Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Elevation of LEM Domain Containing 1 Predicts Poor Prognosis of NSCLC Patients and Triggers Malignant Stemness and Invasion of NSCLC Cells by Stimulating PI3K/AKT Pathway

Author(s): Li Li and Pei Zhang*

Volume 24, Issue 3, 2024

Published on: 28 April, 2023

Page: [366 - 378] Pages: 13

DOI: 10.2174/1566524023666230324135330

Price: $65

Abstract

Background: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death globally. LEM domain containing 1 (LEMD1) function has been identified in several cancers but not in NSCLC.

Objective: This study aimed to investigate the LEMD1 function in NSCLC.

Methods: NSCLC tissues were obtained from 66 patients, and LEMD1 expressions were measured using quantitative real-time PCR, immunohistochemical assay, and Western blot. Overall survival of NSCLC patients was estimated by the Kaplan-Meier method. Meanwhile, LEMD1 function and mechanism were assessed using Cell Counting Kit-8, 5-Ethynyl-2′-deoxyuridine analysis, Transwell, Sphere formation assay, and flow cytometry. Furthermore, LEMD1 function in vivo was evaluated by establishing a xenograft tumor model, hematoxylin-eosin staining, and immunohistochemical assay.

Results: LEMD1 was highly expressed in NSCLC tissues and was interrelated to tumor differentiation, TNM stage, and lymph node metastasis of patients. Overall survival of NSCLC patients with high LEMD1 was found to be lower than that of patients with low LEMD1. Functionally, interference with LEMD1 restrained NSCLC cell proliferation, invasion, and stemness characteristics. Mechanistically, LEMD1 facilitated the malignant phenotype of NSCLC, and 740 Y-P reversed this impact, prompting that LEMD1 aggravated NSCLC by activating PI3K/AKT pathway. Furthermore, LEMD1 knockdown hindered NSCLC proliferation in vivo.

Conclusion: LEMD1 accelerated NSCLC cell proliferation, invasion, and stemness characteristics via activating PI3K/AKT pathway.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Pikor LA, Ramnarine VR, Lam S, Lam WL. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 2013; 82(2): 179-89.
[http://dx.doi.org/10.1016/j.lungcan.2013.07.025] [PMID: 24011633]
[3]
Lo Russo G, Imbimbo M, Garassino MC. Is the chemotherapy era in advanced non-small cell lung cancer really over? Maybe not yet. Tumori 2016; 102(3): 223-5.
[http://dx.doi.org/10.5301/tj.5000479] [PMID: 26979246]
[4]
Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta Gene Regul Mech 2016; 1859(1): 169-76.
[http://dx.doi.org/10.1016/j.bbagrm.2015.06.015] [PMID: 26149773]
[5]
Wang J, Jiang D, Li Z, et al. BCAP31, a cancer/testis antigen-like protein, can act as a probe for non-small-cell lung cancer metastasis. Sci Rep 2020; 10(1): 4025.
[http://dx.doi.org/10.1038/s41598-020-60905-7] [PMID: 32132574]
[6]
Wang X, Duan J, Fu W, et al. Decreased expression of NEDD4L contributes to NSCLC progression and metastasis. Biochem Biophys Res Commun 2019; 513(2): 398-404.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.001] [PMID: 30967264]
[7]
Wagner N, Krohne G. LEM-Domain proteins: New insights into lamin-interacting proteins. Int Rev Cytol 2007; 261: 1-46.
[http://dx.doi.org/10.1016/S0074-7696(07)61001-8] [PMID: 17560279]
[8]
Sasahira T, Kurihara-Shimomura M, Nishiguchi Y, Shimomura H, Kirita T. Sushi repeat containing protein X-linked 2 is a downstream signal of LEM domain containing 1 and acts as a tumor-promoting factor in oral squamous cell carcinoma. Int J Mol Sci 2020; 21(10): 3655.
[http://dx.doi.org/10.3390/ijms21103655 ] [PMID: 32455867]
[9]
Sasahira T, Kurihara M, Nakashima C, Kirita T, Kuniyasu H. LEM domain containing 1 promotes oral squamous cell carcinoma invasion and endothelial transmigration. Br J Cancer 2016; 115(1): 52-8.
[http://dx.doi.org/10.1038/bjc.2016.167] [PMID: 27280633]
[10]
Xu M, Lin B, Zheng D, et al. LEM domain containing 1 promotes thyroid cancer cell proliferation and migration by activating the Wntβ catenin signaling pathway and epithelial mesenchymal transition. Oncol Lett 2021; 21(6): 442.
[http://dx.doi.org/10.3892/ol.2021.12703 ] [PMID: 33868480]
[11]
Chang Y, Wang X, Xu Y, et al. Comprehensive characterization of cancer‐testis genes in testicular germ cell tumor. Cancer Med 2019; 8(7): 3511-9.
[http://dx.doi.org/10.1002/cam4.2223] [PMID: 31070303]
[12]
Li D, Wang D, Liu H, Jiang X. LEM domain containing 1 (LEMD1) transcriptionally activated by SRY-related high-mobility-group box 4 (SOX4) accelerates the progression of colon cancer by upregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling path-way. Bioengineered 2022; 13(4): 8087-100.
[http://dx.doi.org/10.1080/21655979.2022.2047556] [PMID: 35294319]
[13]
Cao X, Yao N, Zhao Z, et al. LEM domain containing 1 promotes pancreatic cancer growth and metastasis by p53 and mTORC1 signaling pathway. Bioengineered 2022; 13(3): 7771-84.
[http://dx.doi.org/10.1080/21655979.2022.2047404] [PMID: 35286235]
[14]
Qu Y, Cheng B, Shao N, et al. Prognostic value of immune-related genes in the tumor microenvironment of lung adenocarcinoma and lung squamous cell carcinoma. Aging 2020; 12(6): 4757-77.
[http://dx.doi.org/10.18632/aging.102871] [PMID: 32209727]
[15]
Abu Halim NH, Zakaria N, Theva Das K, et al. The effects of lentivirus-mediated gene silencing of RARβ on the stemness capability of non-small cell lung cancer. J Cancer 2021; 12(12): 3468-85.
[http://dx.doi.org/10.7150/jca.50793] [PMID: 33995625]
[16]
Lin F, Yang Y, Wei S, et al. Hydrogen sulfide protects against high glucose-induced human umbilical vein endothelial cell injury through activating PI3K/Akt/eNOS pathway. Drug Des Devel Ther 2020; 14: 621-33.
[http://dx.doi.org/10.2147/DDDT.S242521] [PMID: 32103904]
[17]
Győrffy B, Surowiak P, Budczies J, Lánczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 2013; 8(12): e82241.
[http://dx.doi.org/10.1371/journal.pone.0082241] [PMID: 24367507]
[18]
Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E, et al. Stem cell-like ALDH bright cellular states in EGFR-mutant non-small cell lung cancer: A novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin. Cell Cycle 2013; 12(21): 3390-404.
[http://dx.doi.org/10.4161/cc.26417] [PMID: 24047698]
[19]
Xu P, Jiang L, Yang Y, et al. PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation. Theranostics 2020; 10(8): 3767-78.
[http://dx.doi.org/10.7150/thno.43142 ] [PMID: 32206121]
[20]
Cai H, Zheng Y, Wen Z, Yang Y, Yang S, Zhang Q. LncRNA AIRN influences the proliferation and apoptosis of hepatocellular carcinoma cells by regulating STAT1 ubiquitination. Arch Pharm Res 2021; 44(4): 414-26.
[http://dx.doi.org/10.1007/s12272-021-01317-7] [PMID: 33759138]
[21]
Ancuţa E, Ancuţa C, Cozma LG, et al. Tumor biomarkers in cervical cancer: Focus on Ki-67 proliferation factor and Ecadherin expression Rom J Morphol Embryol 2009; 50(3): 413-8.
[PMID: 19690767]
[22]
Noh MG, Oh SJ, Ahn EJ, et al. Prognostic significance of E-cadherin and N-cadherin expression in Gliomas. BMC Cancer 2017; 17(1): 583.
[http://dx.doi.org/10.1186/s12885-017-3591-z] [PMID: 28851312]
[23]
Basati G, Mohammadpour H, Emami Razavi A. Association of high expression levels of SOX2, NANOG, and OCT4 in gastric cancer tumor tissues with progression and poor prognosis. J Gastrointest Cancer 2020; 51(1): 41-7.
[http://dx.doi.org/10.1007/s12029-018-00200-x] [PMID: 30628031]
[24]
Zhao Y, Li Y, Sheng J, Wu F, Li K, Huang R, et al. P53-R273H mutation enhances colorectal cancer stemness through regulating specific lncRNAs. J exper clinic cancer res. CR 2019; 38(1): 379.
[25]
Sarabia-Sánchez MÁ, Alvarado-Ortiz E, Toledo-Guzman ME, García-Carrancá A, Ortiz-Sánchez E. ALDHHIGH population is regulated by the AKTβ-Catenin pathway in a cervical cancer model. Front Oncol 2020; 10: 1039.
[http://dx.doi.org/10.3389/fonc.2020.01039] [PMID: 32766133]
[26]
Li Q, Ge Y, Chen X, et al. LEM domain containing 1 promotes proliferation via activating the PI3K/Akt signaling pathway in gastric cancer. J Cell Biochem 2019; 120(9): 15190-201.
[http://dx.doi.org/10.1002/jcb.28783 ] [PMID: 31021450]
[27]
Shen W, Zhang X, Fu X, et al. A novel and promising therapeutic approach for NSCLC: Recombinant human arginase alone or combined with autophagy inhibitor. Cell Death Dis 2017; 8(3): e2720.
[http://dx.doi.org/10.1038/cddis.2017.137] [PMID: 28358368]
[28]
Ghafouri-Fard S, Ousati Ashtiani Z, Sabah Golian B, Hasheminasab SM, Modarressi MH. Expression of two testis-specific genes, SPATA19 and LEMD1, in prostate cancer. Arch Med Res 2010; 41(3): 195-200.
[http://dx.doi.org/10.1016/j.arcmed.2010.04.003 ] [PMID: 20682177]
[29]
Yuki D, Lin YM, Fujii Y, Nakamura Y, Furukawa Y. Isolation of LEM domain-containing 1, a novel testis-specific gene expressed in colorectal cancers. Oncol Rep 2004; 12(2): 275-80.
[http://dx.doi.org/10.3892/or.12.2.275] [PMID: 15254688]
[30]
Turajlic S, Swanton C. Metastasis as an evolutionary process. Science 2016; 352(6282): 169-75.
[http://dx.doi.org/10.1126/science.aaf2784] [PMID: 27124450]
[31]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[32]
Clarke MF. Clinical and therapeutic implications of cancer stem cells. N Engl J Med 2019; 380(23): 2237-45.
[http://dx.doi.org/10.1056/NEJMra1804280] [PMID: 31167052]
[33]
Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev 2017; 109: 63-73.
[http://dx.doi.org/10.1016/j.addr.2016.02.002] [PMID: 26877102]
[34]
Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science 2013; 339(6127): 1567-70.
[http://dx.doi.org/10.1126/science.1230184] [PMID: 23539597]
[35]
Plaks V, Kong N, Werb Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16(3): 225-38.
[http://dx.doi.org/10.1016/j.stem.2015.02.015] [PMID: 25748930]
[36]
Yang B, Wang Y, Chen Z, Feng YM, Shi LL. Effects of apatinib on the “Stemness” of non-small-cell lung cancer cells in vivo and its related mechanisms. Can Respir J 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/2479369] [PMID: 32849930]
[37]
Soltanian S, Sheikhbahaei M. Effect of menadione and combination of gemcitabine and cisplatin on cancer stem cells in human Non-small Cell Lung Cancer (NSCLC) cell line A549. Iran J Pharm Res 2021; 20(1): 105-17.
[PMID: 34400945]
[38]
Içduygu FM, Samli H, Özgöz A, Vatansever B, Oztürk KH, Akgün E. Possibility of paclitaxel to induce the stemness-related characteristics of prostate cancer cells. Adv Clin Exp Med 2021; 30(12): 1283-91.
[39]
Dong J, Xu X, Zhang Q, Yuan Z, Tan B. The PI3K/AKT pathway promotes fracture healing through its crosstalk with Wntβ-catenin. Exp Cell Res 2020; 394(1): 112137.
[http://dx.doi.org/10.1016/j.yexcr.2020.112137] [PMID: 32534061]
[40]
Feng LM, Wang XF, Huang QX. Thymoquinone induces cytotoxicity and reprogramming of EMT in gastric cancer cells by targeting PI3K/Akt/mTOR pathway. J Biosci 2017; 42(4): 547-54.
[http://dx.doi.org/10.1007/s12038-017-9708-3] [PMID: 29229873]
[41]
Graves EE, Maity A, Le QT. The tumor microenvironment in non-small-cell lung cancer. Semin Radiat Oncol 2010; 20(3): 156-63.
[http://dx.doi.org/10.1016/j.semradonc.2010.01.003] [PMID: 20685578]
[42]
Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem 2017; 42(4): 1431-46.
[43]
Rui X, Yan X, Zhang K. Baicalein inhibits the migration and invasion of colorectal cancer cells via suppression of the AKT signaling pathway. Oncol Lett 2016; 11(1): 685-8.
[http://dx.doi.org/10.3892/ol.2015.3935] [PMID: 26870267]
[44]
Zhang Z, Zhang M, Liu H, Yin W. AZD9291 promotes autophagy and inhibits PI3K/Akt pathway in NSCLC cancer cells. J Cell Biochem 2019; 120(1): 756-67.
[http://dx.doi.org/10.1002/jcb.27434] [PMID: 30145802]
[45]
Chen B, Shen Z, Wu D, et al. Glutathione peroxidase 1 promotes NSCLC resistance to cisplatin via ROS-Induced activation of PI3K/AKT pathway. BioMed Res Int 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/7640547] [PMID: 31032363]
[46]
Lee NP, Chan CM, Tung LN, Wang HK, Law S. Tumor xenograft animal models for esophageal squamous cell carcinoma. J Biomed Sci 2018; 25(1): 66.
[http://dx.doi.org/10.1186/s12929-018-0468-7] [PMID: 30157855]
[47]
Tosca EM, Gauderat G, Fouliard S, Burbridge M, Chenel M, Magni P. Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach. CPT Pharmacometrics Syst Pharmacol 2021; 10(11): 1396-411.
[http://dx.doi.org/10.1002/psp4.12710] [PMID: 34708556]
[48]
Li H, Lin PH, Gupta P, et al. MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer 2021; 20(1): 118.
[http://dx.doi.org/10.1186/s12943-021-01418-3] [PMID: 34521423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy