Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Formulation of Thiamine-Laden Chitosan Nanosphere for Nutraceutical Application

Author(s): Harsimran Kaur*, Mandeep Kaur, Preeti Rajesh and Harsimrat Kaur

Volume 19, Issue 8, 2023

Published on: 12 May, 2023

Article ID: e310323215322 Pages: 8

DOI: 10.2174/1573407219666230331100611

Price: $65

Abstract

Introduction: Thiamine, often known as vitamin B1, is a water-soluble vitamin that can be added to food or purchased as a supplement. It plays an important role in many cellular processes and is crucial for overall human health. The synthesis and characterization of Thiamineencapsulated chitosan nanospheres for sustained release and improved bioavailability is the major objective of this study.

Materials and Methods: The chitosan nanospheres were prepared using sodium tripolyphosphate (TPP) as cross-linking agent.

Results: The ionic interactions between chitosan and TPP produced small-sized stable nanospheres for the incorporation of Thiamine. The conjugate was characterized through a UV spectrophotometer and Fourier Transform Infrared spectroscopy (FTIR). The size and morphology were determined using Zetasizer and Scanning Electron Microscopy (SEM). An average size of 504 nm size was obtained for the nanospheres. The in vitro release studies were performed for 30 days to assess the sustained release of thiamine from nanoencapsulates. Cellular uptake of the thiamine-encapsulated chitosan nanoparticles was studied in the human cervical cancer cell lines (HeLa) and mus-musculus 3T3 L1 cell lines.

Conclusion: This study is an early design and development of a technology for encapsulating water-soluble vitamins in biodegradable polymers, which can be examined for the vitamin's long-term bioavailability.

Graphical Abstract

[1]
Hardy, G. Nutraceuticals and functional foods: Introduction and meaning. Nutrition, 2000, 16(7-8), 688-689.
[http://dx.doi.org/10.1016/S0899-9007(00)00332-4] [PMID: 10906598]
[2]
Sekhon, B.S. Food nanotechnology - an overview. Nanotechnol. Sci. Appl., 2010, 3, 1-15.
[PMID: 24198465]
[3]
Onyeaka, H.; Passaretti, P.; Miri, T.; Al-Sharify, Z.T.; Al, S. The safety of nanomaterials in food production and packaging. Curr. Res. Food Sci., 2022, 5, 763-774.
[http://dx.doi.org/10.1016/j.crfs.2022.04.005] [PMID: 35520272]
[4]
DiNicolantonio, J.J.; Niazi, A.K.; Lavie, C.J.; O’Keefe, J.H.; Ventura, H.O. Thiamine supplementation for the treatment of heart failure: A review of the literature. Congest. Heart Fail., 2013, 19(4), 214-222.
[http://dx.doi.org/10.1111/chf.12037] [PMID: 23910704]
[5]
Sriram, K.; Manzanares, W.; Joseph, K. Thiamine in nutrition therapy. Nutr. Clin. Pract., 2012, 27(1), 41-50.
[http://dx.doi.org/10.1177/0884533611426149] [PMID: 22223666]
[6]
Cho, Y.; Kim, C.; Kim, N.; Kim, C.; Park, B. Some cases in applications of nanotechnology to food and agricultural systems. Biochip J., 2008, 2(3), 183-185.
[7]
Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M. Covasa, M. Applications of biopolymers for drugs and probiotics delivery. Polymers, 2021, 13(16), 2729.
[http://dx.doi.org/10.3390/polym13162729] [PMID: 34451268]
[8]
Misra, S.; Pandey, P.; Mishra, H.N. Novel approaches for coencapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends Food Sci. Technol., 2021, 109, 340-351.
[http://dx.doi.org/10.1016/j.tifs.2021.01.039]
[9]
Song, J.; Winkeljann, B.; Lieleg, O. Biopolymer-based coatings: Promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Adv. Mater. Interfaces, 2020, 7(17), 2000850.
[http://dx.doi.org/10.1002/admi.202000850]
[10]
Calvo, P.; Remuñan-López, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res., 1997, 14(10), 1431-1436.
[http://dx.doi.org/10.1023/A:1012128907225] [PMID: 9358557]
[11]
Colonna, C.; Dorati, R.; Conti, B.; Modena, T.; Biggiogera, M.; Spedito, A.; Genta, I. Induction of an in vitro reversible hypometabolism through chitosan-based nanoparticles. J. Microencapsul., 2011, 28(4), 229-239.
[http://dx.doi.org/10.3109/02652048.2011.557746] [PMID: 21545314]
[12]
Yin, W.; Yates, M.Z. Encapsulation and sustained release from biodegradable microcapsules made by emulsification/freeze drying and spray/freeze drying. J. Colloid Interface Sci., 2009, 336(1), 155-161.
[http://dx.doi.org/10.1016/j.jcis.2009.03.065] [PMID: 19423128]
[13]
Chandrasekaran, A.R.; Jia, C.Y.; Theng, C.S.; Muniandy, T.; Muralidharan, S.; Dhanaraj, S.A. In-vitro studies and evaluation of metformin marketed tablets-Malaysia. J. Appl. Pharm. Sci., 2011, 1(5), 214-217.
[14]
Malatesta, M.; Grecchi, S.; Chiesa, E.; Cisterna, B.; Costanzo, M.; Zancanaro, C. Internalized chitosan nanoparticles persist for long time in cultured cells. Eur. J. Histochem., 2015, 59(1), 2492.
[http://dx.doi.org/10.4081/ejh.2015.2492]
[15]
Hritcu, D.; Popa, M.; Popa, N.; Badescu, V.; Balan, V. Preparation and characterization of magnetic chitosan nanospheres. Turk. J. Chem., 2009, 58, 785-796.
[http://dx.doi.org/10.3906/kim-0812-42]
[16]
Coates, J. Encyclopedia of analytical chemistry. Interpretation of infrared spectra, a practical approach; Meyers, R.A., Ed.; John Wiley & Sons Ltd: Chichester, 2000, pp. 10815-10837.
[17]
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[18]
Saderi, N.; Rajabi, M.; Akbari, B.; Firouzi, M.; Hassannejad, Z. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. J. Mater. Sci. Mater. Med., 2018, 29(9), 134.
[http://dx.doi.org/10.1007/s10856-018-6144-3] [PMID: 30120577]
[19]
Unsoy, G.; Yalcin, S.; Khodadust, R.; Gunduz, G.; Gunduz, U. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res., 2012, 14(11), 964.
[http://dx.doi.org/10.1007/s11051-012-0964-8]
[20]
Desai, K.G.H.; Park, H.J. Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J. Microencapsul., 2005, 22(2), 179.
[http://dx.doi.org/10.1080/02652040400026533]
[21]
Cho, Y.; Kim, J.T.; Park, H.J. Size-controlled self-aggregated N-acyl chitosan nanoparticles as a vitamin C carrier. Carbohydr. Polym., 2012, 88(3), 1087-1092.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.074]
[22]
Chatterjee, N.S.; Panda, S.K.; Navitha, M.; Asha, K.K.; Anandan, R.; Mathew, S. Vanillic acid and coumaric acid grafted chitosan derivatives: Improved grafting ratio and potential application in functional food. J. Food Sci. Technol., 2015, 52(11), 7153-7162.
[http://dx.doi.org/10.1007/s13197-015-1874-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy