Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Surface Modification of β-MnO2 Nanorods as Nanolubricant

Author(s): Yasser A. Attia* and Gamal El-Ghannam

Volume 13, Issue 2, 2023

Published on: 17 April, 2023

Article ID: e280323215045 Pages: 9

DOI: 10.2174/2210681213666230328120422

Price: $65

Abstract

Introduction: Nanolubricants are substances that use nanoparticles as lubricant additives. The proposal for wear reduction has piqued interest in nanolubricants. Particle agglomeration is the main drawback of using nanomaterials as lubricating oil additives, and creating novel nanolubricants is one of the most difficult challenges.

Objective: Evaluation of the nano β-MnO2 nanorods as nanoadditives for enhancing lubricating oil characteristics.

Methods: After producing β-MnO2 nanorods by a modified hydrothermal process, oleic acid was used to modify their surfaces. Next, the physical and tribological characteristics of lubricating oil before and after the addition of nanoadditives were assessed.

Results: The physical parameters of lubricating oil, including flash point, pour point, thermal stability, antiwear ability, and viscosity, were all improved by varying concentrations of surface-modified MnO2 nanorods by rates 8.19%, 50%, 63.04%, 10.9%, 8.96% at 40ºC and 4.18% at 100ºC, respectively. The findings demonstrate that the shear strain is reduced and an anti-wear boundary coating is created as a result of the deposition of nanoparticles produced by tribochemical reaction products during the friction process.

Conclusion: The development of a protective film using nanoadditives improves lubricant requirements, ushering in a revolution in the lubricant industry.

Graphical Abstract

[1]
Dassenoy, F. Nanoparticles as additives for the development of high performance and environmentally friendly engine lubricants. Tribology, 2019, 14, 237-253.
[2]
Chou, R.; Battez, A.H.; Cabello, J.J.; Viesca, J.L.; Osorio, A.; Sagastume, A. Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribol. Int., 2010, 43(12), 2327-2332.
[http://dx.doi.org/10.1016/j.triboint.2010.08.006]
[3]
Hu, Z.S.; Lai, R.; Lou, F.; Wang, L.G.; Chen, Z.L.; Chen, G.X.; Dong, J.X. Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear, 2002, 252(5-6), 370-374.
[http://dx.doi.org/10.1016/S0043-1648(01)00862-6]
[4]
Makhsin, S.R.; Razak, K.A.; Noordin, R.; Zakaria, N.D.; Chun, T.S. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis. Nanotechnology, 2012, 23(49), 495719.
[http://dx.doi.org/10.1088/0957-4484/23/49/495719] [PMID: 23164811]
[5]
Guo, D.; Xie, G.; Luo, J. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D Appl. Phys., 2014, 47(1), 013001.
[http://dx.doi.org/10.1088/0022-3727/47/1/013001]
[6]
Zhang, W.; Demydov, D.; Jahan, M.P.; Mistry, K.; Erdemir, A.; Malshe, A.P. Fundamental understanding of the tribological and thermal behavior of Ag-MoS2 nanoparticle-based multi-component lubricating system. Wear, 2012, 288, 9-16.
[http://dx.doi.org/10.1016/j.wear.2012.03.003]
[7]
Alves, S.M.; Barros, B.S.; Trajano, M.F.; Ribeiro, K.S.B.; Moura, E. Tribological behavior of vegetable oil-based lubricants with nanopar-ticles of oxides in boundary lubrication conditions. Tribol. Int., 2013, 65, 28-36.
[http://dx.doi.org/10.1016/j.triboint.2013.03.027]
[8]
Wu, H.; Zhao, J.; Xia, W.; Cheng, X.; He, A.; Yun, J.H.; Wang, L.; Huang, H.; Jiao, S.; Huang, L.; Zhang, S.; Jiang, Z.; Zhang, S.; Jiang, Z. A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribol. Int., 2017, 109, 398-408.
[http://dx.doi.org/10.1016/j.triboint.2017.01.013]
[9]
Wu, H.; Zhao, J.; Cheng, X.; Xia, W.; He, A.; Yun, J.H.; Huang, S.; Wang, L.; Huang, H.; Jiao, S.; Jiang, Z. Friction and wear characteristics of TiO 2 nano-additive water-based lubricant on ferritic stainless steel. Tribol. Int., 2018, 117, 24-38.
[http://dx.doi.org/10.1016/j.triboint.2017.08.011]
[10]
Laad, M.; Ponnamma, D.; Sadasivun, K.K. Tribological studies of nanomodified mineral based multi-grade engine oil. Int. J. Appl. Eng. Res., 2017, 12, 2855-2861.
[11]
Luo, T.; Wei, X.; Huang, X.; Huang, L.; Yang, F. Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram. Int., 2014, 40(5), 7143-7149.
[http://dx.doi.org/10.1016/j.ceramint.2013.12.050]
[12]
Peña-Parás, L.; Taha-Tijerina, J.; Garza, L.; Maldonado-Cortés, D.; Michalczewski, R.; Lapray, C. Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear, 2015, 3(32-333), 1256-1261.
[13]
Wu, Y.Y.; Tsui, W.C.; Liu, T.C. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 2007, 262(7-8), 819-825.
[http://dx.doi.org/10.1016/j.wear.2006.08.021]
[14]
Zhang, L.L.; Tu, J.P.; Wu, H.M.; Yang, Y.Z. WS2 nanorods prepared by self-transformation process and their tribological properties as additive in base oil. Mater. Sci. Eng. A, 2007, 454-455, 487-491.
[http://dx.doi.org/10.1016/j.msea.2006.11.072]
[15]
Xu, P.; Li, Z.; Zhang, X.; Yang, Z. Increased response to oxidative stress challenge of nano-copper-induced apoptosis in mesangial cells. J. Nanopart. Res., 2014, 16(12), 2777.
[http://dx.doi.org/10.1007/s11051-014-2777-4]
[16]
Nallasamy, P.; Saravanakumar, N.; Nagendran, S.; Suriya, E.M.; Yashwant, D. Tribological investigations on MoS2 -based nanolubricant for machine tool slideways. Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., 2015, 229(5), 559-567.
[http://dx.doi.org/10.1177/1350650114556394]
[17]
Srinivas, V.; Thakur, R.N.; Jain, A.K. Anti-wear, anti-friction and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulphide nanoparticles. Tribol. Trans., 2017, 60(1), 12-19.
[http://dx.doi.org/10.1080/10402004.2016.1142034]
[18]
Verma, A.; Jiang, W.; Abu Safe, H.H.; Brown, W.D.; Malshe, A.P. Tribological behavior of deagglomerated active inorganic nanoparticles for advanced lubrication. Tribol. Trans., 2008, 51(5), 673-678.
[http://dx.doi.org/10.1080/10402000801947691]
[19]
Deshpande, P.; Dassenoy, F.; Minfray, C.; Jenei, I.Z.; Le Mogne, T.; Thiebaut, B. Effect of Adding TiO2 nanoparticles to a lubricant containing MoDTC on the tribological behavior of steel/steel contacts under boundary lubrication conditions. Tribol. Lett., 2020, 68(1), 39.
[http://dx.doi.org/10.1007/s11249-020-1278-0]
[20]
Ali, M.K.A.; Xianjun, H.; Mai, L.; Qingping, C.; Turkson, R.F.; Bicheng, C. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol. Int., 2016, 103, 540-554.
[http://dx.doi.org/10.1016/j.triboint.2016.08.011]
[21]
Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of nanoparticles in oil lubrication. Tribol. Int., 2016, 102, 88-98.
[http://dx.doi.org/10.1016/j.triboint.2016.05.020]
[22]
Joly-Pottuz, L.; Vacher, B.; Ohmae, N.; Martin, J.M.; Epicier, T. Anti-wear and friction reducing mechanisms of carbon nanoonions as lubricant additives. Tribol. Int., 2008, 30, 69-80.
[http://dx.doi.org/10.1016/j.triboint.2007.05.001]
[23]
Cortes, V.; Sanchez, K.; Gonzalez, R.; Alcoutlabi, M.; Ortega, J.A. The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants, 2020, 8(1), 10.
[http://dx.doi.org/10.3390/lubricants8010010]
[24]
Einstein, A. On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart. Ann. Phys., 1905, 17, 549-560.
[http://dx.doi.org/10.1002/andp.19053220806]
[25]
Lee, K.; Hwang, Y.; Cheong, S.; Choi, Y.; Kwon, L.; Lee, J.; Kim, S.H. Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett., 2009, 35(2), 127-131.
[http://dx.doi.org/10.1007/s11249-009-9441-7]
[26]
Chen, S.; Liu, W. Oleic acid capped PbS nanoparticles: Synthesis, characterization and tribological properties. Mater. Chem. Phys., 2006, 98(1), 183-189.
[http://dx.doi.org/10.1016/j.matchemphys.2005.09.043]
[27]
Song, X.Y.; Zheng, S.H.; Chen, Q. Anti-friction and anti-wear properties of SiO nanoparticles. Appl. Mech. Mater., 2013, 316-317, 950-953.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.316-317.950]
[28]
Ye, W.; Cheng, T.; Ye, Q.; Guo, X.; Zhang, Z.; Dang, H. Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives. Mater. Sci. Eng. A, 2003, 359(1-2), 82-85.
[http://dx.doi.org/10.1016/S0921-5093(03)00353-8]
[29]
Ma, S.; Zheng, S.; Cao, D.; Guo, H. Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology, 2010, 8(5), 468-472.
[http://dx.doi.org/10.1016/j.partic.2009.06.007]
[30]
Viesca, J.L.; Hernández Battez, A.; González, R.; Chou, R.; Cabello, J.J. Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol. Int., 2011, 44(7-8), 829-833.
[http://dx.doi.org/10.1016/j.triboint.2011.02.006]
[31]
Xie, H; Jiang, B; He, J; Xia, X; Pan, F Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Internat., 2015, 93(A), 63-70.
[http://dx.doi.org/10.1016/j.triboint.2015.08.009]
[32]
Sivakandhan, C.; Elumalai, P.V.; Murugan, M.; Saravanan, A.; Ranjit, P.S.; Varaprasad, B. Effects of on MnO2 nanoparticles behavior of a sardine oil methyl ester operated in thermal barrier coated engine. J. Therm. Anal. Calorim., 2022, 147(16), 8919-8931.
[http://dx.doi.org/10.1007/s10973-021-11132-3]
[33]
Kesarwani, H.; Srivastava, V.; Mandal, A.; Sharma, S.; Choubey, A.K. Application of α-MnO2 nanoparticles for residual oil mobilization through surfactant polymer flooding. Environ. Sci. Pollut. Res. Int., 2022, 29(29), 44255-44270.
[http://dx.doi.org/10.1007/s11356-022-19009-0] [PMID: 35132514]
[34]
Rapoport, L.; Leshchinsky, V.; Lvovsky, M.; Nepomnyashchy, O.; Volovik, Y.; Tenne, R. Mechanism of friction of fullerenes. Ind. Lubr. Tribol., 2002, 54(4), 171-176.
[http://dx.doi.org/10.1108/00368790210431727]
[35]
Demas, N.G.; Timofeeva, E.V.; Routbort, J.L.; Fenske, G.R. Tribological effects of BN and MoS2 nanoparticles added to polyalphaolefin oil in piston skirt/cylinder liner tests. Tribol. Lett., 2012, 47(1), 91-102.
[http://dx.doi.org/10.1007/s11249-012-9965-0]
[36]
Sunqing, Q.; Junxiu, D.; Guoxu, C. Tribological properties of CeF3 nanoparticles as additives in lubricating oils. Wear, 1999, 230(1), 35-38.
[http://dx.doi.org/10.1016/S0043-1648(99)00084-8]
[37]
Abdelsalam, E.M.; Mohamed, Y.M.A.; Abdelkhalik, S.; El Nazer, H.A.; Attia, Y.A. Photocatalytic oxidation of nitrogen oxides (NOx) using Ag- and Pt-doped TiO2 nanoparticles under visible light irradiation. Environ. Sci. Pollut. Res. Int., 2020, 27(28), 35828-35836.
[http://dx.doi.org/10.1007/s11356-020-09649-5] [PMID: 32601878]
[38]
Attia, Y.A.; Mohamed, Y.M.A.; Awad, M.M.; Alexeree, S. Ag doped ZnO nanorods catalyzed photo-triggered synthesis of some novel (1H-tetrazol-5-yl)-coumarin hybrids. J. Organomet. Chem., 2020, 919, 121320.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121320]
[39]
Attia, Y.A.; Mohamed, Y.M.A. Silicon-grafted Ag/AgX/rGO nanomaterials (X = Cl or Br) as dip-photocatalysts for highly efficient p-nitrophenol reduction and paracetamol production. Appl. Organomet. Chem., 2019, 33(3), e4757.
[http://dx.doi.org/10.1002/aoc.4757]
[40]
Attia, Y.A.; Abdel-Hafez, S. One step synthesis of photoluminescent catalytic gold nanoclusters using organoselenium compounds. New J. Chem., 2022, 960, 122245.
[41]
Attia, Y.A.; Mohamed, Y.M.A. Nano Ag/AgCl wires-photocatalyzed hydrogen production and transfer hydrogenation of Knoevenagel-type products. New J. Chem., 2022, 46(4), 1677-1686.
[http://dx.doi.org/10.1039/D1NJ04985B]
[42]
Attia, Y.A.; Samer, M.; Moselhy, M.A.; Arisha, A.H.; Abdelqader, A.A.; Abdelsalam, E.M. Influence of laser photoactivated graphitic carbon nitride nanosheets and nickel nanoparticles on purple non-sulfur bacteria for biohydrogen production from biomass. J. Clean. Prod., 2021, 299(3), 126898.
[http://dx.doi.org/10.1016/j.jclepro.2021.126898]
[43]
Ajay, R.; Durgalakshmi, D.; Karthe, P.; Balakumar, S. Role of interfacial charge transfer process in the graphene-ZnO-MoO3 core-shell nanoassemblies for efficient disinfection of industrial effluents. Process. Appl. Ceram., 2019, 13(4), 376-386.
[http://dx.doi.org/10.2298/PAC1904376A]
[44]
Sayed, S.M.; Attia, Y.A.; Mohamed, M.B.; EL-Sherbini, E.S.A. Re-evaluation of lubricant oil specifications using surface modified alumina nanoadditives. Nanosci. Nanotechnol. Asia, 2018, 8(2), 255-262.
[http://dx.doi.org/10.2174/2210681207666170619084117]
[45]
Ghasemi, R.; Fazlali, A.; Mohammadi, A.H. Effects of TiO2 nanoparticles and oleic acid surfactant on the rheological behavior of engine lubricant oil. J. Mol. Liq., 2018, 268, 925-930.
[http://dx.doi.org/10.1016/j.molliq.2018.07.002]
[46]
Gao, Y.; Chen, G.; Oli, Y.; Zhang, Z.; Xue, Q. Study on tribological properties of oleic acid-modified TiO2 nanoparticle in water. Wear, 2002, 252(5-6), 454-458.
[http://dx.doi.org/10.1016/S0043-1648(01)00891-2]
[47]
Hong, F.T.; Schneider, A.; Sarathy, S.M. Enhanced lubrication by core-shell TiO2 nanoparticles modified with gallic acid ester. Tribol. Int., 2020, 146, 106263.
[http://dx.doi.org/10.1016/j.triboint.2020.106263]
[48]
Kumara, C.; Leonard, D.N.; Meyer, H.M.; Luo, H.; Armstrong, B.L.; Qu, J. Palladium nanoparticle-enabled ultrathick tribofilm with unique composition. ACS Appl. Mater. Interfaces, 2018, 10(37), 31804-31812.
[http://dx.doi.org/10.1021/acsami.8b11213] [PMID: 30141901]
[49]
Spikes, H.A. Additive-additive and additive-surface interactions in lubrication. Lubr. Sci., 1989, 2(1), 3-23.
[http://dx.doi.org/10.1002/ls.3010020102]
[50]
Xue, Q.; Liu, W.; Zhang, Z. Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear, 1997, 213(1-2), 29-32.
[http://dx.doi.org/10.1016/S0043-1648(97)00200-7]
[51]
Chen, Y.; Renner, P.; Liang, H.; Chen, Y.; Renner, P.; Liang, H. Dispersion of nanoparticles in lubricating oil: A critical review. Lubricants, 2019, 7(1), 7.
[http://dx.doi.org/10.3390/lubricants7010007]
[52]
Rajamanickam, N.; Ganesan, P.; Rajashabala, S.; Ramachandran, K. Structural and optical properties of α-MnO2 Nanowires and β-MnO2 nanorods, solid state physics. AIP Conf. Proc., 2014, 1591, 267-269.
[http://dx.doi.org/10.1063/1.4872568]
[53]
Jain, N.; Roy, A. Phase & morphology engineered surface reducibility of MnO2 nano-heterostructures: Implications on catalytic activity towards CO oxidation. Mater. Res. Bull., 2020, 121, 110615.
[http://dx.doi.org/10.1016/j.materresbull.2019.110615]
[54]
Lashanizadegan, M.; Farzi, G.; Nia, N. Synthesis and surface modification of aluminium oxide nanoparticles. J. Ceram. Proc. Res., 2014, 15, 316-319.
[55]
Ettefaghi, E.; Ahmadi, H.; Rashidi, A.; Mohtasebi, S.S.; Alaei, M. Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive. Int. J. Ind. Chem., 2013, 4(1), 28.
[http://dx.doi.org/10.1186/2228-5547-4-28]
[56]
Lasfargues, M.; Geng, Q.; Cao, H.; Ding, Y. Mechanical dispersion of nanoparticles and its effect on the specific heat capacity of impure binary nitrate salt mixtures. Nanomaterials, 2015, 5(3), 1136-1146.
[http://dx.doi.org/10.3390/nano5031136] [PMID: 28347056]
[57]
Puri, P.; Yang, V. Thermo-mechanical behavior of nano aluminum particles with oxide layers during melting. J. Nanopart. Res., 2010, 12(8), 2989-3002.
[http://dx.doi.org/10.1007/s11051-010-9889-2]
[58]
Senatore, A.; D’Agostino, V.; Petrone, V.; Ciambelli, P.; Sarno, M. Graphene oxide nano sheets as effective friction modifier for oil lubricant, materials, methods, and tribological results. ISRN Tribol., 2013, 2013, 425809.
[http://dx.doi.org/10.5402/2013/425809]
[59]
Ettefaghi, E.; Rashidi, A.; Ahmadi, H.; Mohtasebi, S.S.; Pourkhalil, M. Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int. Commun. Heat Mass Transf., 2013, 48, 178-182.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.08.004]
[60]
Ji, X.; Chen, Y.; Zhao, G.; Wang, X.; Liu, W. Tribological properties of CaCO3 nanoparticles as an additive in lithium grease. Tribol. Int., 2010, 41, 113-119.
[61]
Hu, Z.S.; Dong, J.X. Study on antiwear and reducing friction additive of nanometer titanium oxide. Wear, 1998, 216(1), 92-96.
[http://dx.doi.org/10.1016/S0043-1648(97)00252-4]
[62]
Kumar, N.; Bhaumik, S.; Sen, A.; Shukla, A.P.; Pathak, S.D. One-pot synthesis and first-principles elasticity analysis of polymorphic MnO2 nanorods for tribological assessment as friction modifiers. RSC Advanc., 2017, 7(54), 34138-34148.
[http://dx.doi.org/10.1039/C7RA04401A]
[63]
Makowski, Ł.; Bojarska, Z.; Rożeń, A. Rheological properties of engine oil with nano-additives based on MoS2 materials. Nanomaterials, 2022, 12(4), 581.
[http://dx.doi.org/10.3390/nano12040581] [PMID: 35214910]
[64]
Zulkifli, N.W.M.; Kalam, M.A.; Masjuki, H.H.; Yunus, R. Experimental analysis of tribological properties of biolubricant with nanoparticle additive. Procedia Eng., 2013, 68, 152-157.
[http://dx.doi.org/10.1016/j.proeng.2013.12.161]
[65]
Wu, L.; Zhang, Y.; Yang, G.; Zhang, S.; Yu, L.; Zhang, P. Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv., 2016, 6(74), 69836-69844.
[http://dx.doi.org/10.1039/C6RA10042B]
[66]
Uflyand, I.E.; Zhinzhilo, V.A.; Burlakova, V.E. Metal-containing nanomaterials as lubricant additives: State-of-the-art and future devel-opment. Friction, 2019, 7(2), 93-116.
[http://dx.doi.org/10.1007/s40544-019-0261-y]
[67]
Trivedi, K.; Parekh, K.; Upadhyay, R.V. Nanolubricant: Magnetic nanoparticle based. Mater. Res. Express, 2017, 4(11), 114003.
[http://dx.doi.org/10.1088/2053-1591/aa95e1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy