Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Gut-Brain Axis and the Microbiome in Anxiety Disorders, Post-Traumatic Stress Disorder and Obsessive-Compulsive Disorder

Author(s): Marnie MacKay, Bohan H. Yang, Serdar M. Dursun and Glen B. Baker*

Volume 22, Issue 5, 2024

Published on: 22 February, 2023

Page: [866 - 883] Pages: 18

DOI: 10.2174/1570159X21666230222092029

Price: $65

Abstract

A large body of research supports the role of stress in several psychiatric disorders in which anxiety is a prominent symptom. Other research has indicated that the gut microbiome-immune system- brain axis is involved in a large number of disorders and that this axis is affected by various stressors. The focus of the current review is on the following stress-related disorders: generalized anxiety disorder, panic disorder, social anxiety disorder, post-traumatic stress disorder and obsessivecompulsive disorder. Descriptions of systems interacting in the gut-brain axis, microbiome-derived molecules and of pro- and prebiotics are given. Preclinical and clinical studies on the relationship of the gut microbiome to the psychiatric disorders mentioned above are reviewed. Many studies support the role of the gut microbiome in the production of symptoms in these disorders and suggest the potential for pro- and prebiotics for their treatment, but there are also contradictory findings and concerns about the limitations of some of the research that has been done. Matters to be considered in future research include longer-term studies with factors such as sex of the subjects, drug use, comorbidity, ethnicity/ race, environmental effects, diet, and exercise taken into account; appropriate compositions of pro- and prebiotics; the translatability of studies on animal models to clinical situations; and the effects on the gut microbiome of drugs currently used to treat these disorders. Despite these challenges, this is a very active area of research that holds promise for more effective, precision treatment of these stressrelated disorders in the future.

Graphical Abstract

[1]
Foster, J.A.; McVey Neufeld, K.A. Gut–brain axis: How the microbiome influences anxiety and depression. Trends Neurosci., 2013, 36(5), 305-312.
[http://dx.doi.org/10.1016/j.tins.2013.01.005] [PMID: 23384445]
[2]
Sylvia, K.E.; Demas, G.E. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors. Horm. Behav., 2018, 99, 41-49.
[http://dx.doi.org/10.1016/j.yhbeh.2018.02.001] [PMID: 29427583]
[3]
Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell, 2019, 6(10), 454-481.
[http://dx.doi.org/10.15698/mic2019.10.693] [PMID: 31646148]
[4]
McEwen, B.S. Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. N. Y. Acad. Sci., 2004, 1032(1), 1-7.
[http://dx.doi.org/10.1196/annals.1314.001] [PMID: 15677391]
[5]
Peirce, J.M.; Alviña, K. The role of inflammation and the gut microbiome in depression and anxiety. J. Neurosci. Res., 2019, 97(10), 1223-1241.
[http://dx.doi.org/10.1002/jnr.24476] [PMID: 31144383]
[6]
Butler, M.I.; Morkl, S.; Sandhu, K.V.; Cryan, J.F.; Dinan, T.G. The gut microbiome and mental health; what shall we tell our patients? Can. J. Psychiatry, 2019, 64(11), 737-760.
[http://dx.doi.org/10.1177/0706743719874168] [PMID: 31530002]
[7]
Flux, M.C.; Lowry, C.A. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol. Dis., 2020, 135, 104578.
[http://dx.doi.org/10.1016/j.nbd.2019.104578] [PMID: 31454550]
[8]
Powell, N.; Walker, M.M.; Talley, N.J. The mucosal immune system: Master regulator of bidirectional gut–brain communications. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(3), 143-159.
[http://dx.doi.org/10.1038/nrgastro.2016.191] [PMID: 28096541]
[9]
Farzi, A.; Fröhlich, E.E.; Holzer, P. Gut microbiota and the neuroendocrine system. Neurotherapeutics, 2018, 15(1), 5-22.
[http://dx.doi.org/10.1007/s13311-017-0600-5] [PMID: 29380303]
[10]
Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; Weir, T.L.; Ehrentraut, S.F.; Pickel, C.; Kuhn, K.A.; Lanis, J.M.; Nguyen, V.; Taylor, C.T.; Colgan, S.P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe, 2015, 17(5), 662-671.
[http://dx.doi.org/10.1016/j.chom.2015.03.005] [PMID: 25865369]
[11]
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[12]
Liang, S.; Wu, X.; Jin, F. Gut-brain psychology: Rethinking psychology from the microbiota-gut-brain axis. Front. Integr. Neurosci., 2018, 12, 33.
[http://dx.doi.org/10.3389/fnint.2018.00033] [PMID: 30271330]
[13]
Malan-Muller, S.; Valles-Colomer, M.; Raes, J.; Lowry, C.A.; Seedat, S.; Hemmings, S.M.J. The gut microbiome and mental health: Implications for anxiety- and trauma-related disorders. OMICS, 2018, 22(2), 90-107.
[http://dx.doi.org/10.1089/omi.2017.0077] [PMID: 28767318]
[14]
Hayes, C.L.; Peters, B.J.; Foster, J.A. Microbes and mental health: Can the microbiome help explain clinical heterogeneity in psychiatry? Front. Neuroendocrinol., 2020, 58, 100849.
[http://dx.doi.org/10.1016/j.yfrne.2020.100849] [PMID: 32497560]
[15]
Ouabbou, S.; He, Y.; Butler, K.; Tsuang, M. Inflammation in mental disorders: Is the microbiota the missing link? Neurosci. Bull., 2020, 36(9), 1071-1084.
[http://dx.doi.org/10.1007/s12264-020-00535-1] [PMID: 32592144]
[16]
Foster, J.A. Is anxiety associated with the gut microbiota? Mod. Trends Psychiat., 2021, 32, 68-73.
[http://dx.doi.org/10.1159/000510418] [PMID: 34032646]
[17]
Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The gut microbiota in anxiety and depression – A systematic review. Clin. Psychol. Rev., 2021, 83, 101943.
[http://dx.doi.org/10.1016/j.cpr.2020.101943] [PMID: 33271426]
[18]
Tannock, G.W.; Savage, D.C. Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect. Immun., 1974, 9(3), 591-598.
[http://dx.doi.org/10.1128/iai.9.3.591-598.1974] [PMID: 4593471]
[19]
Bailey, M.T.; Dowd, S.E.; Galley, J.D.; Hufnagle, A.R.; Allen, R.G.; Lyte, M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun., 2011, 25(3), 397-407.
[http://dx.doi.org/10.1016/j.bbi.2010.10.023] [PMID: 21040780]
[20]
Cussotto, S.; Sandhu, K.V.; Dinan, T.G.; Cryan, J.F. The neuroendocrinology of the microbiota-gut-brain axis: A behavioural perspective. Front. Neuroendocrinol., 2018, 51, 80-101.
[http://dx.doi.org/10.1016/j.yfrne.2018.04.002] [PMID: 29753796]
[21]
Jaworska-Andryszewska, P.; Rybakowski, J.K. Childhood trauma in mood disorders: Neurobiological mechanisms and implications for treatment. Pharmacol. Rep., 2019, 71(1), 112-120.
[http://dx.doi.org/10.1016/j.pharep.2018.10.004] [PMID: 30544098]
[22]
Madison, A.; Kiecolt-Glaser, J.K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci., 2019, 28, 105-110.
[http://dx.doi.org/10.1016/j.cobeha.2019.01.011] [PMID: 32395568]
[23]
Misiak, B. Łoniewski, I.; Marlicz, W.; Frydecka, D.; Szulc, A.; Rudzki, L.; Samochowiec,The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 102, 109951.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109951] [PMID: 32335265]
[24]
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[25]
Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[26]
Foster, J.A. Modulating brain function with microbiota. Science, 2022, 376(6596), 936-937.
[http://dx.doi.org/10.1126/science.abo4220] [PMID: 35617384]
[27]
Choden, T.; Cohen, N.A. The gut microbiome and the immune system. Explor. Med., 2022, 3, 219-233.
[http://dx.doi.org/10.37349/emed.2022.00087]
[28]
Rudzki, L.; Maes, M. The microbiota-gut-immune-glia (MGIG) axis in major depression. Mol. Neurobiol., 2020, 57(10), 4269-4295.
[http://dx.doi.org/10.1007/s12035-020-01961-y] [PMID: 32700250]
[29]
Gareau, M.G. Microbial endocrinology: The microbiota-gut-brain axis in health and disease. Adv. Exp. Med. Biol., 2014, 817, 39-71.
[30]
Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[31]
Baganz, N.L.; Blakely, R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci., 2013, 4(1), 48-63.
[http://dx.doi.org/10.1021/cn300186b] [PMID: 23336044]
[32]
Auteri, M.; Zizzo, M.G.; Serio, R. GABA and GABA receptors in the gastrointestinal tract: From motility to inflammation. Pharmacol. Res., 2015, 93, 11-21.
[http://dx.doi.org/10.1016/j.phrs.2014.12.001] [PMID: 25526825]
[33]
Desbonnet, L.; Garrett, L.; Clarke, G.; Bienenstock, J.; Dinan, T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res., 2008, 43(2), 164-174.
[http://dx.doi.org/10.1016/j.jpsychires.2008.03.009] [PMID: 18456279]
[34]
Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psychiatry, 2018, 9, 44.
[http://dx.doi.org/10.3389/fpsyt.2018.00044] [PMID: 29593576]
[35]
Pourhamzeh, M.; Moravej, F.G.; Arabi, M.; Shahriari, E.; Mehrabi, S.; Ward, R.; Ahadi, R.; Joghataei, M.T. The roles of serotonin in neuropsychiatric disorders. Cell. Mol. Neurobiol., 2022, 42(6), 1671-1692.
[http://dx.doi.org/10.1007/s10571-021-01064-9] [PMID: 33651238]
[36]
Anderson, G.; Maes, M. Local melatonin regulates inflammation resolution: A common factor in neurodegenerative, psychiatric and systemic inflammatory disorders. CNS Neurol. Disord. Drug Targets, 2014, 13(5), 817-827.
[http://dx.doi.org/10.2174/1871527313666140711091400] [PMID: 25012620]
[37]
Anderson, G.; Reiter, R.J. COVID-19 pathophysiology: Interactions of gut microbiome, melatonin, vitamin D, stress, kynurenine and the alpha 7 nicotinic receptor: Treatment implications. Melatonin Res., 2020, 3(3), 322-345.
[http://dx.doi.org/10.32794/mr11250066]
[38]
Badawy, A.A.B. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology, 2017, 112(Pt B), 248-263.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.015] [PMID: 26617070]
[39]
Le Floc’h, N.; Otten, W.; Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids, 2011, 41(5), 1195-1205.
[http://dx.doi.org/10.1007/s00726-010-0752-7] [PMID: 20872026]
[40]
Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res., 2009, 2, IJTR.S2129.
[http://dx.doi.org/10.4137/IJTR.S2129] [PMID: 20651948]
[41]
Waclawiková, B.; El Aidy, S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals (Basel), 2018, 11(3), 63.
[http://dx.doi.org/10.3390/ph11030063] [PMID: 29941795]
[42]
Ruddick, J.P.; Evans, A.K.; Nutt, D.J.; Lightman, S.L.; Rook, G.A.W.; Lowry, C.A. Tryptophan metabolism in the central nervous system: Medical implications. Expert Rev. Mol. Med., 2006, 8(20), 1-27.
[http://dx.doi.org/10.1017/S1462399406000068] [PMID: 16942634]
[43]
Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.C.; Patel, B.; Yan, R.; Blain, M.; Alvarez, J.I.; Kébir, H.; Anandasabapathy, N.; Izquierdo, G.; Jung, S.; Obholzer, N.; Pochet, N.; Clish, C.B.; Prinz, M.; Prat, A.; Antel, J.; Quintana, F.J. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med., 2016, 22(6), 586-597.
[http://dx.doi.org/10.1038/nm.4106] [PMID: 27158906]
[44]
Generoso, J.S.; Giridharan, V.V.; Lee, J.; Macedo, D.; Barichello, T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Br. J. Psychiatry, 2021, 43(3), 293-305.
[http://dx.doi.org/10.1590/1516-4446-2020-0987] [PMID: 32667590]
[45]
Serger, E.; Luengo-Gutierrez, L.; Chadwick, J.S.; Kong, G.; Zhou, L.; Crawford, G.; Danzi, M.C.; Myridakis, A.; Brandis, A.; Bello, A.T.; Müller, F.; Sanchez-Vassopoulos, A.; De Virgiliis, F.; Liddell, P.; Dumas, M.E.; Strid, J.; Mani, S.; Dodd, D.; Di Giovanni, S. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature, 2022, 607(7919), 585-592.
[http://dx.doi.org/10.1038/s41586-022-04884-x] [PMID: 35732737]
[46]
Wei, G.Z.; Martin, K.A.; Xing, P.Y.; Agrawal, R.; Whiley, L.; Wood, T.K.; Hejndorf, S.; Ng, Y.Z.; Low, J.Z.Y.; Rossant, J.; Nechanitzky, R.; Holmes, E.; Nicholson, J.K.; Tan, E.K.; Matthews, P.M.; Pettersson, S. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA, 2021, 118(27), e2021091118.
[http://dx.doi.org/10.1073/pnas.2021091118] [PMID: 34210797]
[47]
Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int., 2016, 99, 110-132.
[http://dx.doi.org/10.1016/j.neuint.2016.06.011] [PMID: 27346602]
[48]
O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol., 2022, 546, 111572.
[http://dx.doi.org/10.1016/j.mce.2022.111572] [PMID: 35066114]
[49]
Schroeder, F.A.; Lin, C.L.; Crusio, W.E.; Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry, 2007, 62(1), 55-64.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.036] [PMID: 16945350]
[50]
Wang, C.; Zheng, D.; Weng, F.; Jin, Y.; He, L. Sodium butyrate ameliorates the cognitive impairment of Alzheimer’s disease by regulating the metabolism of astrocytes. Psychopharmacology (Berl.), 2022, 239(1), 215-227.
[http://dx.doi.org/10.1007/s00213-021-06025-0] [PMID: 34812899]
[51]
Anderson, G.; Maes, M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr. Top. Med. Chem., 2020, 20(7), 524-539.
[http://dx.doi.org/10.2174/1568026620666200131094445] [PMID: 32003689]
[52]
Markus, R.P.; Fernandes, P.A.; Kinker, G.S.; da Silveira Cruz-Machado, S.; Marçola, M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br. J. Pharmacol., 2018, 175(16), 3239-3250.
[http://dx.doi.org/10.1111/bph.14083] [PMID: 29105727]
[53]
Muxel, S.M. Pires-Lapa, M.A.; Monteiro, A.W.A.; Cecon, E.; Tamura, E.K.; Floeter-Winter, L.M.; Markus, R.P. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One, 2012, 7(12), e52010.
[http://dx.doi.org/10.1371/journal.pone.0052010] [PMID: 23284853]
[54]
Lach, G.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics, 2018, 15(1), 36-59.
[http://dx.doi.org/10.1007/s13311-017-0585-0] [PMID: 29134359]
[55]
Aresti Sanz, J.; El Aidy, S. Microbiota and gut neuropeptides: A dual action of antimicrobial activity and neuroimmune response. Psychopharmacology (Berl.), 2019, 236(5), 1597-1609.
[http://dx.doi.org/10.1007/s00213-019-05224-0] [PMID: 30997526]
[56]
Needham, B.D.; Funabashi, M.; Adame, M.D.; Wang, Z.; Boktor, J.C.; Haney, J.; Wu, W.L.; Rabut, C.; Ladinsky, M.S.; Hwang, S.J.; Guo, Y.; Zhu, Q.; Griffiths, J.A.; Knight, R.; Bjorkman, P.J.; Shapiro, M.G.; Geschwind, D.H.; Holschneider, D.P.; Fischbach, M.A.; Mazmanian, S.K. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature, 2022, 602(7898), 647-653.
[http://dx.doi.org/10.1038/s41586-022-04396-8] [PMID: 35165440]
[57]
Mayneris-Perxachs, J.; Castells-Nobau, A.; Arnoriaga-Rodríguez, M.; Martin, M.; de la Vega-Correa, L.; Zapata, C.; Burokas, A.; Blasco, G.; Coll, C.; Escrichs, A.; Biarnés, C.; Moreno-Navarrete, J.M.; Puig, J.; Garre-Olmo, J.; Ramos, R.; Pedraza, S.; Brugada, R.; Vilanova, J.C.; Serena, J.; Gich, J.; Ramió-Torrentà, L.; Pérez-Brocal, V.; Moya, A.; Pamplona, R.; Sol, J.; Jové, M.; Ricart, W.; Portero-Otin, M.; Deco, G.; Maldonado, R.; Fernández-Real, J.M. Microbiota alterations in proline metabolism impact depression. Cell Metab., 2022, 34(5), 681-701.e10.
[http://dx.doi.org/10.1016/j.cmet.2022.04.001] [PMID: 35508109]
[58]
Louis, P.; Flint, H.J.; Michel, C. How to manipulate the microbiota. Prebiotics. Adv. Exp. Med. Biol., 2016, 902, 119-142.
[http://dx.doi.org/10.1007/978-3-319-31248-4_9] [PMID: 27161355]
[59]
Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry, 2013, 74(10), 720-726.
[http://dx.doi.org/10.1016/j.biopsych.2013.05.001] [PMID: 23759244]
[60]
Allen, A.P.; Hutch, W.; Borre, Y.E.; Kennedy, P.J.; Temko, A.; Boylan, G.; Murphy, E.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry, 2016, 6(11), e939.
[http://dx.doi.org/10.1038/tp.2016.191] [PMID: 27801892]
[61]
Bambury, A.; Sandhu, K.; Cryan, J.F.; Dinan, T.G. Finding the needle in the haystack: Systematic identification of psychobiotics. Br. J. Pharmacol., 2018, 175(24), 4430-4438.
[http://dx.doi.org/10.1111/bph.14127] [PMID: 29243233]
[62]
Tremblay, A.; Lingrand, L.; Maillard, M.; Feuz, B.; Tompkins, T.A. The effects of psychobiotics on the microbiota-gut-brain axis in early-life stress and neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 105, 110142.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110142] [PMID: 33069817]
[63]
Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the microbiota gut-brain axis: Prebiotics have have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry, 2017, 82(7), 472-487.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.031] [PMID: 28242013]
[64]
Savignac, H.M.; Couch, Y.; Stratford, M.; Bannerman, D.M.; Tzortzis, G.; Anthony, D.C.; Burnet, P.W.J. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav. Immun., 2016, 52, 120-131.
[http://dx.doi.org/10.1016/j.bbi.2015.10.007] [PMID: 26476141]
[65]
Hosseinifard, E.S.; Morshedi, M.; Bavafa-Valenlia, K.; Saghafi-Asl, M. The novel insight into anti-inflammatory and anxiolytic effects of psychobiotics in diabetic rats: Possible link between gut microbiota and brain regions. Eur. J. Nutr., 2019, 58(8), 3361-3375.
[http://dx.doi.org/10.1007/s00394-019-01924-7] [PMID: 30826905]
[66]
Gall, A.J.; Griffin, G.D. Anxiolytic effects of administration of a commercially available prebiotic blend of galacto-oligosaccharides and beta glucans in Sprague-Dawley rats. Benef. Microbes, 2021, 12(4), 341-349.
[http://dx.doi.org/10.3920/BM2020.0169] [PMID: 34169805]
[67]
Lalonde, R.; Strazielle, C. Probiotic effects on anxiety-like behavior in animal models. Rev. Neurosci., 2022, 33(6), 691-701.
[http://dx.doi.org/10.1515/revneuro-2021-0173] [PMID: 35381125]
[68]
Kambe, J.; Watcharin, S.; Makioka-Itaya, Y.; Inoue, R.; Watanabe, G.; Yamaguchi, H.; Nagaoka, K. Heat-killed Enterococcus fecalis (EC-12) supplement alters the expression of neurotransmitter receptor genes in the prefrontal cortex and alleviates anxiety-like behavior in mice. Neurosci. Lett., 2020, 720, 134753.
[http://dx.doi.org/10.1016/j.neulet.2020.134753] [PMID: 31931033]
[69]
Luna, R.A.; Foster, J.A. Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Curr. Opin. Biotechnol., 2015, 32, 35-41.
[http://dx.doi.org/10.1016/j.copbio.2014.10.007] [PMID: 25448230]
[70]
Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 2017, 7, 124-136.
[http://dx.doi.org/10.1016/j.ynstr.2017.03.001] [PMID: 29276734]
[71]
Marotta, A.; Sarno, E.; Del Casale, A.; Pane, M.; Mogna, L.; Amoruso, A.; Felis, G.E.; Fiorio, M. Effects of probiotics on cognitive reactivity, mood, and sleep quality. Front. Psychiatry, 2019, 10, 164.
[http://dx.doi.org/10.3389/fpsyt.2019.00164] [PMID: 30971965]
[72]
Yang, H.; Zhao, X.; Tang, S.; Huang, H.; Zhao, X.; Ning, Z.; Fu, X.; Zhang, C. Probiotics reduce psychological stress in patients before laryngeal cancer surgery. Asia Pac. J. Clin. Oncol., 2016, 12(1), e92-e96.
[http://dx.doi.org/10.1111/ajco.12120] [PMID: 24571169]
[73]
Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 2016, 32(3), 315-320.
[http://dx.doi.org/10.1016/j.nut.2015.09.003] [PMID: 26706022]
[74]
Rao, A.V.; Bested, A.C.; Beaulne, T.M.; Katzman, M.A.; Iorio, C.; Berardi, J.M.; Logan, A.C. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog., 2009, 1(1), 6.
[http://dx.doi.org/10.1186/1757-4749-1-6] [PMID: 19338686]
[75]
Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev., 2019, 102, 13-23.
[http://dx.doi.org/10.1016/j.neubiorev.2019.03.023] [PMID: 31004628]
[76]
Noonan, S.; Zaveri, M.; Macaninch, E.; Martyn, K. Food & mood: A review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutrition, Prev. Health, 2020, 3, e000053.
[77]
Chao, L.; Liu, C.; Sutthawongwadee, S.; Li, Y.; Lv, W.; Chen, W.; Yu, L.; Zhou, J.; Guo, A.; Li, Z.; Guo, S. Effects of probiotics on depressive or anxiety variables in healthy participants under stress conditions or with a depressive or anxiety diagnosis: A meta-analysis of randomized controlled trials. Front. Neurol., 2020, 11, 421.
[http://dx.doi.org/10.3389/fneur.2020.00421] [PMID: 32528399]
[78]
Papalini, S.; Michels, F.; Kohn, N.; Wegman, J.; van Hemert, S.; Roelofs, K.; Arias-Vasquez, A.; Aarts, E. Stress matters: Randomized controlled trial on the effect of probiotics on neurocognition. Neurobiol. Stress, 2019, 10, 100141.
[http://dx.doi.org/10.1016/j.ynstr.2018.100141] [PMID: 30937347]
[79]
Soldi, S.; Tagliacarne, S.C.; Valsecchi, C.; Perna, S.; Rondanelli, M.; Ziviani, L.; Milleri, S.; Annoni, A.; Castellazzi, A. Effect of a multistrain probiotic (Lactoflorene® Plus) on inflammatory parameters and microbiota composition in subjects with stress-related symptoms. Neurobiol. Stress, 2019, 10, 100138.
[http://dx.doi.org/10.1016/j.ynstr.2018.11.001] [PMID: 30937345]
[80]
Haghighat, N.; Rajabi, S.; Mohammadshahi, M. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: A randomized, double-blinded, clinical trial. Nutr. Neurosci., 2021, 24(6), 490-499.
[http://dx.doi.org/10.1080/1028415X.2019.1646975] [PMID: 31379269]
[81]
Taylor, A.M.; Thompson, S.V.; Edwards, C.G.; Musaad, S.M.A.; Khan, N.A.; Holscher, H.D. Associations among diet, the gastrointestinal microbiota, and negative emotional states in adults. Nutr. Neurosci., 2020, 23(12), 983-992.
[http://dx.doi.org/10.1080/1028415X.2019.1582578] [PMID: 30794085]
[82]
Johnstone, N.; Milesi, C.; Burn, O.; van den Bogert, B.; Nauta, A.; Hart, K.; Sowden, P.; Burnet, P.W.J.; Cohen, K.K. Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18-25 years) with corresponding changes in gut bacterial composition. Sci. Rep., 2021, 11(1), 8302.
[http://dx.doi.org/10.1038/s41598-021-87865-w] [PMID: 33859330]
[83]
Taylor, A.M.; Holscher, H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci., 2020, 23(3), 237-250.
[http://dx.doi.org/10.1080/1028415X.2018.1493808] [PMID: 29985786]
[84]
Smith, K.S.; Greene, M.W.; Babu, J.R.; Frugé, A.D. Psychobiotics as treatment for anxiety, depression, and related symptoms: A systematic review. Nutr. Neurosci., 2021, 24(12), 963-977.
[http://dx.doi.org/10.1080/1028415X.2019.1701220] [PMID: 31858898]
[85]
Marazziti, D.; Buccianelli, B.; Palermo, S.; Parra, E.; Arone, A.; Beatino, M.; Massa, L.; Carpita, B.; Barberi, F.; Mucci, F.; Dell’Osso, L. The microbiota/microbiome and the gut–brain axis: How much do they matter in psychiatry? Life (Basel), 2021, 11(8), 760.
[http://dx.doi.org/10.3390/life11080760] [PMID: 34440519]
[86]
Snigdha, S.; Ha, K.; Tsai, P.; Dinan, T.G.; Bartos, J.D.; Shahid, M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol. Ther., 2022, 231, 107978.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107978] [PMID: 34492236]
[87]
Navarro-Tapia, E.; Almeida-Toledano, L.; Sebastiani, G.; Serra-Delgado, M.; García-Algar, Ó.; Andreu-Fernández, V. Effects of microbiota imbalance in anxiety and eating disorders: Probiotics as novel therapeutic approaches. Int. J. Mol. Sci., 2021, 22(5), 2351.
[http://dx.doi.org/10.3390/ijms22052351] [PMID: 33652962]
[88]
Le Morvan de Sequeira, C.; Hengstberger, C.; Enck, P.; Mack, I. Effect of probiotics on psychiatric symptoms and central nervous system functions in human health and disease: A systematic review and meta-analysis. Nutrients, 2022, 14(3), 621.
[http://dx.doi.org/10.3390/nu14030621] [PMID: 35276981]
[89]
Zhou, L.; Foster, J.A. Psychobiotics and the gut-brain axis: In the pursuit of happiness. Neuropsychiatr. Dis. Treat., 2015, 11, 715-723.
[PMID: 25834446]
[90]
Foster, J.A. Decoding microbiome research for clinical psychiatry. Can. J. Psychiatry, 2020, 65(1), 19-20.
[http://dx.doi.org/10.1177/0706743719890725] [PMID: 31777272]
[91]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(1), 263-275.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[92]
Heijtz, R.D.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 3047-3052.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[93]
Neufeld, K.A.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Effects of intestinal microbiota on anxiety-like behavior. Commun. Integr. Biol., 2011, 4(4), 492-494.
[http://dx.doi.org/10.4161/cib.15702] [PMID: 21966581]
[94]
Neufeld, K.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil., 2011, 23(3), 255-e119, e119.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01620.x] [PMID: 21054680]
[95]
Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; Verdu, E.F.; Collins, S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011, 141(2), 599-609.e3, 609.e1-609.e3.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052] [PMID: 21683077]
[96]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18(6), 666-673.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[97]
Desbonnet, L.; Clarke, G.; Traplin, A.; O’Sullivan, O.; Crispie, F.; Moloney, R.D.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav. Immun., 2015, 48, 165-173.
[http://dx.doi.org/10.1016/j.bbi.2015.04.004] [PMID: 25866195]
[98]
Reid, B.M.; Horne, R.; Donzella, B.; Szamosi, J.C.; Coe, C.L.; Foster, J.A.; Gunnar, M.R. Microbiota‐immune alterations in adolescents following early life adversity: A proof of concept study. Dev. Psychobiol., 2021, 63(5), 851-863.
[http://dx.doi.org/10.1002/dev.22061] [PMID: 33249563]
[99]
Jang, H.M.; Lee, K.E.; Lee, H.J.; Kim, D.H. Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Sci. Rep., 2018, 8(1), 13897.
[http://dx.doi.org/10.1038/s41598-018-31764-0] [PMID: 30224732]
[100]
De Palma, G.; Lynch, M.D.J.; Lu, J.; Dang, V.T.; Deng, Y.; Jury, J.; Umeh, G.; Miranda, P.M.; Pigrau Pastor, M.; Sidani, S.; Pinto-Sanchez, M.I.; Philip, V.; McLean, P.G.; Hagelsieb, M.G.; Surette, M.G.; Bergonzelli, G.E.; Verdu, E.F.; Britz-McKibbin, P.; Neufeld, J.D.; Collins, S.M.; Bercik, P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med., 2017, 9(379), eaaf6397.
[http://dx.doi.org/10.1126/scitranslmed.aaf6397] [PMID: 28251905]
[101]
Jin, X.; Zhang, Y.; Celniker, S.E.; Xia, Y.; Mao, J.H.; Snijders, A.M.; Chang, H. Gut microbiome partially mediates and coordinates the effects of genetics on anxiety-like behavior in Collaborative Cross mice. Sci. Rep., 2021, 11(1), 270.
[http://dx.doi.org/10.1038/s41598-020-79538-x] [PMID: 33431988]
[102]
Dandekar, M.P.; Palepu, M.S.K.; Satti, S.; Jaiswal, Y.; Singh, A.A.; Dash, S.P.; Gajula, S.N.R.; Sonti, R. Multi-strain probiotic formulation reverses maternal separation and chronic unpredictable mild stress-generated anxiety- and depression-like phenotypes by modulating gut microbiome-brain activity in rats. ACS Chem. Neurosci., 2022, 13(13), 1948-1965.
[http://dx.doi.org/10.1021/acschemneuro.2c00143] [PMID: 35735411]
[103]
Chen, Y.; Bai, J.; Wu, D.; Yu, S.; Qiang, X.; Bai, H.; Wang, H.; Peng, Z. Association between fecal microbiota and generalized anxiety disorder: Severity and early treatment response. J. Affect. Disord., 2019, 259, 56-66.
[http://dx.doi.org/10.1016/j.jad.2019.08.014] [PMID: 31437702]
[104]
Jiang, H.; Zhang, X.; Yu, Z.; Zhang, Z.; Deng, M.; Zhao, J.; Ruan, B. Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res., 2018, 104, 130-136.
[http://dx.doi.org/10.1016/j.jpsychires.2018.07.007] [PMID: 30029052]
[105]
Mason, B.L.; Li, Q.; Minhajuddin, A.; Czysz, A.H.; Coughlin, L.A.; Hussain, S.K.; Koh, A.Y.; Trivedi, M.H. Reduced anti-inflammatory gut microbiota are associated with depression and anhedonia. J. Affect. Disord., 2020, 266, 394-401.
[http://dx.doi.org/10.1016/j.jad.2020.01.137] [PMID: 32056905]
[106]
Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in gut microbiota composition in psychiatric disorders: A review and meta-analysis. JAMA Psychiatry, 2021, 78(12), 1343-1354.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.2573] [PMID: 34524405]
[107]
Guo, T.L.; Chen, Y.; Xu, H.S.; McDonough, C.M.; Huang, G. Gut microbiome in neuroendocrine and neuroimmune interactions: The case of genistein. Toxicol. Appl. Pharmacol., 2020, 402, 115130.
[http://dx.doi.org/10.1016/j.taap.2020.115130] [PMID: 32673657]
[108]
Cheng, Y.; Wang, Y.; Zhang, W.; Yin, J.; Dong, J.; Liu, J. Relationship between intestinal flora, inflammation, BDNF gene polymorphism and generalized anxiety disorder: A clinical investigation. Medicine, 2022, 101, 29-e28910.
[109]
Gualtieri, P.; Marchetti, M.; Cioccoloni, G.; De Lorenzo, A.; Romano, L.; Cammarano, A.; Colica, C.; Condò, R.; Di Renzo, L. Psychobiotics regulate the anxiety symptoms in carriers of allele a of il-1 beta gene: A randomized, placebo-controlled clinical trial. Mediators Inflamm., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/2346126] [PMID: 32377159]
[110]
Vitellio, P.; Chira, A.; De Angelis, M.; Dumitrascu, D.L.; Portincasa, P. Probiotics in psychosocial stress and anxiety: A systematic review. J. Gastrointestin. Liver Dis., 2020, 29(1), 77-83.
[http://dx.doi.org/10.15403/jgld-352] [PMID: 32176751]
[111]
Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl.), 2015, 232(10), 1793-1801.
[http://dx.doi.org/10.1007/s00213-014-3810-0] [PMID: 25449699]
[112]
Messaoudi, M.; Violle, N.; Bisson, J.F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2011, 2(4), 256-261.
[http://dx.doi.org/10.4161/gmic.2.4.16108] [PMID: 21983070]
[113]
Pirbaglou, M.; Katz, J.; de Souza, R.J.; Stearns, J.C.; Motamed, M.; Ritvo, P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr. Res., 2016, 36(9), 889-898.
[http://dx.doi.org/10.1016/j.nutres.2016.06.009] [PMID: 27632908]
[114]
Slykerman, R.F.; Hood, F.; Wickens, K.; Thompson, J.M.D.; Barthow, C.; Murphy, R.; Kang, J.; Rowden, J.; Stone, P.; Crane, J.; Stanley, T.; Abels, P.; Purdie, G.; Maude, R.; Mitchell, E.A. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomized double-blind placebo-controlled trial. EBioMedicine, 2017, 24, 159-165.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.013] [PMID: 28943228]
[115]
Yang, B.; Wei, J.; Ju, P.; Chen, J. Effects of regulating intestinal microbiota on anxiety symptoms: A systematic review. Gen. Psychiatr., 2019, 32(2), e100056.
[http://dx.doi.org/10.1136/gpsych-2019-100056] [PMID: 31179435]
[116]
Eskandarzadeh, S.; Effatpanah, M.; Khosravi-Darani, K.; Askari, R.; Hosseini, A.F.; Reisian, M.; Jazayeri, S. Efficacy of a multispecies probiotic as adjunctive therapy in generalized anxiety disorder: A double blind, randomized, placebo-controlled trial. Nutr. Neurosci., 2021, 24(2), 102-108.
[http://dx.doi.org/10.1080/1028415X.2019.1598669] [PMID: 31516094]
[117]
Chinna Meyyappan, A.; Forth, E.; Wallace, C.J.K.; Milev, R. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: A systematic review. BMC Psychiatry, 2020, 20(1), 299.
[http://dx.doi.org/10.1186/s12888-020-02654-5] [PMID: 32539741]
[118]
Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res., 2012, 21(3), 169-184.
[http://dx.doi.org/10.1002/mpr.1359] [PMID: 22865617]
[119]
Quagliato, L.A.; Freire, R.C.; Nardi, A.E. Elevated peripheral kynurenine/tryptophan ratio predicts poor short-term auditory memory in panic disorder patients. J. Psychiatr. Res., 2019, 113, 159-164.
[http://dx.doi.org/10.1016/j.jpsychires.2019.03.027] [PMID: 30959226]
[120]
Lapin, I.P. Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J. Neural Transm. (Vienna), 1978, 42(1), 37-43.
[http://dx.doi.org/10.1007/BF01262727] [PMID: 641543]
[121]
Mok, M.H.S.; Fricker, A.C.; Weil, A.; Kew, J.N.C. Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels. Neuropharmacology, 2009, 57(3), 242-249.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.003] [PMID: 19523966]
[122]
Butler, M.I.; Long-Smith, C.; Moloney, G.M.; Morkl, S.; O’Mahony, S.M.; Cryan, J.F.; Clarke, G.; Dinan, T.G. The immune-kynurenine pathway in social anxiety disorder. Brain Behav. Immun., 2022, 99, 317-326.
[http://dx.doi.org/10.1016/j.bbi.2021.10.020] [PMID: 34758380]
[123]
Quagliato, L.A.; Nardi, A.E. Cytokine alterations in panic disorder: A systematic review. J. Affect. Disord., 2018, 228, 91-96.
[http://dx.doi.org/10.1016/j.jad.2017.11.094] [PMID: 29241050]
[124]
Fernández-Serrano, A.B.; Moya-Faz, F.J.; Giner Alegría, C.A.; Fernández Rodríguez, J.C. Negative correlation between IL‐1β IL‐12 and TNF‐γ and cortisol levels in patients with panic disorder. Brain Behav., 2022, 12(6), e2624.
[http://dx.doi.org/10.1002/brb3.2624] [PMID: 35588458]
[125]
Xie, Z.; Jiang, W.; Deng, M.; Wang, W.; Xie, X.; Feng, X.; Shi, Y.; Zhang, X.; Song, D.; Yuan, Z.; Wang, Y. Alterations of oral microbiota in patients with panic disorder. Bioengineered, 2021, 12(1), 9103-9112.
[http://dx.doi.org/10.1080/21655979.2021.1994738] [PMID: 34666612]
[126]
Simpson, C.A.; Adler, C.; du Plessis, M.R.; Landau, E.R.; Dashper, S.G.; Reynolds, E.C.; Schwartz, O.S.; Simmons, J.G. Oral microbiome composition, but not diversity, is associated with adolescent anxiety and depression symptoms. Physiol. Behav., 2020, 226, 113126.
[http://dx.doi.org/10.1016/j.physbeh.2020.113126] [PMID: 32777312]
[127]
Kuc, D.; Zgrajka, W.; Parada-Turska, J.; Urbanik-Sypniewska, T.; Turski, W.A. Micromolar concentration of kynurenic acid in rat small intestine. Amino Acids, 2008, 35(2), 503-505.
[http://dx.doi.org/10.1007/s00726-007-0631-z] [PMID: 18235993]
[128]
Hayaishi, O.; Taniuchi, H.; Tashiro, M.; Kuno, S. Studies on the metabolism of kynurenic acid. I. The formation of L-glutamic acid, D- and L-alanine, and acetic acid from kynurenic acid by Pseudomonas extracts. J. Biol. Chem., 1961, 236(9), 2492-2497.
[http://dx.doi.org/10.1016/S0021-9258(18)64026-8] [PMID: 13712440]
[129]
Kaihara, M.; Price, J.M. The metabolism of quinaldic acid, kynurenic acid, and xanthurenic acid in the rabbit. J. Biol. Chem., 1962, 237(5), 1727-1729.
[http://dx.doi.org/10.1016/S0021-9258(19)83769-9] [PMID: 14453131]
[130]
Dagley, S.; Johnson, P.A. Microbial oxidation of kynurenic, xanthurenic and picolinic acids. Biochim. Biophys. Acta, 1963, 78(4), 577-587.
[http://dx.doi.org/10.1016/0006-3002(63)91023-0] [PMID: 14089438]
[131]
American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 5th ed; American Psychiatric Association Publishing: Washington, DC, 2013.
[132]
Liberzon, I.; Krstov, M.; Young, E.A. Stress-restress: Effects on ACTH and fast feedback. Psychoneuroendocrinology, 1997, 22(6), 443-453.
[http://dx.doi.org/10.1016/S0306-4530(97)00044-9] [PMID: 9364622]
[133]
Zhou, Q.; Sun, T.; Wu, F.; Li, F.; Liu, Y.; Li, W.; Dai, N.; Tan, L.; Li, T.; Song, Y. Correlation of gut microbiota and neurotransmitters in a rat model of post-traumatic stress disorder. J. Trad. Chinese Med. Sci, 2020.
[134]
Wilson, C.B.; Ebenezer, P.J.; McLaughlin, L.D.; Francis, J. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One, 2014, 9(2), e89104.
[http://dx.doi.org/10.1371/journal.pone.0089104] [PMID: 24551226]
[135]
Leclercq, S.; Forsythe, P.; Bienenstock, J. Posttraumatic stress disorder: Does the gut microbiome hold the key? Can. J. Psychiatry, 2016, 61(4), 204-213.
[http://dx.doi.org/10.1177/0706743716635535] [PMID: 27254412]
[136]
Hemmings, S.M.J.; Malan-Müller, S.; van den Heuvel, L.L.; Demmitt, B.A.; Stanislawski, M.A.; Smith, D.G.; Bohr, A.D.; Stamper, C.E.; Hyde, E.R.; Morton, J.T.; Marotz, C.A.; Siebler, P.H.; Braspenning, M.; Van Criekinge, W.; Hoisington, A.J.; Brenner, L.A.; Postolache, T.T.; McQueen, M.B.; Krauter, K.S.; Knight, R.; Seedat, S.; Lowry, C.A. The microbiome in posttraumatic stress disorder and trauma-exposed controls: An exploratory study. Psychosom. Med., 2017, 79(8), 936-946.
[http://dx.doi.org/10.1097/PSY.0000000000000512] [PMID: 28700459]
[137]
Gao, F.; Guo, R.; Ma, Q.; Li, Y.; Wang, W.; Fan, Y.; Ju, Y.; Zhao, B.; Gao, Y.; Qian, L.; Yang, Z.; He, X.; Jin, X.; Liu, Y.; Peng, Y.; Chen, C.; Chen, Y.; Gao, C.; Zhu, F.; Ma, X. Stressful events induce long-term gut microbiota dysbiosis and associated post-traumatic stress symptoms in healthcare workers fighting against COVID-19. J. Affect. Disord., 2022, 303, 187-195.
[http://dx.doi.org/10.1016/j.jad.2022.02.024] [PMID: 35157946]
[138]
Raskind, M.A.; Peskind, E.R.; Chow, B.; Harris, C.; Davis-Karim, A.; Holmes, H.A.; Hart, K.L.; McFall, M.; Mellman, T.A.; Reist, C.; Romesser, J.; Rosenheck, R.; Shih, M.C.; Stein, M.B.; Swift, R.; Gleason, T.; Lu, Y.; Huang, G.D. Trial of prazosin for post-traumatic stress disorder in military veterans. N. Engl. J. Med., 2018, 378(6), 507-517.
[http://dx.doi.org/10.1056/NEJMoa1507598] [PMID: 29414272]
[139]
Amos, T.; Stein, D.J.; Ipser, J.C. Pharmacological interventions for preventing post-traumatic stress disorder (PTSD). Cochrane Libr., 2014, (7), CD006239.
[http://dx.doi.org/10.1002/14651858.CD006239.pub2] [PMID: 25001071]
[140]
Baker, J.F.; Cates, M.E.; Luthin, D.R. D-cycloserine in the treatment of posttraumatic stress disorder. Ment. Health Clin., 2017, 7(2), 88-94.
[http://dx.doi.org/10.9740/mhc.2017.03.088] [PMID: 29955504]
[141]
Brunet, A.; Poundja, J.; Tremblay, J.; Bui, É.; Thomas, É.; Orr, S.P.; Azzoug, A.; Birmes, P.; Pitman, R.K. Trauma reactivation under the influence of propranolol decreases posttraumatic stress symptoms and disorder: 3 open-label trials. J. Clin. Psychopharmacol., 2011, 31(4), 547-550.
[http://dx.doi.org/10.1097/JCP.0b013e318222f360] [PMID: 21720237]
[142]
Feder, A.; Costi, S.; Rutter, S.B.; Collins, A.B.; Govindarajulu, U.; Jha, M.K.; Horn, S.R.; Kautz, M.; Corniquel, M.; Collins, K.A.; Bevilacqua, L.; Glasgow, A.M.; Brallier, J.; Pietrzak, R.H.; Murrough, J.W.; Charney, D.S. A randomized controlled trial of repeated ketamine administration for chronic posttraumatic stress disorder. Am. J. Psychiatry, 2021, 178(2), 193-202.
[http://dx.doi.org/10.1176/appi.ajp.2020.20050596] [PMID: 33397139]
[143]
Mithoefer, M.C.; Mithoefer, A.T.; Feduccia, A.A.; Jerome, L.; Wagner, M.; Wymer, J.; Holland, J.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. 3,4-methylenedioxy-methamphetamine (MDMA)-assisted psychotherapy for post-traumatic stress disorder in military veterans, firefighters, and police officers: A randomised, double-blind, dose-response, phase 2 clinical trial. Lancet Psychiatry, 2018, 5(6), 486-497.
[http://dx.doi.org/10.1016/S2215-0366(18)30135-4] [PMID: 29728331]
[144]
Mithoefer, M.C.; Feduccia, A.A.; Jerome, L.; Mithoefer, A.; Wagner, M.; Walsh, Z.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted psychotherapy for treatment of PTSD: Study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials. Psychopharmacology (Berl.), 2019, 236(9), 2735-2745.
[http://dx.doi.org/10.1007/s00213-019-05249-5] [PMID: 31065731]
[145]
Mitchell, J.M.; Bogenschutz, M.; Lilienstein, A.; Harrison, C.; Kleiman, S.; Parker-Guilbert, K.; Ot’alora, G. M.; Garas, W.; Paleos, C.; Gorman, I.; Nicholas, C.; Mithoefer, M.; Carlin, S.; Poulter, B.; Mithoefer, A.; Quevedo, S.; Wells, G.; Klaire, S.S.; van der Kolk, B.; Tzarfaty, K.; Amiaz, R.; Worthy, R.; Shannon, S.; Woolley, J.D.; Marta, C.; Gelfand, Y.; Hapke, E.; Amar, S.; Wallach, Y.; Brown, R.; Hamilton, S.; Wang, J.B.; Coker, A.; Matthews, R.; de Boer, A.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted therapy for severe PTSD: A randomized, double-blind, placebo-controlled phase 3 study. Nat. Med., 2021, 27(6), 1025-1033.
[http://dx.doi.org/10.1038/s41591-021-01336-3] [PMID: 33972795]
[146]
Young, M.B.; Andero, R.; Ressler, K.J.; Howell, L.L. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning. Transl. Psychiatry, 2015, 5(9), e634.
[http://dx.doi.org/10.1038/tp.2015.138] [PMID: 26371762]
[147]
Young, M.B.; Norrholm, S.D.; Khoury, L.M.; Jovanovic, T.; Rauch, S.A.M.; Reiff, C.M.; Dunlop, B.W.; Rothbaum, B.O.; Howell, L.L. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxy-methamphetamine (MDMA). Psychopharmacology (Berl.), 2017, 234(19), 2883-2895.
[http://dx.doi.org/10.1007/s00213-017-4684-8] [PMID: 28741031]
[148]
Ridge, E.A.; Pachhain, S.; Choudhury, S.R.; Bodnar, S.R.; Larsen, R.A.; Phuntumart, V.; Sprague, J.E. The influence of the host microbiome on 3,4-methylenedioxymethamphetamine (MDMA)-induced hyperthermia and vice versa. Sci. Rep., 2019, 9(1), 4313.
[http://dx.doi.org/10.1038/s41598-019-40803-3] [PMID: 30867489]
[149]
Mellon, S.H.; Gautam, A.; Hammamieh, R.; Jett, M.; Wolkowitz, O.M. Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol. Psychiatry, 2018, 83(10), 866-875.
[http://dx.doi.org/10.1016/j.biopsych.2018.02.007] [PMID: 29628193]
[150]
Bersani, F.S.; Mellon, S.H.; Lindqvist, D.; Kang, J.I.; Rampersaud, R.; Somvanshi, P.R.; Doyle, F.J., III; Hammamieh, R.; Jett, M.; Yehuda, R.; Marmar, C.R.; Wolkowitz, O.M. Novel Pharmacological targets for combat PTSD—metabolism, inflammation, the gut microbiome, and mitochondrial dysfunction. Mil. Med., 2020, 185(Suppl. 1), 311-318.
[http://dx.doi.org/10.1093/milmed/usz260] [PMID: 32074311]
[151]
Wallace, C.J.K.; Milev, R.V. The efficacy, safety, and tolerability of probiotics on depression: Clinical results from an open-label pilot study. Front. Psychiatry, 2021, 12(12), 618279.
[http://dx.doi.org/10.3389/fpsyt.2021.618279] [PMID: 33658952]
[152]
Majeed, M.; Nagabhushanam, K.; Arumugam, S.; Majeed, S.; Ali, F. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: A randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr. Res., 2018, 62.
[http://dx.doi.org/10.29219/fnr.v62.1218] [PMID: 29997457]
[153]
Gualtieri, P.; Marchetti, M.; Cioccoloni, G.; De Lorenzo, A.; Romano, L.; Cammarano, A.; Colica, C.; Condò, R.; Di Renzo, L. Psychobiotics regulate the anxiety symptoms in carriers of Allele A of IL-1β gene: A randomized, placebo-controlled clinical trial. Mediators Inflamm., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/2346126] [PMID: 32377159]
[154]
Brenner, L.A.; Stearns-Yoder, K.A.; Stamper, C.E.; Hoisington, A.J.; Brostow, D.P.; Hoffmire, C.A.; Forster, J.E.; Donovan, M.L.; Ryan, A.T.; Postolache, T.T.; Lowry, C.A. Rationale, design, and methods: A randomized placebo-controlled trial of an immunomodulatory probiotic intervention for Veterans with PTSD. Contemp. Clin. Trials Commun., 2022, 28(100960), 100960.
[http://dx.doi.org/10.1016/j.conctc.2022.100960] [PMID: 35812820]
[155]
Troyer, E.A.; Kohn, J.N.; Ecklu-Mensah, G.; Aleti, G.; Rosenberg, D.R.; Hong, S. Searching for host immune-microbiome mechanisms in obsessive-compulsive disorder: A narrative literature review and future directions. Neurosci. Biobehav. Rev., 2021, 125, 517-534.
[http://dx.doi.org/10.1016/j.neubiorev.2021.02.034] [PMID: 33639178]
[156]
Pérez-Vigil, A.; Fernández de la Cruz, L.; Brander, G.; Isomura, K.; Gromark, C.; Mataix-Cols, D. The link between autoimmune diseases and obsessive-compulsive and tic disorders: A systematic review. Neurosci. Biobehav. Rev., 2016, 71, 542-562.
[http://dx.doi.org/10.1016/j.neubiorev.2016.09.025] [PMID: 27687817]
[157]
Lamothe, H.; Baleyte, J.M.; Smith, P.; Pelissolo, A.; Mallet, L. Individualized immunological data for precise classification of OCD patients. Brain Sci., 2018, 8(8), 149.
[http://dx.doi.org/10.3390/brainsci8080149] [PMID: 30096863]
[158]
Marazziti, D.; Mucci, F.; Fontenelle, L.F. Immune system and obsessive-compulsive disorder. Psychoneuroendocrinology, 2018, 93, 39-44.
[http://dx.doi.org/10.1016/j.psyneuen.2018.04.013] [PMID: 29689421]
[159]
Gerentes, M.; Pelissolo, A.; Rajagopal, K.; Tamouza, R.; Hamdani, N. Obsessive-compulsive disorder: Autoimmunity and neuroinflammation. Curr. Psychiatry Rep., 2019, 21(8), 78.
[http://dx.doi.org/10.1007/s11920-019-1062-8] [PMID: 31367805]
[160]
Swedo, S.E.; Frankovich, J.; Murphy, T.K. Overview of treatment of pediatric acute-onset neuropsychiatric syndrome. J. Child Adolesc. Psychopharmacol., 2017, 27(7), 562-565.
[http://dx.doi.org/10.1089/cap.2017.0042] [PMID: 28722464]
[161]
Hoffman, K.L.; Cano-Ramírez, H. Pediatric neuropsychiatric syndromes associated with infection and microbiome alterations: Clinical findings, possible role of the mucosal epithelium, and strategies for the development of new animal models. Expert Opin. Drug Discov., 2022, 17(7), 717-731.
[http://dx.doi.org/10.1080/17460441.2022.2074396] [PMID: 35543072]
[162]
Turna, J.; Grosman Kaplan, K.; Anglin, R.; Patterson, B.; Soreni, N.; Bercik, P.; Surette, M.G.; Van Ameringen, M. The gut microbiome and inflammation in obsessive‐compulsive disorder patients compared to age‐ and sex‐matched controls: A pilot study. Acta Psychiatr. Scand., 2020, 142(4), 337-347.
[http://dx.doi.org/10.1111/acps.13175] [PMID: 32307692]
[163]
Scheepers, I.M.; Cryan, J.F.; Bastiaanssen, T.F.S.; Rea, K.; Clarke, G.; Jaspan, H.B.; Harvey, B.H.; Hemmings, S.M.J.; Santana, L.; Sluis, R.; Malan-Müller, S.; Wolmarans, D.W. Natural compulsive‐like behaviour in the deer mouse (Peromyscus maniculatus bairdii) is associated with altered gut microbiota composition. Eur. J. Neurosci., 2020, 51(6), 1419-1427.
[http://dx.doi.org/10.1111/ejn.14610] [PMID: 31663195]
[164]
Domènech, L.; Willis, J.; Alemany-Navarro, M.; Morell, M.; Real, E.; Escaramís, G.; Bertolín, S.; Sánchez, C.D.; Balcells, S.; Segalàs, C.; Estivill, X.; Menchón, J.M.; Gabaldón, T.; Alonso, P.; Rabionet, R. Changes in the stool and oropharyngeal microbiome in obsessive-compulsive disorder. Sci. Rep., 2022, 12(1), 1448.
[http://dx.doi.org/10.1038/s41598-022-05480-9] [PMID: 35087123]
[165]
Quagliariello, A.; Del Chierico, F.; Russo, A.; Reddel, S.; Conte, G.; Lopetuso, L.R.; Ianiro, G.; Dallapiccola, B.; Cardona, F.; Gasbarrini, A.; Putignani, L. Gut microbiota profiling and gut-brain crosstalk in children affected by pediatric acute-onset neuropsychiatric syndrome and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Front. Microbiol., 2018, 9, 675.
[http://dx.doi.org/10.3389/fmicb.2018.00675] [PMID: 29686658]
[166]
Stojanov, S.; Berlec, A.; Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms, 2020, 8(11), 1715.
[http://dx.doi.org/10.3390/microorganisms8111715] [PMID: 33139627]
[167]
Rees, J.C. Obsessive–compulsive disorder and gut microbiota dysregulation. Med. Hypotheses, 2014, 82(2), 163-166.
[http://dx.doi.org/10.1016/j.mehy.2013.11.026] [PMID: 24332563]
[168]
Cox, C.J.; Zuccolo, A.J.; Edwards, E.V.; Mascaro-Blanco, A.; Alvarez, K.; Stoner, J.; Chang, K.; Cunningham, M.W. Antineuronal antibodies in a heterogeneous group of youth and young adults with tics and obsessive-compulsive disorder. J. Child Adolesc. Psychopharmacol., 2015, 25(1), 76-85.
[http://dx.doi.org/10.1089/cap.2014.0048] [PMID: 25658702]
[169]
Calaprice, D.; Tona, J.; Murphy, T.K. Treatment of pediatric acute-onset neuropsychiatric disorder in a large survey population. J. Child Adolesc. Psychopharmacol., 2018, 28(2), 92-103.
[http://dx.doi.org/10.1089/cap.2017.0101] [PMID: 28832181]
[170]
Kantak, P.A.; Bobrow, D.N.; Nyby, J.G. Obsessive–compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behav. Pharmacol., 2014, 25(1), 71-79.
[http://dx.doi.org/10.1097/FBP.0000000000000013] [PMID: 24257436]
[171]
Sanikhani, N.S.; Modarressi, M.H.; Jafari, P.; Vousooghi, N.; Shafei, S.; Akbariqomi, M.; Heidari, R.; Lavasani, P.S.; Yazarlou, F.; Motevaseli, E.; Ghafouri-Fard, S. The effect of Lactobacillus casei consumption in improvement of obsessive–compulsive disorder: An animal study. Probiotics Antimicrob. Proteins, 2020, 12(4), 1409-1419.
[http://dx.doi.org/10.1007/s12602-020-09642-x] [PMID: 32124236]
[172]
Kobliner, V.; Mumper, E.; Baker, S.M. Reduction in obsessive-compuslisive disorder and self- injurious behavior with Saccharomyces boulardii in a child with autism: A case report. Integr. Med. (Encinitas), 2018, 17(6), 38-41.
[PMID: 31043927]
[173]
Halverson, T.; Alagiakrishnan, K. Gut microbes in neurocognitive and mental health disorders. Ann. Med., 2020, 52(8), 423-443.
[http://dx.doi.org/10.1080/07853890.2020.1808239] [PMID: 32772900]
[174]
Lukić I.; Getselter, D.; Ziv, O.; Oron, O.; Reuveni, E.; Koren, O.; Elliott, E. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl. Psychiatry, 2019, 9(1), 133.
[http://dx.doi.org/10.1038/s41398-019-0466-x] [PMID: 30967529]
[175]
Morais, L.H.; Felice, D.; Golubeva, A.V.; Moloney, G.; Dinan, T.G.; Cryan, J.F. Strain differences in the susceptibility to the gut–brain axis and neurobehavioural alterations induced by maternal immune activation in mice. Behav. Pharmacol., 2018, 29(2 and 3), 181-198.
[http://dx.doi.org/10.1097/FBP.0000000000000374] [PMID: 29462110]
[176]
Zhang, X.; Lei, B.; Yuan, Y.; Zhang, L.; Hu, L.; Jin, S.; Kang, B.; Liao, X.; Sun, W.; Xu, F.; Zhong, Y.; Hu, J.; Qi, H. Brain control of humoral immune responses amenable to behavioural modulation. Nature, 2020, 581(7807), 204-208.
[http://dx.doi.org/10.1038/s41586-020-2235-7] [PMID: 32405000]
[177]
Hashimoto, K. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochem. Pharmacol., 2020, 177, 113935.
[http://dx.doi.org/10.1016/j.bcp.2020.113935] [PMID: 32224141]
[178]
Wei, Y.; Wang, T.; Liao, L.; Fan, X.; Chang, L.; Hashimoto, K. Brain-spleen axis in health and diseases: A review and future perspective. Brain Res. Bull., 2022, 182, 130-140.
[http://dx.doi.org/10.1016/j.brainresbull.2022.02.008] [PMID: 35157987]
[179]
Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. (Lausanne), 2020, 11, 25.
[http://dx.doi.org/10.3389/fendo.2020.00025] [PMID: 32082260]
[180]
Sanmarco, L.M.; Wheeler, M.A.; Gutiérrez-Vázquez, C.; Polonio, C.M.; Linnerbauer, M.; Pinho-Ribeiro, F.A.; Li, Z.; Giovannoni, F.; Batterman, K.V.; Scalisi, G.; Zandee, S.E.J.; Heck, E.S.; Alsuwailm, M.; Rosene, D.L.; Becher, B.; Chiu, I.M.; Prat, A.; Quintana, F.J. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature, 2021, 590(7846), 473-479.
[http://dx.doi.org/10.1038/s41586-020-03116-4] [PMID: 33408417]
[181]
Erny, D.; Prinz, M. How microbiota shape microglial phenotypes and epigenetics. Glia, 2020, 68(8), 1655-1672.
[http://dx.doi.org/10.1002/glia.23822] [PMID: 32181523]
[182]
Mohr, A.E.; Jäger, R.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Townsend, J.R.; West, N.P.; Black, K.; Gleeson, M.; Pyne, D.B.; Wells, S.D.; Arent, S.M.; Kreider, R.B.; Campbell, B.I.; Bannock, L.; Scheiman, J.; Wissent, C.J.; Pane, M.; Kalman, D.S.; Pugh, J.N.; Ortega-Santos, C.P.; ter Haar, J.A.; Arciero, P.J.; Antonio, J. The athletic gut microbiota. J. Int. Soc. Sports Nutr., 2020, 17(1), 24.
[http://dx.doi.org/10.1186/s12970-020-00353-w] [PMID: 32398103]
[183]
Moloney, G.M.; Cryan, J.F.; Clarke, G. “Digging in the Dirt” faecal microRNAs as dietary biomarkers of host-microbe interactions. Hepatobiliary Surg. Nutr., 2022, 11(2), 292-294.
[http://dx.doi.org/10.21037/hbsn-21-551] [PMID: 35464286]
[184]
Palacios-García, I.; Mhuireach, G.A.; Grasso-Cladera, A.; Cryan, J.F.; Parada, F.J. The 4E approach to the human microbiome: Nested interactions between the gut‐brain/body system within natural and built environments. BioEssays, 2022, 44(6), 2100249.
[http://dx.doi.org/10.1002/bies.202100249] [PMID: 35338496]
[185]
Bear, T.L.K.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The role of the gut microbiota in dietary interventions for depression and anxiety. Adv. Nutr., 2020, 11(4), 890-907.
[http://dx.doi.org/10.1093/advances/nmaa016] [PMID: 32149335]
[186]
Dong, Z.; Shen, X.; Hao, Y.; Li, J.; Li, H.; Xu, H.; Yin, L.; Kuang, W. Gut microbiome: A potential indicator for differential diagnosis of major depressive disorder and general anxiety disorder. Front. Psychiatry, 2021, 12, 651536.
[http://dx.doi.org/10.3389/fpsyt.2021.651536] [PMID: 34589003]
[187]
Davis, M.T.; Holmes, S.E.; Pietrzak, R.H.; Esterlis, I. Neurobiology of chronic stress-related psychiatric disorders: Evidence from molecular imaging studies. Chronic Stress (Thousand Oaks), 2017, 1, 1-21.
[http://dx.doi.org/10.1177/2470547017710916] [PMID: 29862379]
[188]
Dhar, D. Impending mental health issues during coronavirus disease 2019 – time for personalized nutrition based on the gut microbiota to tide over the crisis? Front. Neurosci., 2022, 15, 831193.
[http://dx.doi.org/10.3389/fnins.2021.831193] [PMID: 35110993]
[189]
Yeoh, Y.K.; Zuo, T.; Lui, G.C.Y.; Zhang, F.; Liu, Q.; Li, A.Y.L.; Chung, A.C.K.; Cheung, C.P.; Tso, E.Y.K.; Fung, K.S.C.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.C.; Chow, K.M.; Ng, S.S.S.; Li, T.C.M.; Ng, R.W.Y.; Yip, T.C.F.; Wong, G.L.H.; Chan, F.K.L.; Wong, C.K.; Chan, P.K.S.; Ng, S.C. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70(4), 698-706.
[http://dx.doi.org/10.1136/gutjnl-2020-323020] [PMID: 33431578]
[190]
Chinna Meyyappan, A.; Forth, E.; Milev, R. Microbial ecosystem therapeutic-2 intervention in people with major depressive disorder and generalized anxiety disorder. Phase 1, open-label study. Interact. J. Med. Res., 2022, 11(1), e32234.
[http://dx.doi.org/10.2196/32234] [PMID: 35060914]
[191]
Gupta, S.; Mullish, B.H.; Allegretti, J.R. Fecal microbiota transplantation: The evolving landscape. Am. J. Gastroenterol., 2021, 116(4), 647-656.
[http://dx.doi.org/10.14309/ajg.0000000000001075] [PMID: 33982930]
[192]
Settanni, C.R.; Ianiro, G.; Bibbò, S.; Cammarota, G.; Gasbarrini, A. Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 109, 110258.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110258] [PMID: 33497754]
[193]
Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.S.; Quinn, K.; Sanislow, C.; Wang, P.; Steinberg, J.; Wang, P. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry, 2010, 167(7), 748-751.
[http://dx.doi.org/10.1176/appi.ajp.2010.09091379] [PMID: 20595427]
[194]
Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med., 2013, 11(1), 126.
[http://dx.doi.org/10.1186/1741-7015-11-126] [PMID: 23672542]
[195]
Clark, L.A.; Cuthbert, B.; Lewis-Fernández, R.; Narrow, W.E.; Reed, G.M. Three approaches to understanding and classifying mental disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s research domain criteria (RDoC). Psychol. Sci. Public Interest, 2017, 18(2), 72-145.
[http://dx.doi.org/10.1177/1529100617727266] [PMID: 29211974]
[196]
Maes, M.; Anderson, G. False dogmas in schizophrenia research; Toward the reification of pathway phenotypes and pathway classes. Front. Psychiatry, 2021, 12, 663985.
[http://dx.doi.org/10.3389/fpsyt.2021.663985] [PMID: 34220578]
[197]
Stoyanov, D.; Maes, M.H.J. How to construct neuroscience-informed psychiatric classification? Towards nomothetic networks psychiatry. World J. Psychiatry, 2021, 11(1), 1-12.
[http://dx.doi.org/10.5498/wjp.v11.i1.1] [PMID: 33511042]
[198]
Moloney, G.M.; Clarke, G.; Cryan, J.F. Gut-brain-axis and the microbiome. Microb. Health Dis., 2021, 4(3), e769.
[199]
Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; Cryan, J.F.; Clarke, G.; Craig, J.M.; Su, K.P.; Mischoulon, D.; Gomez-Pinilla, F.; Foster, J.A.; Cani, P.D.; Thuret, S.; Staudacher, H.M.; Sánchez-Villegas, A.; Arshad, H.; Akbaraly, T.; O’Neil, A.; Segasby, T.; Jacka, F.N. Diet and depression: Exploring the biological mechanisms of action. Mol. Psychiatry, 2021, 26(1), 134-150.
[http://dx.doi.org/10.1038/s41380-020-00925-x] [PMID: 33144709]
[200]
Ribeiro, G.; Ferri, A.; Clarke, G.; Cryan, J.F. Diet and the microbiota-gut-brain-axis: A primer for clinical nutrition. Curr. Opin. Clin. Nutr. Metab. Care, 2022, 25(6), 443-450.
[http://dx.doi.org/10.1097/MCO.0000000000000874] [PMID: 36102353]
[201]
Schellekens, H.; Ribeiro, G.; Cuesta-Marti, C.; Cryan, J.F. The microbiome-gut-brain axis in nutritional neuroscience. Nutr. Neurosci., 2022, 1-13.
[http://dx.doi.org/10.1080/1028415X.2022.2128007] [PMID: 36222323]
[202]
de Melo, L.G.P.; Nunes, S.O.V.; Anderson, G.; Vargas, H.O.; Barbosa, D.S.; Galecki, P.; Carvalho, A.F.; Maes, M. Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 78, 34-50.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.027] [PMID: 28438472]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy