Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Plasmon Tunability and Field Enhancement of Gold Nanostar

Author(s): Chhaya Sharma, Jyoti Katyal* and Rina Singh

Volume 13, Issue 3, 2023

Published on: 25 May, 2023

Article ID: e290323215139 Pages: 6

DOI: 10.2174/2210681213666230329135019

Price: $65

Abstract

Objective: The localized surface plasmon resonance (LSPR) and field enhancement of Gold nanosphere and nanostar were evaluated.

Method: FDTD solutions, a product of Lumerical solutions Inc., Vancouver, Canada [17], was used to perform the electromagnetic simulations in this work. The impact of particle size and spike number on peak wavelength was studied quantitatively.

Result: By altering the particle size and amount of spikes, we were able to detect a hot zone around nanostar. For Au nanostar, the peak wavelength for nanostar varies from visible to near-infrared. When compared to a nanosphere of the same dimension, the shift seen in nanostar is substantially higher, making it more suitable for biosensing applications. When the refractive index of the surrounding medium is increased, a red shift in peak wavelength is noticed, forming the basis for a plasmonic refractive index sensor. Aside from having a higher sensitivity, nanostar has a twofold hot spot system due to their unique surfaces. There is no evidence of spike aggregation in the near field pattern. As a result, it is thought to be a better nanostructure for biosensing applications.

Conclusion: The LSPR and field enhancement for Au nanosphere and Nanostar were investigated using the FDTD method. The nanosphere's peak wavelength is in visible region, whereas the nanostar's range extends from visible to near-infrared, depending on the size and number of spikes. At 517 nm, the enhancement factor for a nanosphere was 102, but at 1282 nm, the enhancement factor for a nanostar with six spikes was 108.

Graphical Abstract

[1]
Jang, Y.H.; Jang, Y.J.; Kim, S.; Quan, L.N.; Chung, K.; Kim, D.H. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev., 2016, 116(24), 14982-15034.
[http://dx.doi.org/10.1021/acs.chemrev.6b00302] [PMID: 28027647]
[2]
Ou, X.; Liu, Y.; Zhang, M.; Hua, L.; Zhan, S. Plasmonic gold nanostructures for biosensing and bioimaging. Mikrochim. Acta, 2021, 188(9), 304.
[http://dx.doi.org/10.1007/s00604-021-04964-1] [PMID: 34435258]
[3]
Huang, X.; El-Sayed, M.A. Plasmonic photo-thermal therapy (PPTT). Alex. J. Med., 2011, 47(1), 1-9.
[http://dx.doi.org/10.1016/j.ajme.2011.01.001]
[4]
Castro-Grijalba, A.; Montes-García, V.; Cordero-Ferradás, M.J.; Coronado, E.; Pérez-Juste, J.; Pastoriza-Santos, I. SERS-based molecularly imprinted plasmonic sensor for highly sensitive PAH detection. ACS Sens., 2020, 5(3), 693-702.
[http://dx.doi.org/10.1021/acssensors.9b01882] [PMID: 32134254]
[5]
Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev., 2011, 111(6), 3828-3857.
[http://dx.doi.org/10.1021/cr100313v] [PMID: 21648956]
[6]
Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley Interscience Publication, 1998.
[7]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J. Phys. Chem. B, 2003, 107(3), 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[8]
Katyal, J. Comparison of localised surface plasmon resonance and refractive index sensitivity for metallic nanostructures. Mater. Today Proc., 2019, 18, 613-622.
[http://dx.doi.org/10.1016/j.matpr.2019.06.455]
[9]
Link, S.; El-Sayed, M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem., 2000, 19(3), 409-453.
[http://dx.doi.org/10.1080/01442350050034180]
[10]
Link, S.; El-Sayed, M.A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B, 1999, 103(21), 4212-4217.
[http://dx.doi.org/10.1021/jp984796o]
[11]
Barnes, W.L. Comparing experiment and theory in plasmonics. J. Opt. A, Pure Appl. Opt., 2009, 11(11)114002
[http://dx.doi.org/10.1088/1464-4258/11/11/114002]
[12]
Karamehmedović, M.; Schuh, R.; Schmidt, V.; Wriedt, T.; Matyssek, C.; Hergert, W.; Stalmashonak, A.; Seifert, G.; Stranik, O. Comparison of numerical methods in near-field computation for metallic nanoparticles. Opt. Express, 2011, 19(9), 8939-8953.
[http://dx.doi.org/10.1364/OE.19.008939] [PMID: 21643147]
[13]
Smajic, J.; Hafner, C.; Raguin, L.; Tavzarashvili, K.; Mishrikey, M. Comparison of numerical methods for the analysis of plasmonic structures. J. Comput. Theor. Nanosci., 2009, 6(3), 763-774.
[http://dx.doi.org/10.1166/jctn.2009.1107]
[14]
Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P. Surface-enhanced raman spectroscopy. Anal. Chem., 2005, 77(17), 338A-346A.
[http://dx.doi.org/10.1021/ac053456d]
[15]
Zhang, Y.; Zhao, C.; Wang, X.; Sun, S.; Zhang, D.; Zhang, L.; Fang, Y.; Wang, P. Plasmon-driven photocatalytic properties based on the surface of gold nanostar particles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 264, 120240.
[http://dx.doi.org/10.1016/j.saa.2021.120240] [PMID: 34352503]
[16]
Tim, B.; Błaszkiewicz, P.; Kotkowiak, M. Recent advances in metallic nanoparticle assemblies for surface-enhanced spectroscopy. Int. J. Mol. Sci., 2021, 23(1), 291.
[http://dx.doi.org/10.3390/ijms23010291] [PMID: 35008714]
[17]
Lumerical solutions. Available From: http://docs.lumerical.com/en/fdtd/reference guide.html
[18]
Palik, E.D. Handbook of optical constants of solids; Academic press: San Diego, 1998. electronic resource
[19]
Foteinopoulou, S.; Vigneron, J.P.; Vandenbem, C. Optical near-field excitations on plasmonic nanoparticle-based structures. Opt. Express, 2007, 15(7), 4253-4267.
[http://dx.doi.org/10.1364/OE.15.004253] [PMID: 19532670]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy