Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Epigenetics of Fear, Anxiety and Stress – Focus on Histone Modifications

Author(s): Marco A. Ell, Miriam A. Schiele, Nicola Iovino and Katharina Domschke*

Volume 22, Issue 5, 2024

Published on: 01 September, 2023

Page: [843 - 865] Pages: 23

DOI: 10.2174/1570159X21666230322154158

Price: $65

Abstract

Fear-, anxiety- and stress-related disorders are among the most frequent mental disorders. Given substantial rates of insufficient treatment response and often a chronic course, a better understanding of the pathomechanisms of fear-, anxiety- and stress-related disorders is urgently warranted. Epigenetic mechanisms such as histone modifications - positioned at the interface between the biological and the environmental level in the complex pathogenesis of mental disorders - might be highly informative in this context. The current state of knowledge on histone modifications, chromatin-related pharmacology and animal models modified for genes involved in the histone-related epigenetic machinery will be reviewed with respect to fear-, anxiety- and stress-related states. Relevant studies, published until 30th June 2022, were identified using a multi-step systematic literature search of the Pub- Med and Web of Science databases. Animal studies point towards histone modifications (e.g., H3K4me3, H3K9me1/2/3, H3K27me2/3, H3K9ac, H3K14ac and H4K5ac) to be dynamically and mostly brain region-, task- and time-dependently altered on a genome-wide level or gene-specifically (e.g., Bdnf) in models of fear conditioning, retrieval and extinction, acute and (sub-)chronic stress. Singular and underpowered studies on histone modifications in human fear-, anxiety- or stress-related phenotypes are currently restricted to the phenotype of PTSD. Provided consistent validation in human phenotypes, epigenetic biomarkers might ultimately inform indicated preventive interventions as well as personalized treatment approaches, and could inspire future innovative pharmacological treatment options targeting the epigenetic machinery improving treatment response in fear-, anxiety- and stressrelated disorders.

Graphical Abstract

[1]
Baxter, A.J.; Vos, T.; Scott, K.M.; Ferrari, A.J.; Whiteford, H.A. The global burden of anxiety disorders in 2010. Psychol. Med., 2014, 44(11), 2363-2374.
[http://dx.doi.org/10.1017/S0033291713003243] [PMID: 24451993]
[2]
Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res., 2012, 21(3), 169-184.
[http://dx.doi.org/10.1002/mpr.1359] [PMID: 22865617]
[3]
Maercker, A.; Cloitre, M.; Bachem, R.; Schlumpf, Y.R.; Khoury, B.; Hitchcock, C.; Bohus, M. Complex post-traumatic stress disorder. Lancet, 2022, 400(10345), 60-72.
[http://dx.doi.org/10.1016/S0140-6736(22)00821-2] [PMID: 35780794]
[4]
Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jönsson, B. The economic cost of brain disorders in Europe. Eur. J. Neurol., 2012, 19(1), 155-162.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03590.x] [PMID: 22175760]
[5]
Penninx, B.W.J.H.; Pine, D.S.; Holmes, E.A.; Reif, A. Anxiety disorders. Lancet, 2021, 397(10277), 914-927.
[http://dx.doi.org/10.1016/S0140-6736(21)00359-7] [PMID: 33581801]
[6]
Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; Fratiglioni, L.; Jennum, P.; Lieb, R.; Maercker, A.; van Os, J.; Preisig, M.; Salvador-Carulla, L.; Simon, R.; Steinhausen, H.C. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol., 2011, 21(9), 655-679.
[http://dx.doi.org/10.1016/j.euroneuro.2011.07.018] [PMID: 21896369]
[7]
Solis, E.C.; van Hemert, A.M.; Carlier, I.V.E.; Wardenaar, K.J.; Schoevers, R.A.; Beekman, A.T.F.; Penninx, B.W.J.H.; Giltay, E.J. The 9-year clinical course of depressive and anxiety disorders: New NESDA findings. J. Affect. Disord., 2021, 295, 1269-1279.
[http://dx.doi.org/10.1016/j.jad.2021.08.108] [PMID: 34706441]
[8]
Schiele, M.A.; Gottschalk, M.G.; Domschke, K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin. Psychol. Rev., 2020, 77, 101830.
[http://dx.doi.org/10.1016/j.cpr.2020.101830] [PMID: 32163803]
[9]
Schiele, M.A.; Domschke, K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav., 2018, 17(3), e12423.
[http://dx.doi.org/10.1111/gbb.12423] [PMID: 28873274]
[10]
Szyf, M.; Bick, J. DNA methylation: A mechanism for embedding early life experiences in the genome. Child Dev., 2013, 84(1), 49-57.
[http://dx.doi.org/10.1111/j.1467-8624.2012.01793.x] [PMID: 22880724]
[11]
Dion, A.; Muñoz, P.T.; Franklin, T.B. Epigenetic mechanisms impacted by chronic stress across the rodent lifespan. Neurobiol. Stress, 2022, 17, 100434.
[http://dx.doi.org/10.1016/j.ynstr.2022.100434] [PMID: 35198660]
[12]
Weaver, I.C.G.; Korgan, A.C.; Lee, K.; Wheeler, R.V.; Hundert, A.S.; Goguen, D. Stress and the emerging roles of chromatin remodeling in signal integration and stable transmission of reversible phenotypes. Front. Behav. Neurosci., 2017, 11, 41.
[http://dx.doi.org/10.3389/fnbeh.2017.00041] [PMID: 28360846]
[13]
Marshall, P.R.; Bredy, T.W. Neuroepigenetic mechanisms underlying fear extinction: Emerging concepts. Psychopharmacology (Berl.), 2019, 236(1), 133-142.
[http://dx.doi.org/10.1007/s00213-018-5084-4] [PMID: 30506235]
[14]
Hing, B.; Gardner, C.; Potash, J.B. Effects of negative stressors on DNA methylation in the brain: Implications for mood and anxiety disorders. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2014, 165(7), 541-554.
[http://dx.doi.org/10.1002/ajmg.b.32265] [PMID: 25139739]
[15]
Malan-Müller, S.; Seedat, S.; Hemmings, S.M.J. Understanding posttraumatic stress disorder: Insights from the methylome. Genes Brain Behav., 2014, 13(1), 52-68.
[http://dx.doi.org/10.1111/gbb.12102] [PMID: 24286388]
[16]
Malan-Müller, S.; Hemmings, S.M.J. The big role of small rnas in anxiety and stress-related disorders. Vitam. Horm., 2017, 103, 85-129.
[http://dx.doi.org/10.1016/bs.vh.2016.08.001] [PMID: 28061977]
[17]
Gottschalk, M.G.; Domschke, K.; Schiele, M.A. Epigenetics underlying susceptibility and resilience relating to daily life stress, work stress, and socioeconomic status. Front. Psychiatry, 2020, 11, 163.
[http://dx.doi.org/10.3389/fpsyt.2020.00163] [PMID: 32265751]
[18]
Zannas, A.S.; Provençal, N.; Binder, E.B. Epigenetics of posttraumatic stress disorder: Current evidence, challenges, and future directions. Biol. Psychiatry, 2015, 78(5), 327-335.
[http://dx.doi.org/10.1016/j.biopsych.2015.04.003] [PMID: 25979620]
[19]
Provençal, N.; Binder, E.B. The effects of early life stress on the epigenome: From the womb to adulthood and even before. Exp. Neurol., 2015, 268, 10-20.
[http://dx.doi.org/10.1016/j.expneurol.2014.09.001] [PMID: 25218020]
[20]
Klengel, T.; Pape, J.; Binder, E.B.; Mehta, D. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology, 2014, 80, 115-132.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.013] [PMID: 24452011]
[21]
Narayanan, R.; Schratt, G. miRNA regulation of social and anxiety-related behaviour. Cell. Mol. Life Sci., 2020, 77(21), 4347-4364.
[http://dx.doi.org/10.1007/s00018-020-03542-7] [PMID: 32409861]
[22]
Schmidt, U.; Keck, M.E.; Buell, D.R. miRNAs and other non-coding RNAs in posttraumatic stress disorder: A systematic review of clinical and animal studies. J. Psychiatr. Res., 2015, 65, 1-8.
[http://dx.doi.org/10.1016/j.jpsychires.2015.03.014] [PMID: 25896120]
[23]
Hommers, L.G.; Domschke, K.; Deckert, J. Heterogeneity and individuality: MicroRNAs in mental disorders. J. Neural Transm. (Vienna), 2015, 122(1), 79-97.
[http://dx.doi.org/10.1007/s00702-014-1338-4] [PMID: 25395183]
[24]
Svaren, J.; Klebanow, E.; Sealy, L.; Chalkley, R. Analysis of the competition between nucleosome formation and transcription factor binding. J. Biol. Chem., 1994, 269(12), 9335-9344.
[http://dx.doi.org/10.1016/S0021-9258(17)37113-2] [PMID: 8132673]
[25]
Hildebrand, E.M.; Dekker, J. Mechanisms and functions of chromosome compartmentalization. Trends Biochem. Sci., 2020, 45(5), 385-396.
[http://dx.doi.org/10.1016/j.tibs.2020.01.002] [PMID: 32311333]
[26]
Waddington, C.H. The epigenotype. Int. J. Epidemiol., 2012, 41(1), 10-13.
[http://dx.doi.org/10.1093/ije/dyr184] [PMID: 22186258]
[27]
Feil, R. Environmental and nutritional effects on the epigenetic regulation of genes. Mutat. Res., 2006, 600(1-2), 46-57.
[http://dx.doi.org/10.1016/j.mrfmmm.2006.05.029] [PMID: 16854438]
[28]
Iacobuzio-Donahue, C.A. Epigenetic changes in cancer. Annu. Rev. Pathol., 2009, 4(1), 229-249.
[http://dx.doi.org/10.1146/annurev.pathol.3.121806.151442] [PMID: 18840073]
[29]
Skvortsova, K.; Iovino, N. Bogdanović O. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol., 2018, 19(12), 774-790.
[http://dx.doi.org/10.1038/s41580-018-0074-2] [PMID: 30425324]
[30]
Jirtle, R.L.; Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet., 2007, 8(4), 253-262.
[http://dx.doi.org/10.1038/nrg2045] [PMID: 17363974]
[31]
Schuebel, K.; Gitik, M.; Domschke, K.; Goldman, D. Making sense of epigenetics. Int. J. Neuropsychopharmacol., 2016, 19(11), pyw058.
[http://dx.doi.org/10.1093/ijnp/pyw058] [PMID: 27312741]
[32]
Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of histone modification. Adv. Exp. Med. Biol., 2021, 1283, 1-16.
[http://dx.doi.org/10.1007/978-981-15-8104-5_1] [PMID: 33155134]
[33]
Yun, M.; Wu, J.; Workman, J.L.; Li, B. Readers of histone modifications. Cell Res., 2011, 21(4), 564-578.
[http://dx.doi.org/10.1038/cr.2011.42] [PMID: 21423274]
[34]
Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[35]
Creyghton, M.P.; Cheng, A.W.; Welstead, G.G.; Kooistra, T.; Carey, B.W.; Steine, E.J.; Hanna, J.; Lodato, M.A.; Frampton, G.M.; Sharp, P.A.; Boyer, L.A.; Young, R.A.; Jaenisch, R. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21931-21936.
[http://dx.doi.org/10.1073/pnas.1016071107] [PMID: 21106759]
[36]
Rada-Iglesias, A.; Bajpai, R.; Swigut, T.; Brugmann, S.A.; Flynn, R.A.; Wysocka, J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature, 2011, 470(7333), 279-283.
[http://dx.doi.org/10.1038/nature09692] [PMID: 21160473]
[37]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[38]
Bach, D.R. Cross-species anxiety tests in psychiatry: Pitfalls and promises. Mol. Psychiatry, 2022, 27(1), 154-163.
[http://dx.doi.org/10.1038/s41380-021-01299-4] [PMID: 34561614]
[39]
Bienvenu, T.C.M.; Dejean, C.; Jercog, D.; Aouizerate, B.; Lemoine, M.; Herry, C. The advent of fear conditioning as an animal model of post-traumatic stress disorder: Learning from the past to shape the future of PTSD research. Neuron, 2021, 109(15), 2380-2397.
[http://dx.doi.org/10.1016/j.neuron.2021.05.017] [PMID: 34146470]
[40]
Dresler, T.; Guhn, A.; Tupak, S.V.; Ehlis, A.C.; Herrmann, M.J.; Fallgatter, A.J.; Deckert, J.; Domschke, K. Revise the revised? New dimensions of the neuroanatomical hypothesis of panic disorder. J. Neural Transm. (Vienna), 2013, 120(1), 3-29.
[http://dx.doi.org/10.1007/s00702-012-0811-1] [PMID: 22692647]
[41]
Namkung, H.; Thomas, K.L.; Hall, J.; Sawa, A. Parsing neural circuits of fear learning and extinction across basic and clinical neuroscience: Towards better translation. Neurosci. Biobehav. Rev., 2022, 134, 104502.
[http://dx.doi.org/10.1016/j.neubiorev.2021.12.025] [PMID: 34921863]
[42]
Halder, R.; Hennion, M.; Vidal, R.O.; Shomroni, O.; Rahman, R.U.; Rajput, A.; Centeno, T.P.; van Bebber, F.; Capece, V.; Vizcaino, J.C.G.; Schuetz, A.L.; Burkhardt, S.; Benito, E.; Sala, M.N.; Javan, S.B.; Haass, C.; Schmid, B.; Fischer, A.; Bonn, S. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat. Neurosci., 2016, 19(1), 102-110.
[http://dx.doi.org/10.1038/nn.4194] [PMID: 26656643]
[43]
Gupta, S.; Kim, S.Y.; Artis, S.; Molfese, D.L.; Schumacher, A.; Sweatt, J.D.; Paylor, R.E.; Lubin, F.D. Histone methylation regulates memory formation. J. Neurosci., 2010, 30(10), 3589-3599.
[http://dx.doi.org/10.1523/JNEUROSCI.3732-09.2010] [PMID: 20219993]
[44]
Webb, W.M.; Sanchez, R.G.; Perez, G.; Butler, A.A.; Hauser, R.M.; Rich, M.C.; O'Bierne, A.L.; Jarome, T.J.; Lubin, F.D. Dynamic association of epigenetic H3K4me3 and DNA 5hmC marks in the dorsal hippocampus and anterior cingulate cortex following reactivation of a fear memory. Neurobiol Learn Mem, 2017, 142(Pt A), 66-78.
[45]
Gupta-Agarwal, S.; Franklin, A.V.; DeRamus, T.; Wheelock, M.; Davis, R.L.; McMahon, L.L.; Lubin, F.D. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J. Neurosci., 2012, 32(16), 5440-5453.
[http://dx.doi.org/10.1523/JNEUROSCI.0147-12.2012] [PMID: 22514307]
[46]
Levenson, J.M.; O’Riordan, K.J.; Brown, K.D.; Trinh, M.A.; Molfese, D.L.; Sweatt, J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem., 2004, 279(39), 40545-40559.
[http://dx.doi.org/10.1074/jbc.M402229200] [PMID: 15273246]
[47]
Park, C.; Rehrauer, H.; Mansuy, I.M. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice. BMC Genomics, 2013, 14(1), 539.
[http://dx.doi.org/10.1186/1471-2164-14-539] [PMID: 23927422]
[48]
Bousiges, O.; Neidl, R.; Majchrzak, M.; Muller, M.A.; Barbelivien, A.; Pereira de Vasconcelos, A.; Schneider, A.; Loeffler, J.P.; Cassel, J.C.; Boutillier, A.L. Detection of histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B and H4 histones in response to learning. PLoS One, 2013, 8(3), e57816.
[http://dx.doi.org/10.1371/journal.pone.0057816] [PMID: 23469244]
[49]
Andero, R.; Ressler, K.J. Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes Brain Behav., 2012, 11(5), 503-512.
[http://dx.doi.org/10.1111/j.1601-183X.2012.00801.x] [PMID: 22530815]
[50]
Dincheva, I.; Lynch, N.B.; Lee, F.S. The role of BDNF in the development of fear learning. Depress. Anxiety, 2016, 33(10), 907-916.
[http://dx.doi.org/10.1002/da.22497] [PMID: 27699937]
[51]
Notaras, M.; van den Buuse, M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry, 2020, 25(10), 2251-2274.
[http://dx.doi.org/10.1038/s41380-019-0639-2] [PMID: 31900428]
[52]
Takei, S.; Morinobu, S.; Yamamoto, S.; Fuchikami, M.; Matsumoto, T.; Yamawaki, S. Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J. Psychiatr. Res., 2011, 45(4), 460-468.
[http://dx.doi.org/10.1016/j.jpsychires.2010.08.009] [PMID: 20863519]
[53]
Lubin, F.D.; Roth, T.L.; Sweatt, J.D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci., 2008, 28(42), 10576-10586.
[http://dx.doi.org/10.1523/JNEUROSCI.1786-08.2008] [PMID: 18923034]
[54]
Gupta-Agarwal, S.; Jarome, T.J.; Fernandez, J.; Lubin, F.D. NMDA receptor- and ERK-dependent histone methylation changes in the lateral amygdala bidirectionally regulate fear memory formation. Learn. Mem., 2014, 21(7), 351-362.
[http://dx.doi.org/10.1101/lm.035105.114] [PMID: 24939839]
[55]
Bredy, T.W.; Wu, H.; Crego, C.; Zellhoefer, J.; Sun, Y.E.; Barad, M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem., 2007, 14(4), 268-276.
[http://dx.doi.org/10.1101/lm.500907] [PMID: 17522015]
[56]
Siddiqui, S.A.; Singh, S.; Ranjan, V.; Ugale, R.; Saha, S.; Prakash, A. Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cell. Mol. Neurobiol., 2017, 37(7), 1287-1301.
[http://dx.doi.org/10.1007/s10571-017-0464-6] [PMID: 28097489]
[57]
Ranjan, V.; Singh, S.; Siddiqui, S.A.; Tripathi, S.; Khan, M.Y.; Prakash, A. Differential histone acetylation in sub-regions of bed nucleus of the stria terminalis underlies fear consolidation and extinction. Psychiatry Investig., 2017, 14(3), 350-359.
[http://dx.doi.org/10.4306/pi.2017.14.3.350] [PMID: 28539954]
[58]
Singh, S.; Siddiqui, S.A.; Tripathy, S.; Kumar, S.; Saha, S.; Ugale, R.; Modi, D.R.; Prakash, A. Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Res. Bull., 2018, 140, 355-364.
[http://dx.doi.org/10.1016/j.brainresbull.2018.06.004] [PMID: 29908895]
[59]
Dunsmoor, J.E.; Cisler, J.M.; Fonzo, G.A.; Creech, S.K.; Nemeroff, C.B. Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron, 2022, 110(11), 1754-1776.
[http://dx.doi.org/10.1016/j.neuron.2022.03.001] [PMID: 35325617]
[60]
Hunter, R.G.; McCarthy, K.J.; Milne, T.A.; Pfaff, D.W.; McEwen, B.S. Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc. Natl. Acad. Sci. USA, 2009, 106(49), 20912-20917.
[http://dx.doi.org/10.1073/pnas.0911143106] [PMID: 19934035]
[61]
Nasca, C.; Zelli, D.; Bigio, B.; Piccinin, S.; Scaccianoce, S.; Nisticò, R.; McEwen, B.S. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc. Natl. Acad. Sci. USA, 2015, 112(48), 14960-14965.
[http://dx.doi.org/10.1073/pnas.1516016112] [PMID: 26627246]
[62]
Fuchikami, M.; Morinobu, S.; Kurata, A.; Yamamoto, S.; Yamawaki, S. Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. Int. J. Neuropsychopharmacol., 2009, 12(1), 73-82.
[http://dx.doi.org/10.1017/S1461145708008997] [PMID: 18544182]
[63]
Hollis, F.; Wang, H.; Dietz, D.; Gunjan, A.; Kabbaj, M. The effects of repeated social defeat on long-term depressive-like behavior and short-term histone modifications in the hippocampus in male Sprague–Dawley rats. Psychopharmacology (Berl.), 2010, 211(1), 69-77.
[http://dx.doi.org/10.1007/s00213-010-1869-9] [PMID: 20454892]
[64]
Bilang-Bleuel, A.; Ulbricht, S.; Chandramohan, Y.; De Carli, S.; Droste, S.K.; Reul, J.M.H.M. Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: Involvement in a glucocorticoid receptor-dependent behavioural response. Eur. J. Neurosci., 2005, 22(7), 1691-1700.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04358.x] [PMID: 16197509]
[65]
Bartlett, A.A.; DeRosa, H.; Clark, M.; Lapp, H.E.; Guffanti, G.; Hunter, R.G. Corticosterone dynamically regulates retrotransposable element expression in the rat hippocampus and C6 cells. Neurobiol. Stress, 2021, 15, 100397.
[http://dx.doi.org/10.1016/j.ynstr.2021.100397] [PMID: 34584909]
[66]
Wei, J.; Xiong, Z.; Lee, J.B.; Cheng, J.; Duffney, L.J.; Matas, E.; Yan, Z. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J. Neurosci., 2016, 36(7), 2119-2130.
[http://dx.doi.org/10.1523/JNEUROSCI.3056-15.2016] [PMID: 26888924]
[67]
Wu, J.; Liu, C.; Zhang, L.; He, B.; Shi, W.P.; Shi, H.L.; Qin, C. Chronic restraint stress impairs cognition via modulating HDAC2 expression. Transl. Neurosci., 2021, 12(1), 154-163.
[http://dx.doi.org/10.1515/tnsci-2020-0168] [PMID: 33986954]
[68]
Elliott, E.; Ezra-Nevo, G.; Regev, L.; Neufeld-Cohen, A.; Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci., 2010, 13(11), 1351-1353.
[http://dx.doi.org/10.1038/nn.2642] [PMID: 20890295]
[69]
Renthal, W.; Maze, I.; Krishnan, V.; Covington, H.E., III; Xiao, G.; Kumar, A.; Russo, S.J.; Graham, A.; Tsankova, N.; Kippin, T.E.; Kerstetter, K.A.; Neve, R.L.; Haggarty, S.J.; McKinsey, T.A.; Bassel-Duby, R.; Olson, E.N.; Nestler, E.J. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron, 2007, 56(3), 517-529.
[http://dx.doi.org/10.1016/j.neuron.2007.09.032] [PMID: 17988634]
[70]
Covington, H.E., III; Maze, I.; Sun, H.; Bomze, H.M.; DeMaio, K.D.; Wu, E.Y.; Dietz, D.M.; Lobo, M.K.; Ghose, S.; Mouzon, E.; Neve, R.L.; Tamminga, C.A.; Nestler, E.J. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron, 2011, 71(4), 656-670.
[http://dx.doi.org/10.1016/j.neuron.2011.06.007] [PMID: 21867882]
[71]
Covington, H.E., III; Maze, I.; LaPlant, Q.C.; Vialou, V.F.; Ohnishi, Y.N.; Berton, O.; Fass, D.M.; Renthal, W.; Rush, A.J., III; Wu, E.Y.; Ghose, S.; Krishnan, V.; Russo, S.J.; Tamminga, C.; Haggarty, S.J.; Nestler, E.J. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci., 2009, 29(37), 11451-11460.
[http://dx.doi.org/10.1523/JNEUROSCI.1758-09.2009] [PMID: 19759294]
[72]
Tsankova, N.M.; Berton, O.; Renthal, W.; Kumar, A.; Neve, R.L.; Nestler, E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 2006, 9(4), 519-525.
[http://dx.doi.org/10.1038/nn1659] [PMID: 16501568]
[73]
Wilkinson, M.B.; Xiao, G.; Kumar, A.; LaPlant, Q.; Renthal, W.; Sikder, D.; Kodadek, T.J.; Nestler, E.J. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci., 2009, 29(24), 7820-7832.
[http://dx.doi.org/10.1523/JNEUROSCI.0932-09.2009] [PMID: 19535594]
[74]
Montagud-Romero, S.; Montesinos, J.; Pascual, M.; Aguilar, M.A.; Roger-Sánchez, C.; Guerri, C.; Miñarro, J.; Rodríguez-Arias, M. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 70, 39-48.
[http://dx.doi.org/10.1016/j.pnpbp.2016.04.016] [PMID: 27180319]
[75]
Ferland, C.L.; Schrader, L.A. Regulation of histone acetylation in the hippocampus of chronically stressed rats: A potential role of sirtuins. Neuroscience, 2011, 174, 104-114.
[http://dx.doi.org/10.1016/j.neuroscience.2010.10.077] [PMID: 21056634]
[76]
Ferland, C.L.; Harris, E.P.; Lam, M.; Schrader, L.A. Facilitation of the HPA axis to a novel acute stress following chronic stress exposure modulates histone acetylation and the ERK/MAPK pathway in the dentate gyrus of male rats. Endocrinology, 2014, 155(8), 2942-2952.
[http://dx.doi.org/10.1210/en.2013-1918] [PMID: 24693964]
[77]
Sterrenburg, L.; Gaszner, B.; Boerrigter, J.; Santbergen, L.; Bramini, M.; Elliott, E.; Chen, A.; Peeters, B.W.M.M.; Roubos, E.W.; Kozicz, T. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One, 2011, 6(11), e28128.
[http://dx.doi.org/10.1371/journal.pone.0028128] [PMID: 22132228]
[78]
Liu, D.; Qiu, H.M.; Fei, H.Z.; Hu, X.Y.; Xia, H.J.; Wang, L.J.; Qin, L.J.; Jiang, X.H.; Zhou, Q.X. Histone acetylation and expression of mono-aminergic transmitters synthetases involved in CUS-induced depressive rats. Exp. Biol. Med. (Maywood), 2014, 239(3), 330-336.
[http://dx.doi.org/10.1177/1535370213513987] [PMID: 24495952]
[79]
Wan, Q.; Gao, K.; Rong, H.; Wu, M.; Wang, H.; Wang, X.; Wang, G.; Liu, Z. Histone modifications of the Crhr1 gene in a rat model of depression following chronic stress. Behav. Brain Res., 2014, 271, 1-6.
[http://dx.doi.org/10.1016/j.bbr.2014.05.031] [PMID: 24867333]
[80]
Benoit, J.D.; Rakic, P.; Frick, K.M. Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behav. Brain Res., 2015, 281, 1-8.
[http://dx.doi.org/10.1016/j.bbr.2014.12.001] [PMID: 25496779]
[81]
Zheng, Y.; Fan, W.; Zhang, X.; Dong, E. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics, 2016, 11(2), 150-162.
[http://dx.doi.org/10.1080/15592294.2016.1146850] [PMID: 26890656]
[82]
Cittaro, D.; Lampis, V.; Luchetti, A.; Coccurello, R.; Guffanti, A.; Felsani, A.; Moles, A.; Stupka, E.; D’ Amato, F.R.; Battaglia, M. Histone modifications in a mouse model of early adversities and panic disorder: Role for asic1 and neurodevelopmental genes. Sci. Rep., 2016, 6(1), 25131.
[http://dx.doi.org/10.1038/srep25131] [PMID: 27121911]
[83]
Baĭdo, A.I.; Diuzhikova, N.A.; Shiriaeva, N.V.; Sokolova, N.E.; Vshivtseva, V.V.; Savenko, IuN. Systemic control of the molecular, cell, and epigenetic mechanisms of long-lasting consequences of stress. Genetika, 2009, 45(3), 342-348.
[PMID: 19382685]
[84]
Primeau, F.; Fontaine, R.; Beauclair, L. Valproic acid and panic disorder. Can. J. Psychiatry, 1990, 35(3), 248-250.
[http://dx.doi.org/10.1177/070674379003500309] [PMID: 2111204]
[85]
Keck, P.E., Jr; Taylor, V.E.; Tugrul, K.C.; McElroy, S.L.; Bennett, J.A. Valproate treatment of panic disorder and lactate-induced panic attacks. Biol. Psychiatry, 1993, 33(7), 542-546.
[http://dx.doi.org/10.1016/0006-3223(93)90010-B] [PMID: 8513040]
[86]
Kinrys, G.; Pollack, M.H.; Simon, N.M.; Worthington, J.J.; Nardi, A.E.; Versiani, M. Valproic acid for the treatment of social anxiety disorder. Int. Clin. Psychopharmacol., 2003, 18(3), 169-172.
[PMID: 12702897]
[87]
Aliyev, N.A.; Aliyev, Z.N. Valproate (depakine-chrono) in the acute treatment of outpatients with generalized anxiety disorder without psychiatric comorbidity: Randomized, double-blind placebo-controlled study. Eur. Psychiatry, 2008, 23(2), 109-114.
[http://dx.doi.org/10.1016/j.eurpsy.2007.08.001] [PMID: 17945470]
[88]
Lötsch, J.; Schneider, G.; Reker, D.; Parnham, M.J.; Schneider, P.; Geisslinger, G.; Doehring, A. Common non-epigenetic drugs as epigenetic modulators. Trends Mol. Med., 2013, 19(12), 742-753.
[http://dx.doi.org/10.1016/j.molmed.2013.08.006] [PMID: 24054876]
[89]
Boks, M.P.; de Jong, N.M.; Kas, M.J.H.; Vinkers, C.H.; Fernandes, C.; Kahn, R.S.; Mill, J.; Ophoff, R.A. Current status and future prospects for epigenetic psychopharmacology. Epigenetics, 2012, 7(1), 20-28.
[http://dx.doi.org/10.4161/epi.7.1.18688] [PMID: 22207355]
[90]
Whittle, N.; Singewald, N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: Where do we stand? Biochem. Soc. Trans., 2014, 42(2), 569-581.
[http://dx.doi.org/10.1042/BST20130233] [PMID: 24646280]
[91]
Peedicayil, J. The potential role of epigenetic drugs in the treatment of anxiety disorders. Neuropsychiatr. Dis. Treat., 2020, 16, 597-606.
[http://dx.doi.org/10.2147/NDT.S242040] [PMID: 32184601]
[92]
Stafford, J.M.; Lattal, K.M. Is an epigenetic switch the key to persistent extinction? Neurobiol. Learn. Mem., 2011, 96(1), 35-40.
[http://dx.doi.org/10.1016/j.nlm.2011.04.012] [PMID: 21536141]
[93]
Zhao, Y.; Xing, B.; Dang, Y.; Qu, C.; Zhu, F.; Yan, C. Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation. PLoS One, 2013, 8(1), e52698.
[http://dx.doi.org/10.1371/journal.pone.0052698] [PMID: 23300985]
[94]
Bredy, T.W.; Barad, M. The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn. Mem., 2008, 15(1), 39-45.
[http://dx.doi.org/10.1101/lm.801108] [PMID: 18174372]
[95]
Wilson, C.B.; McLaughlin, L.D.; Ebenezer, P.J.; Nair, A.R.; Francis, J. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder. Behav. Brain Res., 2014, 268, 72-80.
[http://dx.doi.org/10.1016/j.bbr.2014.03.029] [PMID: 24675160]
[96]
Kv, A.; Madhana, R.M.; Js, I.C.; Lahkar, M.; Sinha, S.; Naidu, V.G.M. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav. Brain Res., 2018, 344, 73-84.
[http://dx.doi.org/10.1016/j.bbr.2018.02.009] [PMID: 29452193]
[97]
Qiao, M.; Jiang, Q.S.; Liu, Y.J.; Hu, X.Y.; Wang, L.J.; Zhou, Q.X.; Qiu, H.M. Antidepressant mechanisms of venlafaxine involving increasing histone acetylation and modulating tyrosine hydroxylase and tryptophan hydroxylase expression in hippocampus of depressive rats. Neuroreport, 2019, 30(4), 255-261.
[http://dx.doi.org/10.1097/WNR.0000000000001191] [PMID: 30640193]
[98]
Wang, D.; Kosowan, J.; Samsom, J.; Leung, L.; Zhang, K.; Li, Y.; Xiong, Y.; Jin, J.; Petronis, A.; Oh, G.; Wong, A.H.C. Inhibition of the G9a/GLP histone methyltransferase complex modulates anxiety-related behavior in mice. Acta Pharmacol. Sin., 2018, 39(5), 866-874.
[http://dx.doi.org/10.1038/aps.2017.190] [PMID: 29417943]
[99]
Itzhak, Y.; Anderson, K.L.; Kelley, J.B.; Petkov, M. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice. Neurobiol. Learn. Mem., 2012, 97(4), 409-417.
[http://dx.doi.org/10.1016/j.nlm.2012.03.005] [PMID: 22452925]
[100]
Valiati, F.E.; Vasconcelos, M.; Lichtenfels, M.; Petry, F.S.; de Almeida, R.M.M.; Schwartsmann, G.; Schröder, N.; de Farias, C.B.; Roesler, R. Administration of a histone deacetylase inhibitor into the basolateral amygdala enhances memory consolidation, delays extinction, and increases hippocampal BDNF levels. Front. Pharmacol., 2017, 8, 415.
[http://dx.doi.org/10.3389/fphar.2017.00415] [PMID: 28701956]
[101]
Hawk, J.D.; Florian, C.; Abel, T. Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn. Mem., 2011, 18(6), 367-370.
[http://dx.doi.org/10.1101/lm.2097411] [PMID: 21576516]
[102]
Gundersen, B.B.; Blendy, J.A. Effects of the histone deacetylase inhibitor sodium butyrate in models of depression and anxiety. Neuropharmacology, 2009, 57(1), 67-74.
[http://dx.doi.org/10.1016/j.neuropharm.2009.04.008] [PMID: 19393671]
[103]
Tran, L.; Schulkin, J.; Ligon, C.O.; Greenwood-Van Meerveld, B. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol. Psychiatry, 2015, 20(10), 1219-1231.
[http://dx.doi.org/10.1038/mp.2014.122] [PMID: 25288139]
[104]
Lattal, K.M.; Barrett, R.M.; Wood, M.A. Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav. Neurosci., 2007, 121(5), 1125-1131.
[http://dx.doi.org/10.1037/0735-7044.121.5.1125] [PMID: 17907845]
[105]
Stafford, J.M.; Raybuck, J.D.; Ryabinin, A.E.; Lattal, K.M. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol. Psychiatry, 2012, 72(1), 25-33.
[http://dx.doi.org/10.1016/j.biopsych.2011.12.012] [PMID: 22290116]
[106]
Mohammadi-Farani, A.; Pourmotabbed, A.; Ardeshirizadeh, Y. Effects of HDAC inhibitors on spatial memory and memory extinction in SPS-induced PTSD rats. Res. Pharm. Sci., 2020, 15(3), 241-248.
[http://dx.doi.org/10.4103/1735-5362.288426] [PMID: 33088324]
[107]
Adachi, M.; Autry, A.E.; Covington, H.E., III; Monteggia, L.M. MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. J. Neurosci., 2009, 29(13), 4218-4227.
[http://dx.doi.org/10.1523/JNEUROSCI.4225-08.2009] [PMID: 19339616]
[108]
Fujita, Y.; Morinobu, S.; Takei, S.; Fuchikami, M.; Matsumoto, T.; Yamamoto, S.; Yamawaki, S. Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. J. Psychiatr. Res., 2012, 46(5), 635-643.
[http://dx.doi.org/10.1016/j.jpsychires.2012.01.026] [PMID: 22364833]
[109]
Matsumoto, Y.; Morinobu, S.; Yamamoto, S.; Matsumoto, T.; Takei, S.; Fujita, Y.; Yamawaki, S. Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder. Psychopharmacology (Berl.), 2013, 229(1), 51-62.
[http://dx.doi.org/10.1007/s00213-013-3078-9] [PMID: 23584669]
[110]
Sah, A.; Sotnikov, S.; Kharitonova, M.; Schmuckermair, C.; Diepold, R.P.; Landgraf, R.; Whittle, N.; Singewald, N. Epigenetic mechanisms within the cingulate cortex regulate innate anxiety-like behavior. Int. J. Neuropsychopharmacol., 2019, 22(4), 317-328.
[http://dx.doi.org/10.1093/ijnp/pyz004] [PMID: 30668714]
[111]
Whittle, N.; Maurer, V.; Murphy, C.; Rainer, J.; Bindreither, D.; Hauschild, M.; Scharinger, A.; Oberhauser, M.; Keil, T.; Brehm, C.; Valovka, T.; Striessnig, J.; Singewald, N. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction. Transl. Psychiatry, 2016, 6(12), e974.
[http://dx.doi.org/10.1038/tp.2016.231] [PMID: 27922638]
[112]
Gräff, J.; Joseph, N.F.; Horn, M.E.; Samiei, A.; Meng, J.; Seo, J.; Rei, D.; Bero, A.W.; Phan, T.X.; Wagner, F.; Holson, E.; Xu, J.; Sun, J.; Neve, R.L.; Mach, R.H.; Haggarty, S.J.; Tsai, L.H. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell, 2014, 156(1-2), 261-276.
[http://dx.doi.org/10.1016/j.cell.2013.12.020] [PMID: 24439381]
[113]
Bowers, M.E.; Xia, B.; Carreiro, S.; Ressler, K.J. The Class I HDAC inhibitor RGFP963 enhances consolidation of cued fear extinction. Learn. Mem., 2015, 22(4), 225-231.
[http://dx.doi.org/10.1101/lm.036699.114] [PMID: 25776040]
[114]
Snigdha, S.; Prieto, G.A.; Petrosyan, A.; Loertscher, B.M.; Dieskau, A.P.; Overman, L.E.; Cotman, C.W. H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus. J. Neurosci., 2016, 36(12), 3611-3622.
[http://dx.doi.org/10.1523/JNEUROSCI.2693-15.2016] [PMID: 27013689]
[115]
Maddox, S.A.; Watts, C.S.; Doyère, V.; Schafe, G.E. A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories. PLoS One, 2013, 8(1), e54463.
[http://dx.doi.org/10.1371/journal.pone.0054463] [PMID: 23349897]
[116]
Maddox, S.A.; Watts, C.S.; Schafe, G.E. p300/CBP histone acetyltransferase activity is required for newly acquired and reactivated fear memories in the lateral amygdala. Learn. Mem., 2013, 20(2), 109-119.
[http://dx.doi.org/10.1101/lm.029157.112] [PMID: 23328899]
[117]
Marek, R.; Coelho, C.M.; Sullivan, R.K.P.; Baker-Andresen, D.; Li, X.; Ratnu, V.; Dudley, K.J.; Meyers, D.; Mukherjee, C.; Cole, P.A.; Sah, P.; Bredy, T.W. Paradoxical enhancement of fear extinction memory and synaptic plasticity by inhibition of the histone acetyltransferase p300. J. Neurosci., 2011, 31(20), 7486-7491.
[http://dx.doi.org/10.1523/JNEUROSCI.0133-11.2011] [PMID: 21593332]
[118]
Wei, W.; Coelho, C.M.; Li, X.; Marek, R.; Yan, S.; Anderson, S.; Meyers, D.; Mukherjee, C.; Sbardella, G.; Castellano, S.; Milite, C.; Rotili, D.; Mai, A.; Cole, P.A.; Sah, P.; Kobor, M.S.; Bredy, T.W. p300/CBP-associated factor selectively regulates the extinction of conditioned fear. J. Neurosci., 2012, 32(35), 11930-11941.
[http://dx.doi.org/10.1523/JNEUROSCI.0178-12.2012] [PMID: 22933779]
[119]
Kim, M.S.; Akhtar, M.W.; Adachi, M.; Mahgoub, M.; Bassel-Duby, R.; Kavalali, E.T.; Olson, E.N.; Monteggia, L.M. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J. Neurosci., 2012, 32(32), 10879-10886.
[http://dx.doi.org/10.1523/JNEUROSCI.2089-12.2012] [PMID: 22875922]
[120]
Morris, M.J.; Mahgoub, M.; Na, E.S.; Pranav, H.; Monteggia, L.M. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J. Neurosci., 2013, 33(15), 6401-6411.
[http://dx.doi.org/10.1523/JNEUROSCI.1001-12.2013] [PMID: 23575838]
[121]
Bahari-Javan, S.; Maddalena, A.; Kerimoglu, C.; Wittnam, J.; Held, T.; Bähr, M.; Burkhardt, S.; Delalle, I.; Kügler, S.; Fischer, A.; Sananbenesi, F. HDAC1 regulates fear extinction in mice. J. Neurosci., 2012, 32(15), 5062-5073.
[http://dx.doi.org/10.1523/JNEUROSCI.0079-12.2012] [PMID: 22496552]
[122]
Oliveira, A.M.M.; Wood, M.A.; McDonough, C.B.; Abel, T. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn. Mem., 2007, 14(9), 564-572.
[http://dx.doi.org/10.1101/lm.656907] [PMID: 17761541]
[123]
Oliveira, A.M.M.; Estévez, M.A.; Hawk, J.D.; Grimes, S.; Brindle, P.K.; Abel, T. Subregion-specific p300 conditional knock-out mice exhibit long-term memory impairments. Learn. Mem., 2011, 18(3), 161-169.
[http://dx.doi.org/10.1101/lm.1939811] [PMID: 21345974]
[124]
Barrett, R.M.; Malvaez, M.; Kramar, E.; Matheos, D.P.; Arrizon, A.; Cabrera, S.M.; Lynch, G.; Greene, R.W.; Wood, M.A. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology, 2011, 36(8), 1545-1556.
[http://dx.doi.org/10.1038/npp.2011.61] [PMID: 21508930]
[125]
Anderson, E.M.; Larson, E.B.; Guzman, D.; Wissman, A.M.; Neve, R.L.; Nestler, E.J.; Self, D.W. Overexpression of the histone dimethyltransferase G9a in nucleus accumbens shell increases cocaine self-administration, stress-induced reinstatement, and anxiety. j. neurosci., 2018, 38(4), 803-813.
[http://dx.doi.org/10.1523/JNEUROSCI.1657-17.2017] [PMID: 29217682]
[126]
Anderson, E.M.; Sun, H.; Guzman, D.; Taniguchi, M.; Cowan, C.W.; Maze, I.; Nestler, E.J.; Self, D.W. Knockdown of the histone di-methyltransferase G9a in nucleus accumbens shell decreases cocaine self-administration, stress-induced reinstatement, and anxiety. Neuropsychopharmacology, 2019, 44(8), 1370-1376.
[http://dx.doi.org/10.1038/s41386-018-0305-4] [PMID: 30587852]
[127]
Shen, E.Y.; Jiang, Y.; Javidfar, B.; Kassim, B.; Loh, Y.H.E.; Ma, Q.; Mitchell, A.C.; Pothula, V.; Stewart, A.F.; Ernst, P.; Yao, W.D.; Martin, G.; Shen, L.; Jakovcevski, M.; Akbarian, S. Neuronal deletion of Kmt2a/Mll1 histone methyltransferase in ventral striatum is associated with defective spike-timing-dependent striatal synaptic plasticity, altered response to dopaminergic drugs, and increased anxiety. Neuropsychopharmacology, 2016, 41(13), 3103-3113.
[http://dx.doi.org/10.1038/npp.2016.144] [PMID: 27485686]
[128]
Jakobsson, J.; Cordero, M.I.; Bisaz, R.; Groner, A.C.; Busskamp, V.; Bensadoun, J.C.; Cammas, F.; Losson, R.; Mansuy, I.M.; Sandi, C.; Trono, D. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron, 2008, 60(5), 818-831.
[http://dx.doi.org/10.1016/j.neuron.2008.09.036] [PMID: 19081377]
[129]
Ramzan, F.; Baumbach, J.; Monks, A.D.; Zovkic, I.B. Histone H2A.Z is required for androgen receptor-mediated effects on fear memory. Neurobiol. Learn. Mem., 2020, 175, 107311.
[http://dx.doi.org/10.1016/j.nlm.2020.107311] [PMID: 32916283]
[130]
Bam, M.; Yang, X.; Zhou, J.; Ginsberg, J.P.; Leyden, Q.; Nagarkatti, P.S.; Nagarkatti, M. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients. J. Neuroimmune Pharmacol., 2016, 11(1), 168-181.
[http://dx.doi.org/10.1007/s11481-015-9643-8] [PMID: 26589234]
[131]
Bam, M.; Yang, X.; Busbee, B.P.; Aiello, A.E.; Uddin, M.; Ginsberg, J.P.; Galea, S.; Nagarkatti, P.S.; Nagarkatti, M. Increased H3K4me3 methylation and decreased miR-7113-5p expression lead to enhanced Wnt/β-catenin signaling in immune cells from PTSD patients leading to inflammatory phenotype. Mol. Med., 2020, 26(1), 110.
[http://dx.doi.org/10.1186/s10020-020-00238-3] [PMID: 33189141]
[132]
Josselyn, S.A. Continuing the search for the engram: Examining the mechanism of fear memories. J. Psychiatry Neurosci., 2010, 35(4), 221-228.
[http://dx.doi.org/10.1503/jpn.100015] [PMID: 20569648]
[133]
Carlezon, W., Jr; Duman, R.; Nestler, E. The many faces of CREB. Trends Neurosci., 2005, 28(8), 436-445.
[http://dx.doi.org/10.1016/j.tins.2005.06.005] [PMID: 15982754]
[134]
McCullough, K.M.; Chatzinakos, C.; Hartmann, J.; Missig, G.; Neve, R.L.; Fenster, R.J.; Carlezon, W.A., Jr; Daskalakis, N.P.; Ressler, K.J. Genome-wide translational profiling of amygdala Crh-expressing neurons reveals role for CREB in fear extinction learning. Nat. Commun., 2020, 11(1), 5180.
[http://dx.doi.org/10.1038/s41467-020-18985-6] [PMID: 33057013]
[135]
D’Alessio, A.C.D.A.C.; Szyf, M. Epigenetic tête-à-tête: The bilateral relationship between chromatin modifications and DNA methylation. Biochem. Cell Biol., 2006, 84(4), 463-476.
[PMID: 16936820]
[136]
Stewart, M.D.; Li, J.; Wong, J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol., 2005, 25(7), 2525-2538.
[http://dx.doi.org/10.1128/MCB.25.7.2525-2538.2005] [PMID: 15767660]
[137]
O’Neill, C. The epigenetics of embryo development. Anim. Front., 2015, 5(1), 42-49.
[http://dx.doi.org/10.2527/af.2015-0007]
[138]
Cao, J. The functional role of long non-coding RNAs and epigenetics. Biol. Proced. Online, 2014, 16(1), 42.
[http://dx.doi.org/10.1186/1480-9222-16-11] [PMID: 25276098]
[139]
Frías-Lasserre, D.; Villagra, C.A. The importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front. Microbiol., 2017, 8, 2483.
[http://dx.doi.org/10.3389/fmicb.2017.02483] [PMID: 29312192]
[140]
Peschansky, V.J.; Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics, 2014, 9(1), 3-12.
[http://dx.doi.org/10.4161/epi.27473] [PMID: 24739571]
[141]
Schoberleitner, I.; Mutti, A.; Sah, A.; Wille, A.; Gimeno-Valiente, F.; Piatti, P.; Kharitonova, M.; Torres, L.; López-Rodas, G.; Liu, J.J.; Singewald, N.; Schwarzer, C.; Lusser, A. Role for chromatin remodeling factor Chd1 in learning and memory. Front. Mol. Neurosci., 2019, 12, 3.
[http://dx.doi.org/10.3389/fnmol.2019.00003] [PMID: 30728766]
[142]
Wille, A.; Maurer, V.; Piatti, P.; Whittle, N.; Rieder, D.; Singewald, N.; Lusser, A. Impaired contextual fear extinction learning is associated with aberrant regulation of CHD-type chromatin remodeling factors. Front. Behav. Neurosci., 2015, 9, 313.
[http://dx.doi.org/10.3389/fnbeh.2015.00313] [PMID: 26635563]
[143]
Wille, A.; Amort, T.; Singewald, N.; Sartori, S.B.; Lusser, A. Dysregulation of select ATP-dependent chromatin remodeling factors in high trait anxiety. Behav. Brain Res., 2016, 311, 141-146.
[http://dx.doi.org/10.1016/j.bbr.2016.05.036] [PMID: 27208790]
[144]
Domschke, K. Prevention in psychiatry: A role for epigenetics? World Psychiatry, 2021, 20(2), 227-228.
[http://dx.doi.org/10.1002/wps.20854] [PMID: 34002522]
[145]
Abi-Dargham, M.S.; Farzana, A.; DeLorenzo, C.; Domschke, K.; Horga, G.; Jutla, A.; Paulus, M.P.; Rubio, J.M.; Veenstra-VanderWeele, J.; Krystal, J.H. The search for biomarkers in neuropsychiatric disorders. World Psychiatry, under review
[146]
McGarvey, K.M.; Fahrner, J.A.; Greene, E.; Martens, J.; Jenuwein, T.; Baylin, S.B. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res., 2006, 66(7), 3541-3549.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2481] [PMID: 16585178]
[147]
Edgar, R.D.; Jones, M.J.; Meaney, M.J.; Turecki, G.; Kobor, M.S. BECon: A tool for interpreting DNA methylation findings from blood in the context of brain. Transl. Psychiatry, 2017, 7(8), e1187.
[http://dx.doi.org/10.1038/tp.2017.171] [PMID: 28763057]
[148]
Hannon, E.; Lunnon, K.; Schalkwyk, L.; Mill, J. Interindividual methylomic variation across blood, cortex, and cerebellum: Implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics, 2015, 10(11), 1024-1032.
[http://dx.doi.org/10.1080/15592294.2015.1100786] [PMID: 26457534]
[149]
Braun, P.R.; Han, S.; Hing, B.; Nagahama, Y.; Gaul, L.N.; Heinzman, J.T.; Grossbach, A.J.; Close, L.; Dlouhy, B.J.; Howard, M.A., III; Kawasaki, H.; Potash, J.B.; Shinozaki, G. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl. Psychiatry, 2019, 9(1), 47.
[http://dx.doi.org/10.1038/s41398-019-0376-y] [PMID: 30705257]
[150]
Gilbert, T.M.; Zürcher, N.R.; Catanese, M.C.; Tseng, C.E.J.; Di Biase, M.A.; Lyall, A.E.; Hightower, B.G.; Parmar, A.J.; Bhanot, A.; Wu, C.J.; Hibert, M.L.; Kim, M.; Mahmood, U.; Stufflebeam, S.M.; Schroeder, F.A.; Wang, C.; Roffman, J.L.; Holt, D.J.; Greve, D.N.; Pasternak, O.; Kubicki, M.; Wey, H.Y.; Hooker, J.M. Neuroepigenetic signatures of age and sex in the living human brain. Nat. Commun., 2019, 10(1), 2945.
[http://dx.doi.org/10.1038/s41467-019-11031-0] [PMID: 31270332]
[151]
Koole, M.; Van Weehaeghe, D.; Serdons, K.; Herbots, M.; Cawthorne, C.; Celen, S.; Schroeder, F.A.; Hooker, J.M.; Bormans, G.; de Hoon, J.; Kranz, J.E.; Van Laere, K.; Gilbert, T.M. Clinical validation of the novel HDAC6 radiotracer [18F]EKZ-001 in the human brain. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(2), 596-611.
[http://dx.doi.org/10.1007/s00259-020-04891-y] [PMID: 32638097]
[152]
Matsuda, S.; Hattori, Y.; Matsumiya, K.; McQuade, P.; Yamashita, T.; Aida, J.; Sandiego, C.M.; Gouasmat, A.; Carroll, V.M.; Barret, O.; Tamagnan, G.; Koike, T.; Kimura, H. Design, synthesis, and evaluation of [18F]T-914 as a novel positron-emission tomography tracer for lysine-specific demethylase 1. J. Med. Chem., 2021, 64(17), 12680-12690.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00653] [PMID: 34423983]
[153]
Pascoal, T.A.; Chamoun, M.; Lax, E.; Wey, H.Y.; Shin, M.; Ng, K.P.; Kang, M.S.; Mathotaarachchi, S.; Benedet, A.L.; Therriault, J.; Lussier, F.Z.; Schroeder, F.A.; DuBois, J.M.; Hightower, B.G.; Gilbert, T.M.; Zürcher, N.R.; Wang, C.; Hopewell, R.; Chakravarty, M.; Savard, M.; Thomas, E.; Mohaddes, S.; Farzin, S.; Salaciak, A.; Tullo, S.; Cuello, A.C.; Soucy, J.P.; Massarweh, G.; Hwang, H.; Kobayashi, E.; Hyman, B.T.; Dickerson, B.C.; Guiot, M.C.; Szyf, M.; Gauthier, S.; Hooker, J.M.; Rosa-Neto, P. [11C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer’s disease. Nat. Commun., 2022, 13(1), 4171.
[http://dx.doi.org/10.1038/s41467-022-30653-5] [PMID: 35853847]
[154]
Tseng, C.E.J.; Gilbert, T.M.; Catanese, M.C.; Hightower, B.G.; Peters, A.T.; Parmar, A.J.; Kim, M.; Wang, C.; Roffman, J.L.; Brown, H.E.; Perlis, R.H.; Zürcher, N.R.; Hooker, J.M. In vivo human brain expression of histone deacetylases in bipolar disorder. Transl. Psychiatry, 2020, 10(1), 224.
[http://dx.doi.org/10.1038/s41398-020-00911-5] [PMID: 32641695]
[155]
Turkman, N.; Liu, D.; Pirola, I. Design, synthesis, biochemical evaluation, radiolabeling and in vivo imaging with high affinity class-IIa histone deacetylase inhibitor for molecular imaging and targeted therapy. Eur. J. Med. Chem., 2022, 228, 114011.
[http://dx.doi.org/10.1016/j.ejmech.2021.114011] [PMID: 34875522]
[156]
Stenz, L.; Schechter, D.S.; Serpa, S.R.; Paoloni-Giacobino, A. Intergenerational transmission of DNA tethylation signatures associated with early life stress. Curr. Genomics, 2018, 19(8), 665-675.
[http://dx.doi.org/10.2174/1389202919666171229145656] [PMID: 30532646]
[157]
Zenk, F.; Loeser, E.; Schiavo, R.; Kilpert, F. Bogdanović O.; Iovino, N. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science, 2017, 357(6347), 212-216.
[http://dx.doi.org/10.1126/science.aam5339] [PMID: 28706074]
[158]
Gaydos, L.J.; Wang, W.; Strome, S. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science, 2014, 345(6203), 1515-1518.
[http://dx.doi.org/10.1126/science.1255023] [PMID: 25237104]
[159]
Inoue, A.; Jiang, L.; Lu, F.; Suzuki, T.; Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature, 2017, 547(7664), 419-424.
[http://dx.doi.org/10.1038/nature23262] [PMID: 28723896]
[160]
Dahl, J.A.; Jung, I.; Aanes, H.; Greggains, G.D.; Manaf, A.; Lerdrup, M.; Li, G.; Kuan, S.; Li, B.; Lee, A.Y.; Preissl, S.; Jermstad, I.; Haugen, M.H.; Suganthan, R.; Bjørås, M.; Hansen, K.; Dalen, K.T.; Fedorcsak, P.; Ren, B.; Klungland, A. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature, 2016, 537(7621), 548-552.
[http://dx.doi.org/10.1038/nature19360] [PMID: 27626377]
[161]
Zhang, B.; Zheng, H.; Huang, B.; Li, W.; Xiang, Y.; Peng, X.; Ming, J.; Wu, X.; Zhang, Y.; Xu, Q.; Liu, W.; Kou, X.; Zhao, Y.; He, W.; Li, C.; Chen, B.; Li, Y.; Wang, Q.; Ma, J.; Yin, Q.; Kee, K.; Meng, A.; Gao, S.; Xu, F.; Na, J.; Xie, W. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature, 2016, 537(7621), 553-557.
[http://dx.doi.org/10.1038/nature19361] [PMID: 27626382]
[162]
Bohacek, J.; Mansuy, I.M. A guide to designing germline-dependent epigenetic inheritance experiments in mammals. Nat. Methods, 2017, 14(3), 243-249.
[http://dx.doi.org/10.1038/nmeth.4181] [PMID: 28245210]
[163]
Fuchikami, M.; Yamamoto, S.; Morinobu, S.; Okada, S.; Yamawaki, Y.; Yamawaki, S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 320-324.
[http://dx.doi.org/10.1016/j.pnpbp.2015.03.010] [PMID: 25818247]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy