Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Phyto-pharmacology of Most Common Indian Culinary Spices and their Potential in Developing New Pharmaceutical Therapies

Author(s): Mubashir Maqbool, Kakul Chaudhary, Rishabh Chalotra*, Samrat Chauhan and Randhir Singh Dahiya*

Volume 10, Issue 2, 2024

Published on: 05 May, 2023

Article ID: e300323215253 Pages: 24

DOI: 10.2174/2215083810666230330161740

Price: $65

Abstract

Background: Culinary spices and Indian kitchens share a historical relationship for centuries. An average Indian kitchen contains a lot of spices like fennel, cardamom, cumin, turmeric, clove, black pepper, etc., used to increase the aroma and taste of food. Scientific research suggested the pharmacological activities of these kitchen spices, as most of them enhance the appetite, digestion, and have anti-inflammatory and analgesic properties, and some spices are potent anticancer, antidiabetic, and anti-obesity. Some Culinary spices are unexplored scientifically.

Objective: The objective of this study is to investigate the presently explored spices and some unexplored spices which might be used in certain parts of the world to enhance the flavor and could have medicinal benefits, studying their pharmacological actions in controlling or managing diseases.

Methods: Numerous surveys in literature were done in response to determining the culinary spices used commonly in Indian kitchens and also some rare spices which might be used in certain parts of the world for their pharmacological, and traditional uses, their chemical constituents having pharmacological activities. Relevant peer-reviewed publications were searched through various databases such as ScienceDirect, PubMed, Google Scholar, Research Gate, etc.

Results: A total of 11 common culinary spices like cumin, cardamom, cloves, etc. are studied regarding their common kitchen role, traditional uses, and their explored pharmacological activities, and 11 other spices like Alpinia galanga, Prunus mahaleb, Grain of Paradise, etc., which are used in some parts of the world having medicinal properties are also studied. The chemical constituents of these plants are also studied which could be responsible for their medicinal activity.

Conclusion: In this review, an approach was made to study the common culinary spices and other culinary spices which might not be most common, having medicinal properties, so that better treatment options could be available for future generations.

Graphical Abstract

[1]
Kumar V. Retracted article: Seven spices of india-from kitchen to clinic. J Ethn Foods 2020; 7(1): 23.
[http://dx.doi.org/10.1186/s42779-020-00058-0]
[2]
Sidebotham SE. Berenike and the ancient maritime spice route. University of California Press 2011; 18 Ebook, 0520948386
[3]
Iyer A, Sunil P, Hemant P, et al. Potential health benefits of Indian spices in the symptoms of the metabolic syndrome: A review. Indian J Biochem Biophys 2009; 46(6): 467-81.
[PMID: 20361710]
[4]
Krishnaswamy K. Traditional Indian spices and their health significance. Asia Pac J Clin Nutr 2008; 17(S1): 265-8.
[PMID: 18296352]
[5]
Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol Nutr Food Res 2013; 57(9): 1510-28.
[http://dx.doi.org/10.1002/mnfr.201100741] [PMID: 22887802]
[6]
Rathore S, Saxena S, Singh B. Potential health benefits of major seed spices. Int J Seed Spices 2013; 3(2): 1-12.
[7]
Kowalska J, Tyburski J, Matysiak K, Jakubowska M, Łukaszyk J. Krzymińska J. Cinnamon as a useful preventive substance for the care of human and plant health. Molecules 2021; 26(17): 5299.
[http://dx.doi.org/10.3390/molecules26175299] [PMID: 34500731]
[8]
Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr 2005; 93(2): 257-66.
[http://dx.doi.org/10.1079/BJN20041327] [PMID: 15788119]
[9]
Dubey PN, Saxena SN, Mishra BK, et al. Preponderance of cumin (Cuminum cyminum L.) essential oil constituents across cumin growing Agro-Ecological Sub Regions, India. Ind Crops Prod 2017; 95: 50-9.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.011]
[10]
Al-Snafi AE. The pharmacological activities of cuminum cyminum-a review. IOSR J Pharm 2016; 6(6): 46-65.
[11]
Tahir HU, Sarfraz RA, Ashraf A, Adil S. Chemical composition and antidiabetic activity of essential oils obtained from two spices (Syzygium aromaticum and Cuminum cyminum). Int J Food Prop 2016; 19(10): 2156-64.
[http://dx.doi.org/10.1080/10942912.2015.1110166]
[12]
Siow HL, Gan CY. Extraction, identification, and structure–activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J Funct Foods 2016; 22: 1-12.
[http://dx.doi.org/10.1016/j.jff.2016.01.011]
[13]
Sharafati Chaleshtori F, Taghizadeh M, Rafieian-kopaei M, Sharafati-chaleshtori R. Effect of chitosan incorporated with cumin and eucalyptus essential oils as antimicrobial agents on fresh chicken meat. J Food Process Preserv 2016; 40(3): 396-404.
[http://dx.doi.org/10.1111/jfpp.12616]
[14]
Srinivasan K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: traditional uses, chemical constituents, and nutraceutical effects. Food Qual Saf 2018; 2(1): 1-16.
[http://dx.doi.org/10.1093/fqsafe/fyx031]
[15]
Gajapriya M, Selvaraj J, Vishnpriya V, et al. epatoprotective effect of lupeol is mediated through gluconeogenic enzymes: An experimental study Drug Invent Today 2019; 12(4)
[16]
Behera AK, Bhadra P. In silico analysis of the cumin as targeted therapy for diarrhoea. Editorial Board 2020; 9(4): 156.
[17]
Tanira MOM, Shah AH, Mohsin A, Ageel AM, Qureshi S. Pharmacological and toxicological investigations on Foeniculum vulgare dried fruit extract in experimental animals. Phytother Res 1996; 10(1): 33-6.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199602)10:1<33:AID-PTR769>3.0.CO;2-L]
[18]
Abdelraheim Belal A, Ahmed FB, Ali LI. Antibacterial activity of Cuminum cyminum L. oil on six types of bacteria. Am J Biosci 2017; 5(4): 70-3.
[http://dx.doi.org/10.11648/j.ajbio.20170504.13]
[19]
Gachkar L, Yadegari D, Rezaei M, Taghizadeh M, Astaneh S, Rasooli I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem 2007; 102(3): 898-904.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.035]
[20]
Milan KSM, Dholakia H, Tiku PK, Vishveshwaraiah P. Enhancement of digestive enzymatic activity by cumin (Cuminum cyminum L.) and role of spent cumin as a bionutrient. Food Chem 2008; 110(3): 678-83.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.062]
[21]
Mughal SS. A review on potential antioxidant effects of Cumin (Cuminum cyminum), phytochemical Profile and its uses. Authorea Preprints 2022.
[http://dx.doi.org/10.22541/au.166401164.45578619/v1]
[22]
Nalini N, Sabitha K, Viswanathan P, Menon VP. Influence of spices on the bacterial (enzyme) activity in experimental colon cancer. J Ethnopharmacol 1998; 62(1): 15-24.
[http://dx.doi.org/10.1016/S0378-8741(98)00007-5] [PMID: 9720607]
[23]
Aygun A, Gülbagca F, Ozer LY, et al. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J Pharm Biomed Anal 2020; 179112961
[http://dx.doi.org/10.1016/j.jpba.2019.112961] [PMID: 31732404]
[24]
Dhandapani S, Subramanian VR, Rajagopal S, Namasivayam N. Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats. Pharmacol Res 2002; 46(3): 251-5.
[http://dx.doi.org/10.1016/S1043-6618(02)00131-7] [PMID: 12220968]
[25]
Allaq AA, Sidik NJ, Abdul-Aziz A, Ahmed IA. Cumin (Cuminum cyminum L.): A review of its ethnopharmacology, phytochemistry. Biomed Res Ther 2020; 7(9): 4016-21.
[http://dx.doi.org/10.15419/bmrat.v7i9.634]
[26]
Alizadeh Behbahani B, Noshad M, Falah F. Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microb Pathog 2019; 136: 103716.
[http://dx.doi.org/10.1016/j.micpath.2019.103716] [PMID: 31494297]
[27]
Agrawal AK, Rao CV, Sairam K, Joshi VK, Goel RK. Effect of Piper longum linn, Zingiber officianalis Linn and Ferula species on gastric ulceration and secretion in rats. Indian J Exp Biol 2000; 38(10): 994-8.
[28]
Ahmed S, Adeela Z, Ibrahim M, et al. Enhanced efficacy of direct-acting antivirals in hepatitis c patients by coadministration of black cumin and ascorbate as antioxidant adjuvants. Oxid Med Cell Longev 2020; 2020: 7087921.
[http://dx.doi.org/10.1155/2020/7087921]
[29]
Hidayati T, Darmawan E, Indrayanti I, Sun S. The effect of black cumin seed oil consumption on the platelets and leukocytes number in healthy smokers in rural area Yogyakarta. Bali Med J 2021; 10(3): 1146-51.
[http://dx.doi.org/10.15562/bmj.v10i3.2833]
[30]
Sõukand R, Pieroni A, Biró M, et al. An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. J Ethnopharmacol 2015; 170: 284-96.
[http://dx.doi.org/10.1016/j.jep.2015.05.018] [PMID: 25985766]
[31]
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin: Miniperspective. J Med Chem 2017; 60(5): 1620-37.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[32]
Bampidis V, Azimonti G, Bastos ML, et al. Safety and efficacy of turmeric extract, turmeric oil, turmeric oleoresin and turmeric tincture from Curcuma longa L. rhizome when used as sensory additives in feed for all animal species. EFSA J 2020; 18(6): e06146.
[PMID: 32874324]
[33]
Tayyem RF, Heath DD, Al-Delaimy WK, Rock CL. Curcumin content of turmeric and curry powders. Nutr Cancer 2006; 55(2): 126-31.
[http://dx.doi.org/10.1207/s15327914nc5502_2] [PMID: 17044766]
[34]
Hong SL, Lee GS, Rahman SA, et al. Essential oil content of the rhizome of Curcuma purpurascens Bl. (Temu Tis) and its antiproli- ferative effect on selected human carcinoma cell lines. SciWorld J 2014; 2014: 397430.
[http://dx.doi.org/10.1155/2014/397430] [PMID: 25177723]
[35]
Hu Y, Kong W, Yang X, Xie L, Wen J, Yang M. GC-MS combined with chemometric techniques for the quality control and original discrimination of Curcumae longae rhizome: Analysis of essential oils. J Sep Sci 2014; 37(4): 404-11.
[http://dx.doi.org/10.1002/jssc.201301102] [PMID: 24311554]
[36]
Braga MEM, Leal PF, Carvalho JE, Meireles MAA. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem 2003; 51(22): 6604-11.
[http://dx.doi.org/10.1021/jf0345550] [PMID: 14558784]
[37]
Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: How many ways can curry kill tumor cells selectively? AAPS J 2009; 11(3): 495-510.
[http://dx.doi.org/10.1208/s12248-009-9128-x] [PMID: 19590964]
[38]
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett 2008; 267(1): 133-64.
[http://dx.doi.org/10.1016/j.canlet.2008.03.025] [PMID: 18462866]
[39]
Devassy JG, Nwachukwu ID, Jones PJH. Curcumin and cancer: Barriers to obtaining a health claim. Nutr Rev 2015; 73(3): 155-65.
[http://dx.doi.org/10.1093/nutrit/nuu064] [PMID: 26024538]
[40]
Zhang HA, Kitts DD. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem 2021; 476(10): 3785-814.
[http://dx.doi.org/10.1007/s11010-021-04201-6] [PMID: 34106380]
[41]
Duan W, Yang Y, Yan J, et al. The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol 2012; 107(3): 263.
[http://dx.doi.org/10.1007/s00395-012-0263-7] [PMID: 22466958]
[42]
Morimoto T, Sunagawa Y, Kawamura T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 2008; 118(3): 868-78.
[http://dx.doi.org/10.1172/JCI33160] [PMID: 18292809]
[43]
Hadi A, Pourmasoumi M, Ghaedi E, Sahebkar A. The effect of Curcumin/Turmeric on blood pressure modulation: A systematic review and meta-analysis. Pharmacol Res 2019; 150: 104505.
[http://dx.doi.org/10.1016/j.phrs.2019.104505] [PMID: 31647981]
[44]
Rahman I, Biswas S. Regulation of Inflammation, Redox, and Glucocorticoid Signaling by Dietary Polyphenols Dietary Modu- lation of Cell Signaling Pathways CRC Press, Boca Raton. 2008; p. 153.
[45]
Raffo A, Nicoli S, Leclercq C. Quantification of estragole in fennel herbal teas: Implications on the assessment of dietary exposure to estragole. Food Chem Toxicol 2011; 49(2): 370-5.
[http://dx.doi.org/10.1016/j.fct.2010.11.011] [PMID: 21094197]
[46]
de Albuquerque UP, de Medeiros PM, de Almeida ALS, et al. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J Ethnopharmacol 2007; 114(3): 325-54.
[http://dx.doi.org/10.1016/j.jep.2007.08.017] [PMID: 17900836]
[47]
Guarrera PM, Savo V. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. J Ethnopharmacol 2013; 146(3): 659-80.
[http://dx.doi.org/10.1016/j.jep.2013.01.036] [PMID: 23395624]
[48]
Guarrera PM, Forti G, Marignoli S. Ethnobotanical and ethnomedicinal uses of plants in the district of Acquapendente (Latium, Central Italy). J Ethnopharmacol 2005; 96(3): 429-44.
[http://dx.doi.org/10.1016/j.jep.2004.09.014] [PMID: 15619562]
[49]
Lewu FB, Afolayan A. Ethnomedicine in South Africa: The role of weedy species. Afr J Biotechnol 2009; 8(6): 929-34.
[50]
Halberstein RA. Botanical medicines for diuresis: cross-cultural comparisons.In: Studies in Natural Products Chemistry. Elsevier 2012; pp. 1-41.
[51]
Carrió E, Vallès J. Ethnobotany of medicinal plants used in Eastern Mallorca (Balearic Islands, Mediterranean Sea). J Ethnopharmacol 2012; 141(3): 1021-40.
[http://dx.doi.org/10.1016/j.jep.2012.03.049] [PMID: 22783553]
[52]
Neves JM, Matos C, Moutinho C, Queiroz G, Gomes LR. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (Northern of Portugal). J Ethnopharmacol 2009; 124(2): 270-83.
[http://dx.doi.org/10.1016/j.jep.2009.04.041] [PMID: 19409473]
[53]
Tene V, Malagón O, Finzi PV, Vidari G, Armijos C, Zaragoza T. An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J Ethnopharmacol 2007; 111(1): 63-81.
[http://dx.doi.org/10.1016/j.jep.2006.10.032] [PMID: 17137737]
[54]
Aston Philander L. An ethnobotany of Western Cape Rasta bush medicine. J Ethnopharmacol 2011; 138(2): 578-94.
[http://dx.doi.org/10.1016/j.jep.2011.10.004] [PMID: 22004893]
[55]
Cornara L, La Rocca A, Marsili S, Mariotti MG. Traditional uses of plants in the Eastern Riviera (Liguria, Italy). J Ethnopharmacol 2009; 125(1): 16-30.
[http://dx.doi.org/10.1016/j.jep.2009.06.021] [PMID: 19563876]
[56]
Juárez-Vázquez MC, Carranza-Álvarez C, Alonso-Castro AJ, et al. Ethnobotany of medicinal plants used in Xalpatlahuac, Guerrero, México. J Ethnopharmacol 2013; 148(2): 521-7.
[http://dx.doi.org/10.1016/j.jep.2013.04.048] [PMID: 23665055]
[57]
Zhao NN, Zhou L, Liu ZL, Du SS, Deng ZW. Evaluation of the toxicity of the essential oils of some common Chinese spices against Liposcelis bostrychophila. Food Control 2012; 26(2): 486-90.
[http://dx.doi.org/10.1016/j.foodcont.2012.02.021]
[58]
Shahat A, Ibrahim A, Hendawy S, et al. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules 2011; 16(2): 1366-77.
[http://dx.doi.org/10.3390/molecules16021366] [PMID: 21285921]
[59]
Özbek H, Uğraş S, Dülger H, et al. Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia 2003; 74(3): 317-9.
[http://dx.doi.org/10.1016/S0367-326X(03)00028-5] [PMID: 12727504]
[60]
Goswami N, Jain S, Chatterjee S. Nutritive Importance and Medicinal Properties of Foeniculum vulgare Mill. (Fennel) and Trachyspermum ammi L. (Ajwain). Front Bioactive Comp 2022; 3: 135-54.
[http://dx.doi.org/10.2174/9789815080025122030010]
[61]
Aboelhadid SM, Arafa WM, Abdel-Baki AAS, et al. Acaricidal activity of Foeniculum vulgare against Rhipicephalus annulatus is mainly dependent on its constituent from trans-anethone. PLoS One 2021; 16(12): e0260172.
[http://dx.doi.org/10.1371/journal.pone.0260172] [PMID: 34855806]
[62]
Ghaffari P, Hosseininik M, Afrasiabifar A, et al. The effect of Fennel seed powder on estradiol levels, menopausal symptoms, and sexual desire in postmenopausal women. Menopause 2020; 27(11): 1281-6.
[http://dx.doi.org/10.1097/GME.0000000000001604] [PMID: 33110044]
[63]
Ostad SN, Soodi M, Shariffzadeh M, Khorshidi N, Marzban H. The effect of fennel essential oil on uterine contraction as a model for dysmenorrhea, pharmacology and toxicology study. J Ethnopharmacol 2001; 76(3): 299-304.
[http://dx.doi.org/10.1016/S0378-8741(01)00249-5] [PMID: 11448553]
[64]
Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L. Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 2010; 107(6): 1455-61.
[http://dx.doi.org/10.1007/s00436-010-2018-4] [PMID: 20697909]
[65]
Lee HS. Acaricidal activity of constituents identified in Foeniculum vulgare fruit oil against Dermatophagoides spp. (Acari: Pyroglyphidae). J Agric Food Chem 2004; 52(10): 2887-9.
[http://dx.doi.org/10.1021/jf049631t] [PMID: 15137830]
[66]
Mutlu-Ingok A, Catalkaya G, Capanoglu E, Karbancioglu-Guler F. Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Front 2021; 2(4): 508-18.
[http://dx.doi.org/10.1002/fft2.77]
[67]
Syed FQ, et al. An insight of multitudinous and inveterate pharmacological applications of Foeniculum vulgare (Fennel). In: Plant and Human Health Springer. 2019; 3: pp. 231-54.
[68]
Nagulapalli Venkata KC, Swaroop A, Bagchi D, Bishayee A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res 2017; 61(6): 1600950.
[http://dx.doi.org/10.1002/mnfr.201600950] [PMID: 28266134]
[69]
Roberts KT. The potential of fenugreek (Trigonella foenum-graecum) as a functional food and nutraceutical and its effects on glycemia and lipidemia. J Med Food 2011; 14(12): 1485-9.
[http://dx.doi.org/10.1089/jmf.2011.0002] [PMID: 21861724]
[70]
Joshi JG, Handler P. Biosynthesis of Trigonelline. J Biol Chem 1960; 235(10): 2981-3.
[http://dx.doi.org/10.1016/S0021-9258(18)64575-2] [PMID: 13790768]
[71]
Hidvegi M, Lasztity R, Bakes F, et al. Contributions to the nutritional characterization of fenugreek (Trigonella foenum-graecum L. 1753). Acta Alimentaria 1984.
[72]
Petropoulos GA. Fenugreek: the genus Trigonella. CRC Press 2002.
[73]
Bhardwaj D. Isolation of 7-acetoxy-4-methylcoumarin from trigonella foenum-graecum. J-GLOBAL 1977; 15(1): 94-5.
[74]
Parmar V. A structural revision of trigocoumarin. J Chem Res 1984; (11).
[75]
Al-Daghri NM, Alokail MS, Alkharfy KM, et al. Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells. BMC Complement Altern Med 2012; 12(1): 202.
[http://dx.doi.org/10.1186/1472-6882-12-202] [PMID: 23110539]
[76]
Al-dalain S, El-kutry MS, Ibrahim HS. Inhibitory effect of aqueous extracts of barley and fenugreek on ulcer induction in rats. World Appl Sci J 2008; 5(3): 332-9.
[77]
Selmi S, Alimi D, Rtibi K, et al. Gastroprotective and antioxidant properties of Trigonella foenum graecum seeds aqueous extract (fenugreek) and omeprazole against ethanol-induced peptic ulcer. J Med Food 2022; 25(5): 513-22.
[http://dx.doi.org/10.1089/jmf.2020.0217] [PMID: 35561273]
[78]
Allaoui A, Gascón S, Benomar S, et al. Protein hydrolysates from fenugreek (Trigonella foenum graecum) as nutraceutical molecules in colon cancer treatment. Nutrients 2019; 11(4): 724.
[http://dx.doi.org/10.3390/nu11040724] [PMID: 30925798]
[79]
Sharififar F, Khazaeli P, Alli N. In vivo evaluation of anti-inflammatory activity of topical preparations from Fenugreek (Trigonella foenum-graecum L.) seeds in a cream base. Indian J Pharm Sci 2009; 5(3): 157-62.
[80]
Chauhan S, Chalotra R, Rathi A, et al. Current approaches in healing of wounds in diabetes and diabetic foot ulcers. Current BioactiveCompounds 2023; 19(3): 104-21.
[81]
Mathern JR, Raatz SK, Thomas W, Slavin JL. Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects. Phytother Res 2009; 23(11): 1543-8.
[http://dx.doi.org/10.1002/ptr.2795] [PMID: 19353539]
[82]
Talpur N, Echard B, Ingram C, Bagchi D, Preuss H. Effects of a novel formulation of essential oils on glucose-insulin metabolism in diabetic and hypertensive rats: a pilot study. Diabetes Obes Metab 2005; 7(2): 193-9.
[http://dx.doi.org/10.1111/j.1463-1326.2004.00386.x] [PMID: 15715893]
[83]
Alam MA, Bin Jardan YA, Raish M, Al-Mohizea AM, Ahad A, Al-Jenoobi FI. Effect of Nigella sativa and fenugreek on the pharmacokinetics and pharmacodynamics of amlodipine in hypertensive rats. Curr Drug Metab 2020; 21(4): 318-25.
[http://dx.doi.org/10.2174/1389200221666200514121501] [PMID: 32407268]
[84]
Kamboj VP. A review of Indian medicinal plants with interceptive activity. Indian J Med Res 1988; 87: 336-55.
[PMID: 2844661]
[85]
Subrahmanyan V, Sastry L, Srinivasan M. Asafoetida. J Sci Ind Res (India) 1954; 13: 382-6.
[86]
Mahran G, El Alfy T, Ansari SMA. A phytochemical study of volatile oil of Afghanian asafetida. Bull Fac Pharm Cairo Univ 1973; 12(2): 101-7.
[87]
Bhattarai N. Folk anthelmintic drugs of central Nepal. Int J Pharmacogn 1992; 30(2): 145-50.
[http://dx.doi.org/10.3109/13880209209053980]
[88]
Seabrook W. Adventures in Arabia Among the Bedouins, Druses, Whirling Dervishes, & Yezidee Devil Worshipers. Blue Ribbon Books 1927.
[89]
Eigner D, Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 1999; 67(1): 1-6.
[http://dx.doi.org/10.1016/S0378-8741(98)00234-7] [PMID: 10616954]
[90]
Nassar M. Spectral study of farnesiferol B from Ferula asa foetida L. Pharmazie 1994; 49(7): 542-3.
[91]
Caglioti L, Naef H, Arigoni D, et al. Sesquiterpenes and azulenes. CXXVII. The con- stituents of asafetida. II. Farnesiferol B and C. Helvetica Chimica Acta 1959; 42: 2557-70.
[http://dx.doi.org/10.1002/hlca.19590420727]
[92]
Abraham K, Shankaranarayan ML, Raghavan N, et al. Odorous compounds of asafetida. VII. Isolation and identification. Indian Food Pack 1982; 36(5): 65-76.
[93]
Singh S, Agrawal N, Upadhyay PK. Chemistry, biological activities, and uses of asafetida, in gums, resins and latexes of plant origin: Chemistry, biological activities and uses. Springer 2021; pp. 1-28.
[94]
Bagheri S, Javidmehr D, Ghaffari M, Ghoderti-Shatori E. Chemical compositions and antiproliferative effect of essential oil of asafoetida on MCF7 human breast cancer cell line and female wistar rats. Cancer Transl Med 2020; 6(2): 34-4.
[http://dx.doi.org/10.4103/ctm.ctm_36_19]
[95]
Mallikarjuna GU, Dhanalakshmi S, Raisuddin S, Ramesha Rao A. Chemomodulatory influence of Ferula asafoetida on mammary epithelial differentiation, hepatic drug metabolizing enzymes, antioxidant profiles and N-methyl-N-nitrosourea-induced mammary carcinogenesis in rats. Breast Cancer Res Treat 2003; 81(1): 1-10.
[http://dx.doi.org/10.1023/A:1025448620558] [PMID: 14531492]
[96]
Mahendra P, Bisht S. Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models. Indian J Pharmacol 2011; 43(5): 574-7.
[http://dx.doi.org/10.4103/0253-7613.84975] [PMID: 22022003]
[97]
Boyd L. The pharmacology of the homeopathic drugs. J Am Inst Homeopath 1928; 21: 7.
[98]
Sarkisyan R. Effect of Ferula on arterial pressure. Med Zh Uzb 1969; 19: 23-4.
[99]
Shahrajabian MH, Sun W, Cheng Q. Asafoetida, natural medicine for future. Curr Nutr Food Sci 2021; 17(9): 922-6.
[http://dx.doi.org/10.2174/1573401317666210222161609]
[100]
Kavitha S, Selvaraj K, Priya V, et al. Preliminary phytochemical, antioxidant and hypolipidemic potential of aqueous extract of Ferula asafoetida- an in vitro study. J Pharm Res Inter 2022; pp. 10-8.
[101]
Bagheri SM, Maghsoudi MJ, Yadegari M. Preventive effect of Ferula asafoetida oleo gum resin on histopathology in cuprizone-induced demyelination mice. Int J Prev Med 2020; 11: 179.
[PMID: 33456735]
[102]
Mahendra P, Bisht S. Ferula asafoetida: Traditional uses and pharmacological activity. Pharmacogn Rev 2012; 6(12): 141-6.
[http://dx.doi.org/10.4103/0973-7847.99948] [PMID: 23055640]
[103]
Holland K. Can i use clove oil to ease my toothache? Healthline. 2019. Available From : [https://www.healthline.com/health/clove-oil-toothache
[104]
Cai L, Wu CD. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J Nat Prod 1996; 59(10): 987-90.
[http://dx.doi.org/10.1021/np960451q] [PMID: 8904847]
[105]
US Department of Agriculture, Spices, cloves, ground, F Central, Editor. Agriculture Research Service 2019.
[106]
Spritzier F. 10 Natural Ways to Build Healthy Bones Healthline. 2017. Available From : [https://www.healthline.com/nutrition/build-healthy-bones
[107]
Bae YJ, Kim MH. Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol Trace Elem Res 2008; 124(1): 28-34.
[http://dx.doi.org/10.1007/s12011-008-8119-6] [PMID: 18330520]
[108]
Petre A. 9 science-backed home remedies for ulcers Nutrition, Healthline. 2017. Available From : [https://www.healthline.com/nutrition/stomach-ulcer-remedies
[109]
Santin JR, Lemos M, Klein-Júnior LC, et al. Gastroprotective activity of essential oil of the Syzygium aromaticum and its major component eugenol in different animal models. Naunyn Schmiedebergs Arch Pharmacol 2011; 383(2): 149-58.
[http://dx.doi.org/10.1007/s00210-010-0582-x] [PMID: 21140134]
[110]
Kaunitz JD. Barrier function of gastric mucus. Keio J Med 1999; 48(2): 63-8.
[http://dx.doi.org/10.2302/kjm.48.63] [PMID: 10405521]
[111]
Agbaje EO. Gastrointestinal effects of Syzigium aromaticum (L) Merr. & Perry (Myrtaceae) in animal models. Nig Q J Hosp Med 2008; 18(3): 137-41.
[PMID: 19062476]
[112]
de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet 2003; 362(9380): 316-22.
[http://dx.doi.org/10.1016/S0140-6736(03)13976-1] [PMID: 12892964]
[113]
Chithra V, Leelamma S. Coriandrum sativum - mechanism of hypoglycemic action. Food Chem 1999; 67(3): 229-31.
[http://dx.doi.org/10.1016/S0308-8146(99)00113-2]
[114]
Aissaoui A, Zizi S, Israili ZH, Lyoussi B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J Ethnopharmacol 2011; 137(1): 652-61.
[http://dx.doi.org/10.1016/j.jep.2011.06.019] [PMID: 21718774]
[115]
Nagababu E, Joseph MR, Sesikeran B, et al. Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol Biol 2010; 610: 165-80.
[http://dx.doi.org/10.1007/978-1-60327-029-8_10] [PMID: 20013178]
[116]
Liu H, Schmitz JC, Wei J, et al. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncol Res 2014; 21(5): 247-59.
[http://dx.doi.org/10.3727/096504014X13946388748910] [PMID: 24854101]
[117]
Dwivedi V, Shrivastava R, Hussain S, Ganguly C, Bharadwaj M. Comparative anticancer potential of clove (Syzygium aromaticum)--an Indian spice--against cancer cell lines of various anatomical origin. Asian Pac J Cancer Prev 2011; 12(8): 1989-93.
[PMID: 22292639]
[118]
Nzeako BC, Al-Kharousi ZS, Al-Mahrooqui Z. Antimicrobial activities of clove and thyme extracts. Sultan Qaboos Univ Med J 2006; 6(1): 33-9.
[PMID: 21748125]
[119]
Nuñez L, D’ Aquino M. Microbicide activity of clove essential oil (Eugenia caryophyllata). Braz J Microbiol 2012; 43(4): 1255-60.
[http://dx.doi.org/10.1590/S1517-83822012000400003] [PMID: 24031950]
[120]
Abuga I, Sulaiman SF, Wahab RA, et al. Phytochemical constituents and antibacterial activi- ties of 45 Malay traditional medicinalplants J Herb Med 2021; 1(32): 100496.
[121]
Kothiwale S, Patwardhan V, Gandhi M, Sohoni R, Kumar A. A comparative study of antiplaque and antigingivitis effects of herbal mouthrinse containing tea tree oil, clove, and basil with commercially available essential oil mouthrinse. J Indian Soc Periodontol 2014; 18(3): 316-20.
[http://dx.doi.org/10.4103/0972-124X.134568] [PMID: 25024544]
[122]
Ekstedt M, Franzén LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44(4): 865-73.
[http://dx.doi.org/10.1002/hep.21327] [PMID: 17006923]
[123]
Al-Okbi SY, Mohamed DA, Hamed TE, Edris AE. Protective effect of clove oil and eugenol microemulsions on fatty liver and dyslipidemia as components of metabolic syndrome. J Med Food 2014; 17(7): 764-71.
[http://dx.doi.org/10.1089/jmf.2013.0033] [PMID: 24611461]
[124]
Ali S, Prasad R, Mahmood A, et al. Eugenol-rich fraction of Syzygium aromaticum (clove) reverses biochemical and histopathological changes in liver cirrhosis and inhibits hepatic cell proliferation. J Cancer Prev 2014; 19(4): 288-300.
[http://dx.doi.org/10.15430/JCP.2014.19.4.288] [PMID: 25574464]
[125]
Healthline Editorial Team Cirrhosis. 2021. Available From : [https://www.healthline.com/health/cirrhosis
[126]
Rompelberg C, Vogels J, de Vogel N, et al. Effect of short-term dietary administration of eugenol in humans. Hum Exp Toxicol 1996; 15(2): 129-35.
[http://dx.doi.org/10.1177/096032719601500205] [PMID: 8645503]
[127]
Harrison DJ, May L, Hayes PC, Haque MM, Hayes JD. Glutathione S-transferases in alcoholic liver disease. Gut 1990; 31(8): 909-12.
[http://dx.doi.org/10.1136/gut.31.8.909] [PMID: 2387516]
[128]
Medina J, Moreno-Otero R. Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs 2005; 65(17): 2445-61.
[http://dx.doi.org/10.2165/00003495-200565170-00003] [PMID: 16296871]
[129]
Hartnoll G, Moore D, Douek D. Near fatal ingestion of oil of cloves. Arch Dis Child 1993; 69(3): 392-3.
[http://dx.doi.org/10.1136/adc.69.3.392] [PMID: 8215554]
[130]
Kuroda M, Mimaki Y, Ohtomo T, et al. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J Nat Med 2012; 66(2): 394-9.
[http://dx.doi.org/10.1007/s11418-011-0593-z] [PMID: 21987283]
[131]
Carrington CH. Clinical depression in African American women: Diagnoses, treatment, and research. J Clin Psychol 2006; 62(7): 779-91.
[http://dx.doi.org/10.1002/jclp.20289] [PMID: 16703605]
[132]
Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 2014; 29(11): 2520-6.
[http://dx.doi.org/10.1002/jbmr.2269] [PMID: 24771492]
[133]
Wang J, He X, Sun T. Comparative clinical efficacy and safety of cortical bone trajectory screw fixation and traditional pedicle screw fixation in posterior lumbar fusion: a systematic review and meta-analysis. Eur Spine J 2019; 28(7): 1678-89.
[http://dx.doi.org/10.1007/s00586-019-05999-y] [PMID: 31087165]
[134]
Karmakar S, Choudhury M, Das AS, Maiti A, Majumdar S, Mitra C. Clove (Syzygium aromaticum Linn.) extract rich in eugenol and eugenol derivatives shows bone-preserving efficacy. Nat Prod Res 2012; 26(6): 500-9.
[http://dx.doi.org/10.1080/14786419.2010.511216] [PMID: 21711176]
[135]
Ogagaoghene AJ, Othuke AP, Omosigho HN. Nutritional and Proximate Composition of Juice Produced from Citrullus lanatus and Psidium guajava Blend. J Chem Soc Nigeria 2019; 44(6)
[136]
Simon JP, Evan Prince S. Natural remedies for non-steroidal anti-inflammatory drug-induced toxicity. J Appl Toxicol 2017; 37(1): 71-83.
[http://dx.doi.org/10.1002/jat.3391] [PMID: 27652576]
[137]
Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM. Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals--a review. Phytother Res 2013; 27(10): 1439-56.
[http://dx.doi.org/10.1002/ptr.4897] [PMID: 23281145]
[138]
Ishikawa T, Sega Y, Kitajima J. Water-soluble constituents of ajowan. Chem Pharm Bull (Tokyo) 2001; 49(7): 840-4.
[http://dx.doi.org/10.1248/cpb.49.840] [PMID: 11456088]
[139]
Eidi M, Eidi A, Saeidi A, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res 2009; 23(3): 404-6.
[http://dx.doi.org/10.1002/ptr.2642] [PMID: 19003941]
[140]
Liu J, Yeo HC, Övervik-Douki E, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 2000; 89(1): 21-8.
[http://dx.doi.org/10.1152/jappl.2000.89.1.21] [PMID: 10904031]
[141]
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4(8): 118-26.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[142]
Tang ELH, Rajarajeswaran J, Fung SY, Kanthimathi MS. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Altern Med 2013; 13(1): 347.
[http://dx.doi.org/10.1186/1472-6882-13-347] [PMID: 24517259]
[143]
Pavan B, Dalpiaz A, Marani L, et al. Geraniol pharmacokinetics, bioavailability and its multiple effects on the liver antioxidant and xenobiotic-metabolizing enzymes. Front Pharmacol 2018; 9: 18.
[http://dx.doi.org/10.3389/fphar.2018.00018] [PMID: 29422862]
[144]
Das Gupta S, Suh N. Tocopherols in cancer: An update. Mol Nutr Food Res 2016; 60(6): 1354-63.
[http://dx.doi.org/10.1002/mnfr.201500847] [PMID: 26751721]
[145]
Ricoca Peixoto V, Vieira A, Aguiar P, et al. Determinants for hospitalisations, intensive care unit admission and death among 20,293 reported COVID-19 cases in Portugal, March to April 2020. Euro Surveill 2021; 26(33): 2001059.
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.33.2001059] [PMID: 34414882]
[146]
Spritzler F. A low-carbohydrate, whole-foods approach to managing diabetes and prediabetes. Diabetes Spectr 2012; 25(4): 238-43.
[http://dx.doi.org/10.2337/diaspect.25.4.238]
[147]
Zhang CR, Dissanayake AA. Kevseroğlu K, Nair MG. Evaluation of coriander spice as a functional food by using in vitro bioassays. Food Chem 2015; 167: 24-9.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.120] [PMID: 25148954]
[148]
Jabeen Q, Bashir S, Lyoussi B, Gilani AH. Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities. J Ethnopharmacol 2009; 122(1): 123-30.
[http://dx.doi.org/10.1016/j.jep.2008.12.016] [PMID: 19146935]
[149]
Vasanthi R H and R P, Parameswari RP. Indian spices for healthy heart-an overview. Curr Cardiol Rev 2010; 6(4): 274-9.
[http://dx.doi.org/10.2174/157340310793566172] [PMID: 22043203]
[150]
Dhanapakiam P, Joseph JM, Ramaswamy VK, Moorthi M, Kumar AS. The cholesterol lowering property of coriander seeds (Coriandrum sativum): mechanism of action. J Environ Biol 2008; 29(1): 53-6.
[PMID: 18831331]
[151]
Seymour J, Barnes JL, Schumacher J, Vollmer RL. A qualitative exploration of weight bias and quality of health care among health care professionals using hypothetical patient scenarios. Inquiry 2018; 55.
[http://dx.doi.org/10.1177/0046958018774171] [PMID: 29749287]
[152]
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. The Company of Biologists Ltd. 2017; pp. 499-502.
[153]
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13(4): 3391-6.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[154]
Amor S, Peferoen LAN, Vogel DYS, et al. Inflammation in neurodegenerative diseases - an update. Immunology 2014; 142(2): 151-66.
[http://dx.doi.org/10.1111/imm.12233] [PMID: 24329535]
[155]
Pourzaki M, Homayoun M, Sadeghi S, Seghatoleslam M, Hosseini M, Ebrahimzadeh Bideskan A. Preventive effect of Coriandrum sativum on neuronal damages in pentylentetrazole-induced seizure in rats. Avicenna J Phytomed 2017; 7(2): 116-28.
[PMID: 28348967]
[156]
Ferdinand S, Duportail M, Roekens V. Life balance of European people with MS: RIMS multicenter psychometric study. Mult Scler J 2018; 24(6): 838-81.
[157]
Mani V, Parle M, Ramasamy K, Abdul Majeed AB. Reversal of memory deficits by Coriandrum sativum leaves in mice. J Sci Food Agric 2011; 91(1): 186-92.
[http://dx.doi.org/10.1002/jsfa.4171] [PMID: 20848667]
[158]
Sullivan KE, Mylniczenko ND, Nelson SE Jr, Coffin B, Lavin SR. Practical management of iron overload disorder (IOD) in Black rhinoceros (BR; Diceros bicornis). Animals (Basel) 2020; 10(11): 1991.
[http://dx.doi.org/10.3390/ani10111991] [PMID: 33138144]
[159]
Mandal S, Mandal M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac J Trop Biomed 2015; 5(6): 421-8.
[http://dx.doi.org/10.1016/j.apjtb.2015.04.001]
[160]
Vejdani R, Shalmani HRM, Mir-Fattahi M, et al. The efficacy of an herbal medicine, Carmint, on the relief of abdominal pain and bloating in patients with irritable bowel syndrome: a pilot study. Dig Dis Sci 2006; 51(8): 1501-7.
[http://dx.doi.org/10.1007/s10620-006-9079-3] [PMID: 16868824]
[161]
Mourenza Á, Gil JA, Mateos LM, Letek M. Novel treatments and preventative strategies against food-poisoning caused by staphylococcal species. Pathogens 2021; 10(2): 91.
[http://dx.doi.org/10.3390/pathogens10020091] [PMID: 33498299]
[162]
Nematy M, Kamgar M, Mohajeri SM, et al. The effect of hydroalcoholic extract of Coriandrum sativum on rat appetite. Avicenna J Phytomed 2013; 3(1): 91-7.
[PMID: 25050262]
[163]
Rath S, Padhy RN. Monitoring in vitro antibacterial efficacy of 26 Indian spices against multidrug resistant urinary tract infecting bacteria. Integr Med Res 2014; 3(3): 133-41.
[http://dx.doi.org/10.1016/j.imr.2014.04.002] [PMID: 28664089]
[164]
Silva F, Ferreira S, Queiroz JA, Domingues FC. Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol 2011; 60(10): 1479-86.
[http://dx.doi.org/10.1099/jmm.0.034157-0] [PMID: 21862758]
[165]
Freires IA, Murata RM, Furletti VF, et al. Coriandrum sativum L. (Coriander) essential oil: antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS One 2014; 9(6): e99086.
[http://dx.doi.org/10.1371/journal.pone.0099086] [PMID: 24901768]
[166]
Dastgheib L, Pishva N, Saki N, et al. Efficacy of topical coriandrum sativum extract on treatment of infants with diaper dermatitis: a single blinded non-randomised controlled trial. Malays J Med Sci 2017; 24(4): 97-101.
[http://dx.doi.org/10.21315/mjms2017.24.4.11] [PMID: 28951694]
[167]
Hwang E, Lee DG, Park SH, Oh MS, Kim SY. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression. J Med Food 2014; 17(9): 985-95.
[http://dx.doi.org/10.1089/jmf.2013.2999] [PMID: 25019675]
[168]
Park G, Kim HG, Kim YO, Park SH, Kim SY, Oh MS. Coriandrum sativum L. protects human keratinocytes from oxidative stress by regulating oxidative defense systems. Skin Pharmacol Physiol 2012; 25(2): 93-9.
[http://dx.doi.org/10.1159/000335257] [PMID: 22301773]
[169]
Verma S, Jain V, Katewa S. Blood pressure lowering, fibrinolysis enhancing and antioxidant activities of cardamom (Elettaria cardamomum). Indian J Biochem Biophys 2009; 46(6): 503-6.
[PMID: 20361714]
[170]
Qiblawi S, Al-Hazimi A, Al-Mogbel M, Hossain A, Bagchi D. Chemopreventive effects of cardamom (Elettaria cardamomum L.) on chemically induced skin carcinogenesis in Swiss albino mice. J Med Food 2012; 15(6): 576-80.
[http://dx.doi.org/10.1089/jmf.2011.0266] [PMID: 22404574]
[171]
Majdalawieh AF, Carr RI. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J Med Food 2010; 13(2): 371-81.
[http://dx.doi.org/10.1089/jmf.2009.1131] [PMID: 20210607]
[172]
Das I, Acharya A, Berry DL, et al. Antioxidative effects of the spice cardamom against non-melanoma skin cancer by modulating nuclear factor erythroid-2-related factor 2 and NF-κB signalling pathways. Br J Nutr 2012; 108(6): 984-97.
[http://dx.doi.org/10.1017/S0007114511006283] [PMID: 22182368]
[173]
Jou YJ, Chen CJ, Liu YC, et al. Quantitative phosphoproteomic analysis reveals γ-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation. Proteomics 2015; 15(19): 3296-309.
[http://dx.doi.org/10.1002/pmic.201400568] [PMID: 26194454]
[174]
Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 2009; 6(6): 399-409.
[http://dx.doi.org/10.1038/nrcardio.2009.55] [PMID: 19399028]
[175]
Kandikattu HK, Rachitha P, Jayashree GV, et al. Anti-inflammatory and anti-oxidant effects of Cardamom (Elettaria repens (Sonn.) Baill) and its phytochemical analysis by 4D GCXGC TOF-MS. Biomed Pharmacother 2017; 91: 191-201.
[http://dx.doi.org/10.1016/j.biopha.2017.04.049] [PMID: 28458157]
[176]
Mutmainah Susilowati R, Rahmawati N, Nugroho AE. Gastroprotective effects of combination of hot water extracts of turmeric (Curcuma domestica L.), cardamom pods (Ammomum compactum S.) and sembung leaf (Blumea balsamifera DC.) against aspirin–induced gastric ulcer model in rats. Asian Pac J Trop Biomed 2014; 4 (Suppl. 1): S500-4.
[http://dx.doi.org/10.12980/APJTB.4.2014C972] [PMID: 25183139]
[177]
Jamal A, Javed K, Aslam M, Jafri MA. Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. J Ethnopharmacol 2006; 103(2): 149-53.
[http://dx.doi.org/10.1016/j.jep.2005.07.016] [PMID: 16298093]
[178]
Mahady GB, Pendland SL, Stoia A, et al. In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytother Res 2005; 19(11): 988-91.
[http://dx.doi.org/10.1002/ptr.1776] [PMID: 16317658]
[179]
Kolhe SR, Borole P, Patel U. Extraction and evaluation of piperine from Piper nigrum Linn. Int J Appl Biol Pharm Technol 2011; 2(2): 144-9.
[180]
Lee CS, Han ES, Kim YK. Piperine inhibition of 1-methyl-4-phenylpyridinium-induced mitochondrial dysfunction and cell death in PC12 cells. Eur J Pharmacol 2006; 537(1-3): 37-44.
[http://dx.doi.org/10.1016/j.ejphar.2006.03.026] [PMID: 16624279]
[181]
Purohit AP. C.K.K.Gokhale SE. A Text Book Of Pharmacognosy First Year Diploma In Pharmacy. 42nd ed. NIRALI PRAKASHAN. 2008; p. 330.
[182]
Lee SA, Hong SS, Han XH, et al. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem Pharm Bull (Tokyo) 2005; 53(7): 832-5.
[http://dx.doi.org/10.1248/cpb.53.832] [PMID: 15997146]
[183]
Mann A. Biopotency role of culinary spices and herbs and their chemical constituents in health and commonly used spices in Nigerian dishes and snacks. Afr J Food Sci 2011; 5(3): 111-24.
[184]
Chonpathompikunlert P, Wattanathorn J, Muchimapura S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 2010; 48(3): 798-802.
[http://dx.doi.org/10.1016/j.fct.2009.12.009] [PMID: 20034530]
[185]
Ahmad N, Fazal H, Ahmad I, Abbasi BH. Free radical scavenging (DPPH) potential in nine Mentha species. Toxicol Ind Health 2012; 28(1): 83-9.
[http://dx.doi.org/10.1177/0748233711407238] [PMID: 21646282]
[186]
Kumar A, Khan IA, Koul S, et al. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J Antimicrob Chemother 2008; 61(6): 1270-6.
[http://dx.doi.org/10.1093/jac/dkn088] [PMID: 18334493]
[187]
Aneja K, Joshi R. Antimicrobial activity of Amomum subulatum and Elettaria cardamomum against dental caries causing microorganisms. Ethnobotanical Leaflets 2009; 2009(7): 3.
[188]
Ghanwate NA, Thakare P. Antimicrobial and synergistic activity of ingredients of betel quid on oral and enteric pathogens. BiosciDiscovery 2012; 3(1): 47-51.
[189]
Poljšak B, Dahmane R. Free radicals and extrinsic skin aging. Dermatol Res Pract 2012; 2012: 135206.
[http://dx.doi.org/10.1155/2012/135206]
[190]
Butt MS, Pasha I, Sultan MT, Randhawa MA, Saeed F, Ahmed W. Black pepper and health claims: a comprehensive treatise. Crit Rev Food Sci Nutr 2013; 53(9): 875-86.
[http://dx.doi.org/10.1080/10408398.2011.571799] [PMID: 23768180]
[191]
Srinivasan K. Antioxidant potential of spices and their active constituents. Crit Rev Food Sci Nutr 2014; 54(3): 352-72.
[http://dx.doi.org/10.1080/10408398.2011.585525] [PMID: 24188307]
[192]
Vijayakumar RS, Surya D, Nalini N. Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep 2004; 9(2): 105-10.
[http://dx.doi.org/10.1179/135100004225004742] [PMID: 15231065]
[193]
Hannoodee S, Nasuruddin DN. Acute inflammatory response.In:StatPearls. StatPearls Publishing 2021.
[194]
Kunnumakkara AB, Sailo BL, Banik K, et al. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16(1): 14.
[http://dx.doi.org/10.1186/s12967-018-1381-2] [PMID: 29370858]
[195]
Bang JS, Oh DH, Choi HM, et al. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther 2009; 11(2): R49.
[http://dx.doi.org/10.1186/ar2662] [PMID: 19327174]
[196]
Umar S, Golam Sarwar AHM, Umar K, et al. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell Immunol 2013; 284(1-2): 51-9.
[http://dx.doi.org/10.1016/j.cellimm.2013.07.004] [PMID: 23921080]
[197]
Kim SH, Lee YC. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. J Pharm Pharmacol 2009; 61(3): 353-9.
[http://dx.doi.org/10.1211/jpp.61.03.0010] [PMID: 19222908]
[198]
Aswar U, Shintre S, Chepurwar S, Aswar M. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharm Biol 2015; 53(9): 1358-66.
[http://dx.doi.org/10.3109/13880209.2014.982299] [PMID: 25868617]
[199]
Yang W, Chen YH, Liu H, Qu HD. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. Int J Mol Med 2015; 36(5): 1369-76.
[http://dx.doi.org/10.3892/ijmm.2015.2356] [PMID: 26648012]
[200]
Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Kuete V, Mihasan M. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer’s disease. Cell Mol Neurobiol 2014; 34(3): 437-49.
[http://dx.doi.org/10.1007/s10571-014-0028-y] [PMID: 24442916]
[201]
Kharbanda C, Alam MS, Hamid H, et al. Novel piperine derivatives with antidiabetic effect as ppar‐γ agonists. Chem Biol Drug Des 2016; 88(3): 354-62.
[http://dx.doi.org/10.1111/cbdd.12760] [PMID: 27037532]
[202]
Bairwa R, Rajawat BS, Sodha RS. Trachyspermum ammi. Pharmacogn Rev 2012; 6(11): 56-60.
[http://dx.doi.org/10.4103/0973-7847.95871] [PMID: 22654405]
[203]
Joshi SG. Medicinal Plants (English, Paperback, Joshi SG) New Delhi: Oxford & IBH Publishing Co Pvt Ltd . 2000 Book; p. 451.
[204]
Pruthi JS. Spices and Condiments. National Book Trust, India: National Book Trust, India, Ministry of Education, Government of India 2018; pp. 322.
[205]
Tazehjani DAJ, Farahpour MR, Hamishehkar H. Effectiveness of topical caraway essential oil loaded into nanostructured lipid carrier as a promising platform for the treatment of infected wounds. Colloids Surf A Physicochem Eng Asp 2021; 610: 125748.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125748]
[206]
Kaur GJ, Arora DS. In vitro antibacterial activity of three plants belonging to the family Umbelliferae. Int J Antimicrob Agents 2008; 31(4): 393-5.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.11.007] [PMID: 18191549]
[207]
Haque Rahul Md. Caraway distillate ameliorate hyperlipidemia and hepatic steatosis in obese rat. Int J Green Pharm 2021; 15(4)
[208]
Gilani AH, Jabeen Q, Ghayur MN, Janbaz KH, Akhtar MS. Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the Carum copticum seed extract. J Ethnopharmacol 2005; 98(1-2): 127-35.
[http://dx.doi.org/10.1016/j.jep.2005.01.017] [PMID: 15763373]
[209]
Pelczar M, Chan E, Krieg N. Control of microorganisms, the control of microorganisms by physical agents. Microbiology 1988; 469: 509.
[210]
Singh G, Maurya S, Catalan C, de Lampasona MP. Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. J Agric Food Chem 2004; 52(11): 3292-6.
[http://dx.doi.org/10.1021/jf035211c] [PMID: 15161185]
[211]
Shin S-C, Park I-K, Choi I-H. Nematicidal activity of onion (Allium cepa) oil and its components against the pine wood nematode (Bursaphelenchus xylophilus). Nematology 2007; 9(2): 231-5.
[http://dx.doi.org/10.1163/156854107780739018]
[212]
Kong JO, Lee S-M, Moon Y-S, Lee S-G, Ahn Y-J. Nematicidal activity of plant essential oils against Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). J Asia Pac Entomol 2006; 9(2): 173-8.
[http://dx.doi.org/10.1016/S1226-8615(08)60289-7]
[213]
Park I-K, Kim J, Lee SG, Shin SC. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J Nematol 2007; 39(3): 275-9.
[PMID: 19259498]
[214]
Kumrawat M, Yadav M. Trends in area, production, and yield of mustard crop in Bharatpur region of Rajasthan. IJEDR 2018; 6: 315-21.
[215]
Rani MRS, Foster GR, Leung S, Leaman D, Stark GR, Ransohoff RM. Characterization of β-R1, a gene that is selectively induced by interferon β (IFN-β) compared with IFN-α. J Biol Chem 1996; 271(37): 22878-84.
[http://dx.doi.org/10.1074/jbc.271.37.22878] [PMID: 8798467]
[216]
Ogidi O, Omu O, Ezeagba PA. Ethno pharmacologically active Components of Brassica juncea (Brown Mustard) seeds. Int J Pharmaceut Res Develop 2019; 1(1): 9-13.
[217]
Shankar S, Segaran G, Sundar RDV, et al. Brassicaceae-A classical review on its pharmacological activities. Int J Pharm Sci Rev Res 2019; 55(1): 107-13.
[218]
Kaur R, Sharma AK, Rani R, et al. Medicinal qualities of mustard oil and its role in human health against chronic diseases: A review. Asian J Dairy Food Res, 2019; 38(of).
[http://dx.doi.org/10.18805/ajdfr.DR-1443]
[219]
Sachan AK, Kumar S, Kumari K, et al. Medicinal uses of spices used in our traditional culture: Worldwide. J Med Plants Stud 2018; 6(3): 116-22.
[220]
Chopra AS, Lordan R, Horbańczuk OK, et al. The current use and evolving landscape of nutraceuticals. Pharmacol Res 2022; 175: 106001.
[http://dx.doi.org/10.1016/j.phrs.2021.106001] [PMID: 34826602]
[221]
Street A. Food as pharma: marketing nutraceuticals to India’s rural poor. Crit Public Health 2015; 25(3): 361-72.
[http://dx.doi.org/10.1080/09581596.2014.966652] [PMID: 25866449]
[222]
Cardone L, Castronuovo D, Perniola M, Cicco N, Candido V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci Hortic (Amsterdam) 2020; 272: 109560.
[http://dx.doi.org/10.1016/j.scienta.2020.109560]
[223]
Mao QQ, Xu XY, Cao SY, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 2019; 8(6): 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[224]
Batool S, Rasheed AK, Muhammad AH, et al. Bay leaf.In: Medicinal Plants of South Asia. Elsevier 2020; pp. 63-74.
[http://dx.doi.org/10.1016/B978-0-08-102659-5.00005-7]
[225]
Wani SA, Naik H, Wagay J, Ganie NA, Mulla MZ, Dar BN. Mentha: A review on its bioactive compounds and potential health benefits. Qual Assur Saf Crops Foods 2022; 14(4): 154-68.
[http://dx.doi.org/10.15586/qas.v14i4.1129]
[226]
Singletary K. Cardamom. Nutr Today 2022; 57(1): 38-49.
[http://dx.doi.org/10.1097/NT.0000000000000507]
[227]
Giovanelli S, Giusti G, Cioni PL, Minissale P, Ciccarelli D, Pistelli L. Aroma profile and essential oil composition of Rhus coriaria fruits from four Sicilian sites of collection. Ind Crops Prod 2017; 97: 166-74.
[http://dx.doi.org/10.1016/j.indcrop.2016.12.018]
[228]
Osuntokun OT. Aframomum melegueta (grains of paradise). Ann Microbiol Infect Dis 2020; 3(1): 1-6.
[229]
Hirko B, Getu A. Bixa orellana (Annatto bixa). A review on use, structure, extraction methods and analysis. J Agronom Technol Eng Manage 2022; 5(1): 687-96.
[230]
Chouni A, Paul S. A review on phytochemical and pharmacological potential of Alpinia galanga. Pharmacogn J 2017; 10(1): 09-15.
[http://dx.doi.org/10.5530/pj.2018.1.2]
[231]
Kingsly ARP, Singh DB, Manikantan MR, Jain RK. Moisture dependent physical properties of dried pomegranate seeds (Anardana). J Food Eng 2006; 75(4): 492-6.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.04.033]
[232]
Özçelik B, et al. Evaluation of the in vitro bioactivities of mahaleb cherry (Prunus mahaleb L.). Rom Biotechnol Lett 2012; 17(6): 7863-72.
[233]
Niranjan A, Prakash D. Chemical constituents and biological activities of turmeric (Curcuma longa L.)-a review. J Food Sci Technol 2008; 45(2): 109.
[234]
Zameer S, Najmi AK, Vohora D, Akhtar M. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutr Neurosci 2018; 21(8): 539-45.
[http://dx.doi.org/10.1080/1028415X.2017.1327200] [PMID: 28504078]
[235]
Upadhyay PK. Pharmacological activities and therapeutic uses of resins obtained from Ferula asafoetida Linn.: A review. International J Green Pharm 2017; 11(02): 5240-7.
[236]
Nassar MI, Gaara AH, El-Gharab AH, et al. Chemical constituents of clove (Syzygium aromaticum, Fam. Myrtaceae) and their antioxidant activity. Rev Latinoam Quím 2007; 35(3): 47.
[237]
Laribi B, Kouki K, M’Hamdi M, Bettaieb T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 2015; 103: 9-26.
[http://dx.doi.org/10.1016/j.fitote.2015.03.012] [PMID: 25776008]
[238]
Ashokkumar K, Murugan M, Dhanya MK, Warkentin TD. Botany, traditional uses, phytochemistry and biological activities of cardamom (Elettaria cardamomum (L.) Maton] – A critical review. J Ethnopharmacol 2020; 246: 112244.
[http://dx.doi.org/10.1016/j.jep.2019.112244] [PMID: 31541721]
[239]
Ahmad N, Fazal H, Abbasi BH, Farooq S, Ali M, Khan MA. Biological role of Piper nigrum L. (Black pepper): A review. Asian Pac J Trop Biomed 2012; 2(3): S1945-53.
[http://dx.doi.org/10.1016/S2221-1691(12)60524-3]
[240]
Khan SA, Shahid S, Jameel M, et al. In vitro antibacterial, antifungal and GC-MS analysis of seeds of Mustard Brown. International journal of pharmaceutical. Chemistry 2016; 6(4): 107-15.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy