R.; Pourafshary, P.; Golshokooh, S.; Hashemi, F. Spontaneous imbibition oil recovery by natural surfactant/nanofluid: An experimental and theoretical study. Nanomaterials, 2022, 12(20), 3563.
[http://dx.doi.org/10.3390/nano12203563]
[34]
Rezk, M.Y.; Allam, N.K. Unveiling the synergistic effect of ZnO nanoparticles and surfactant colloids for enhanced oil recovery. Colloid Interface Sci. Commun., 2019, 29, 33-39.
[http://dx.doi.org/10.1016/j.colcom.2019.01.004]
[35]
Chen, C.; Wang, S.; Kadhum, M.J.; Harwell, J.H.; Shiau, B.J. Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study. Fuel, 2018, 222, 561-568.
[http://dx.doi.org/10.1016/j.fuel.2018.03.002]
[36]
Singh, R.; Mohanty, K.K. Foams stabilized by in situ surface-activated nanoparticles in bulk and porous media. SPE J., 2016, 21(1), 121-130.
[http://dx.doi.org/10.2118/170942-PA]
[37]
Cao, J.; Chen, Y.; Zhang, J.; Wang, X.; Wang, J.; Shi, C.; Ning, Y.; Wang, X. Preparation and application of nanofluid flooding based on polyoxyethylated graphene oxide nanosheets for enhanced oil recovery. Chem. Eng. Sci., 2022, 247, 117023.
[http://dx.doi.org/10.1016/j.ces.2021.117023]
[38]
Li, X.; Zhang, X.; Zhang, Y.; Su, Y.; Hu, Y.; Huang, H.; Liu, Y.; Liu, M. Polystyrene nanofluids for enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp., 2022, 649, 129399.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129399]
[39]
Izadi, N.; Nasernejad, B. Newly engineered alumina quantum dot-based nanofluid in enhanced oil recovery at reservoir conditions. Sci. Rep., 2022, 12(1), 9505.
[http://dx.doi.org/10.1038/s41598-022-12387-y] [PMID: 35680935]
[40]
Dehaghani, A.H.S.; Daneshfar, R. How much would silica nanoparticles enhance the performance of low-salinity water flooding? Petrol. Sci., 2019, 16(3), 591-605.
[http://dx.doi.org/10.1007/s12182-019-0304-z]
[41]
Sircar, A.; Rayavarapu, K.; Bist, N.; Yadav, K.; Singh, S. Applications of nanoparticles in enhanced oil recovery. Petrol. Res., 2022, 7(1), 77-90.
[http://dx.doi.org/10.1016/j.ptlrs.2021.08.004]
[42]
Li, C.; Fan, H.; Aziz, T.; Bittencourt, C.; Wu, L.; Wang, D.Y.; Dubois, P. Biobased epoxy resin with low electrical permissivity and flame retardancy: From environmental friendly high-throughput synthesis to properties. ACS Sustain. Chem.& Eng., 2018, 6(7), 8856-8867.
[http://dx.doi.org/10.1021/acssuschemeng.8b01212]
[43]
Sharma, T.; Iglauer, S.; Sangwai, J.S. Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery. Ind. Eng. Chem. Res., 2016, 55(48), 12387-12397.
[http://dx.doi.org/10.1021/acs.iecr.6b03299]
[44]
Aziz, T.; Fan, H.; Khan, F.U.; Ullah, R.; Haq, F.; Iqbal, M.; Ullah, A. Synthesis of carboxymethyl starch-bio-based epoxy resin and their impact on mechanical properties. Z. Phys. Chem., 2020, 234(11-12), 1759-1769.
[http://dx.doi.org/10.1515/zpch-2019-1434]
[45]
Malika, M.; Sonawane, S.S. Ecological optimization and LCA of TiO2 -SiC/water hybrid nano fluid in a shell and tube heat exchanger by ANN, Proc IMechE Part E J Process. Mech. Eng., 2022, 1-11.
[http://dx.doi.org/10.1177/09544089221093304]
[46]
Malika, M.; Sonawane, S.S. The sono-photocatalytic performance of a Fe2O3 coated TiO2 based hybrid nanofluid under visible light via RSM. Colloids Surf. A Physicochem. Eng. Asp., 2022, 641, 128545.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128545]
[47]
Sonawane, S.S.; Charde, S.J.; Malika, M.; Thakur, P. Artificial neural network model for prediction of viscoelastic behaviour of polycarbonate composites. J. Appl. Res. Technol., 2022, 20(2), 188-202.
[http://dx.doi.org/10.22201/icat.24486736e.2022.20.2.1101]
[48]
Agi, A.; Junin, R.; Gbadamosi, A. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications. Int. Nano Lett., 2018, 8(2), 49-77.
[http://dx.doi.org/10.1007/s40089-018-0237-3]
[49]
Malika, M.; Sonawane, S.S. Statistical modelling for the Ultrasonic photodegradation of Rhodamine B dye using aqueous based Bi-metal doped TiO2 supported montmorillonite hybrid nanofluid via RSM. Sustain. Energy Technol. Assess., 2021, 44, 100980.
[http://dx.doi.org/10.1016/j.seta.2020.100980]
[50]
Khedkar, R.S.; Kiran, A.S.; Sonawane, S.S.; Wasewar, K.; Umre, S.S. Thermo physical characterization of paraffin based Fe3O4 nanofluids. Procedia Eng., 2013, 51, 342-346.
[http://dx.doi.org/10.1016/j.proeng.2013.01.047]
[51]
Al-Anssari, S.; Barifcani, A.; Wang, S.; Maxim, L.; Iglauer, S. Wettability alteration of oil-wet carbonate by silica nanofluid. J. Colloid Interface Sci., 2016, 461, 435-442.
[http://dx.doi.org/10.1016/j.jcis.2015.09.051] [PMID: 26414426]
[52]
Hendraningrat, L.; Torsæter, O. Unlocking the potential of metal oxides nanoparticles to enhance the oil recovery. Proc. Annu. Offshore Technol. Conf., 2014, pp. 211-222.
[http://dx.doi.org/10.4043/24696-MS]
[53]
Devendiran, D.K.; Amirtham, V.A. A review on preparation, characterization, properties and applications of nanofluids. Renew. Sustain. Energy Rev., 2016, 60, 21-40.
[http://dx.doi.org/10.1016/j.rser.2016.01.055]
[54]
Sommers, A.D.; Yerkes, K.L. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J. Nanopart. Res., 2010, 12(3), 1003-1014.
[http://dx.doi.org/10.1007/s11051-009-9657-3]
[55]
Mansouri, M.; Nakhaee, A.; Pourafshary, P. Effect of SiO2 nanoparticles on fines stabilization during low salinity water flooding in sandstones. J. Petrol. Sci. Eng., 2019, 174, 637-648.
[http://dx.doi.org/10.1016/j.petrol.2018.11.066]
[56]
Youssif, M.I.; El-Maghraby, R.M.; Saleh, S.M.; Elgibaly, A. Silica nanofluid flooding for enhanced oil recovery in sandstone rocks. Egyptian. J. Petrol., 2018, 27(1), 105-110.
[http://dx.doi.org/10.1016/j.ejpe.2017.01.006]
[57]
Zabala, R.; Franco, C.A.; Cortés, F.B. Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test. Paper presented at the SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA, April 2016.
[http://dx.doi.org/10.2118/179677-MS]
[58]
Wasan, D.; Nikolov, A.; Kondiparty, K. The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure. Curr. Opin. Colloid Interface Sci., 2011, 16(4), 344-349.
[http://dx.doi.org/10.1016/j.cocis.2011.02.001]
[59]
Li, Z.X.; Khaled, U.; Al-Rashed, A.A.A.A.; Goodarzi, M.; Sarafraz, M.M.; Meer, R. Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int. J. Heat Mass Transf., 2020, 149, 119124.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119124]
[60]
Zhang, H.; Nikolov, A.; Wasan, D. Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy Fuels, 2014, 28(5), 3002-3009.
[http://dx.doi.org/10.1021/ef500272r]
[61]
Hou, J.; Du, J.; Sui, H.; Sun, L. A review on the application of nanofluids in enhanced oil recovery. Front. Chem. Sci. Eng., 2022, 16(8), 1165-1197.
[http://dx.doi.org/10.1007/s11705-021-2120-4]
[62]
Aadland, R.C.; Jakobsen, T.D.; Heggset, E.B.; Long-Sanouiller, H.; Simon, S.; Paso, K.G.; Syverud, K.; Torsæter, O. High-temperature core flood investigation of nanocellulose as a green additive for enhanced oil recovery. Nanomaterials (Basel), 2019, 9(5), 665.
[http://dx.doi.org/10.3390/nano9050665] [PMID: 31035570]
[63]
Singh, P.K.; Sharma, K. Mechanical and viscoelastic properties of in situ amine functionalized multiple layer grpahene/epoxy nanocomposites. Curr. Nanosci., 2018, 14(3), 252-262.
[http://dx.doi.org/10.2174/1573413714666171220144549]
[64]
Esfe, M.H.; Wongwises, S.; Rejvani, M. Prediction of thermal conductivity of carbon nanotube-eg nanofluid using experimental data by ANN. Curr. Nanosci., 2017, 13(3), 324-329.
[http://dx.doi.org/10.2174/1573413713666161213114458]
[65]
Malika, M.; Ashokkumar, M.; Sonawane, S.S. Mathematical and numerical investigations of nanofluid applications in the industrial heat exchangers. In: Applications of Nanofluids in Chemical and Bio-medical Process Industry; Elsevier, 2022; pp. 53-78. ISBN 9780323905640
[http://dx.doi.org/10.1016/B978-0-323-90564-0.00010-6]
[66]
Malika, M.; Sonawane, S.S. Experimental investigation of nanofluid in industrial heat exchangers. In: Applications of Nanofluids in Chemical and Bio-medical Process Industry; Elsevier, 2022; pp. 79-106. ISBN 9780323905640
[http://dx.doi.org/10.1016/B978-0-323-90564-0.00009-X]
[67]
Hamouda, A.A.; Gomari, K.A.R. Influence of temperature on wettability alteration of carbonate reservoirs. Proc. - SPE Symp. Improv. Oil Recover, 2006, 2, p. 848-859.
[http://dx.doi.org/10.2118/99848-MS]
[68]
Malika, M.; Sonawane, S.S. The sono-photocatalytic performance of a novel water based Ti+4 coated Al(OH)3 -MWCNT’s hybrid nanofluid for dye fragmentation. Int. J. Chem. React. Eng., 2021, 19(9), 901-912.
[http://dx.doi.org/10.1515/ijcre-2021-0092]
[69]
Malika, M.; Sonawane, S.S. Application of RSM and ANN for the prediction and optimization of thermal conductivity ratio of water based Fe2O3 coated SiC hybrid nanofluid. Int. Commun. Heat Mass Transf., 2021, 126, 105354.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105354]
[70]
Malika, M.; Sonawane, S.S. Low-frequency ultrasound assisted synthesis of an aqueous aluminium hydroxide decorated graphitic carbon nitride nanowires based hybrid nanofluid for the photocatalytic H2 production from Methylene blue dye. Sustain. Energy Technol. Assess., 2021, 44, 100979.
[http://dx.doi.org/10.1016/j.seta.2020.100979]
[71]
Sonawane, S.; Thakur, P.; Sonawane, S.H.; Bhanvase, B.A. Nanomaterials for membrane synthesis: Introduction, mechanism, and challenges for wastewater treatment. In: Handbook of Nanomaterials for Wastewater Treatment; Elsevier, 2021; pp. 537-553.
[http://dx.doi.org/10.1016/B978-0-12-821496-1.00009-X]
[72]
Vijay, J.; Shriram, S.S. Investigations on rheological behaviour of paraffin based Fe3O4 nanofluids and its modelling. Res. J. Chem. Environ., 2015, 19, 16-23.
[73]
Khedkar, R.S.; Kiran, A.S.; Sonawane, S.S.; Wasewar, K.L.; Umare, S.S. Thermo-physical properties measurement of water based Fe3O4 nanofluids. Carbon - Sci. Technol., 2013, 5, 187-191.
[74]
Wu, D.; Zhu, H.; Wang, L.; Liu, L. Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr. Nanosci., 2009, 5(1), 103-112.
[http://dx.doi.org/10.2174/157341309787314548]
[75]
Mekhamer, W.K. The colloidal stability of raw bentonite deformed mechanically by ultrasound. J. Saudi Chem. Soc., 2010, 14(3), 301-306.
[http://dx.doi.org/10.1016/j.jscs.2010.04.013]
[76]
Friedheim, J.; Young, S.; De Stefano, G.; Lee, J.; Guo, Q. Nanotechnology for oilfield applications - Hype or reality? Soc. Pet. Eng. - SPE Int. Oilf. Nanotechnol. Conf., 2012, 2012, pp. 304-310.
[http://dx.doi.org/10.2118/157032-MS]
[77]
Li, K.; Hou, B.; Wang, L.; Cui, Y. Application of carbon nanocatalysts in upgrading heavy crude oil assisted with microwave heating. Nano Lett., 2014, 14(6), 3002-3008.
[http://dx.doi.org/10.1021/nl500484d] [PMID: 24787900]
[78]
Yakasai, F.; Jaafar, M.Z.; Bandyopadhyay, S.; Agi, A. Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms. J. Ind. Eng. Chem., 2021, 93, 138-162.
[http://dx.doi.org/10.1016/j.jiec.2020.10.017]
[79]
Suleimanov, B.A.; Ismailov, F.S.; Veliyev, E.F. Nanofluid for enhanced oil recovery. J. Petrol. Sci. Eng., 2011, 78(2), 431-437.
[http://dx.doi.org/10.1016/j.petrol.2011.06.014]
[80]
Khademolhosseini, R.; Jafari, A.; Mousavi, S.M.; Manteghian, M. Investigation of synergistic effects between silica nanoparticles, biosurfactant and salinity in simultaneous flooding for enhanced oil recovery. RSC Advances, 2019, 9(35), 20281-20294.
[http://dx.doi.org/10.1039/C9RA02039J] [PMID: 35514690]
[81]
Giraldo, J.; Benjumea, P.; Lopera, S.; Cortés, F.B.; Ruiz, M.A. Wettability alteration of sandstone cores by alumina-based nanofluids. Energy Fuels, 2013, 27(7), 3659-3665.
[http://dx.doi.org/10.1021/ef4002956]
[82]
Li, D.; Hong, B.; Fang, W.; Guo, Y.; Lin, R. Preparation of well-dispersed silver nanoparticles for oil-based nanofluids. Ind. Eng. Chem. Res., 2010, 49(4), 1697-1702.
[http://dx.doi.org/10.1021/ie901173h]
[83]
Sun, X.; Zhang, Y.; Chen, G.; Gai, Z.; Wang, M. Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies, 2017, 10(3), 345.
[http://dx.doi.org/10.3390/en10030345]
[84]
Al-Garah, N.H.; Rashid, F.L.; Hadi, A.; Hashim, A. Synthesis and characterization of novel (organic-inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. Journal of Bionanoscience, 2018, 12(3), 336-340.
[http://dx.doi.org/10.1166/jbns.2018.1538]
[85]
Nicolini, J.V.; Ferraz, H.C.; Borges, C.P. Effect of seawater ionic composition modified by nanofiltration on enhanced oil recovery in Berea sandstone. Fuel, 2017, 203, 222-232.
[http://dx.doi.org/10.1016/j.fuel.2017.04.120]
[86]
Sofla, J.D.S.; James, L.A.; Zhang, Y. Insight into the stability of hydrophilic silica nanoparticles in seawater for enhanced oil recovery implications. Fuel, 2018, 216, 559-571.
[http://dx.doi.org/10.1016/j.fuel.2017.11.091]
[87]
Wong, K.V.; De Leon, O. Applications of nanofluids: Current and future. Adv. Mech. Eng., 2010, 2, 519659.
[http://dx.doi.org/10.1155/2010/519659]
[88]
Huminic, G.; Huminic, A. A numerical approach on hybrid nanofluid behavior in laminar duct flow with various cross sections. J. Therm. Anal. Calorim., 2020, 140(5), 2097-2110.
[http://dx.doi.org/10.1007/s10973-019-08990-3]
[89]
Wu, P.; Nikolov, A.D.; Wasan, D.T. Nanofluid structural forces alter solid wetting, enhancing oil recovery. Colloids and Interfaces, 2022, 6(2), 33.
[http://dx.doi.org/10.3390/colloids6020033]
[90]
Ibrahim, H.; Sazali, N.; Jamaludin, A.S.; Salleh, W.N.; Othman, M.H. A Brief Review on Utilization of Hybrid Nanofluid in Heat Exchangers: Theoretical and Experimental. In: iMEC-APCOMS 2019: Proceedings of the 4th International Manufacturing Engineering Conference and The 5th Asia Pacific Conference on Manufacturing Systems; Springer, Singapore, 2020; pp. 416-422.
[http://dx.doi.org/10.1007/978-981-15-0950-6_63]
[91]
Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng., 2020, 174, 115259.
[http://dx.doi.org/10.1016/j.applthermaleng.2020.115259]
[92]
Minea, A.A. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. Int. J. Heat Mass Transf., 2017, 104, 852-860.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.012]
[93]
Goldanlou, S.A.; Sepehrirad, M.; Papi, M.; Hussein, A.K.; Afrand, M.; Rostami, S. Heat transfer of hybrid nanofluid in a shell and tube heat exchanger equipped with blade-shape turbulators. J. Therm. Anal. Calorim., 2021, 143(2), 1689-1700.
[http://dx.doi.org/10.1007/s10973-020-09893-4]
[94]
Malika, M.; Sonawane, S.S. Effect of nanoparticle mixed ratio on stability and thermo-physical properties of CuO-ZnO/water-based hybrid nanofluid. J. Indian Chem. Soc., 2020, 97, 414-419.
[95]
Thakur, P.P.; Khapane, T.S.; Sonawane, S.S. Comparative performance evaluation of fly ash-based hybrid nanofluids in microchannel-based direct absorption solar collector. J. Therm. Anal. Calorim., 2021, 143, 1713-1726.
[http://dx.doi.org/10.1007/s10973-020-09884-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy