Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Gas Phase Reaction of Ketene with H2S in Troposphere: Catalytic Effects of Water and Ammonia

Author(s): Saptarshi Sarkar*, Pankaj Sharma and Partha Biswas*

Volume 13, Issue 2, 2023

Published on: 05 May, 2023

Page: [147 - 164] Pages: 18

DOI: 10.2174/1877946813666230322092304

Price: $65

Abstract

Background: Additions of water monomer (H2O) to simplest ketene, i.e., H2C=C=O (mentioned as ketene, henceforth) in the Earth's atmosphere results in the formation of acetic acid. However, this reaction is not feasible under tropospheric conditions due to the high reaction barrier amounting to nearly 40 kcal mol-1. A Significant reduction of the barrier height (below 20 kcal mol-1) is achieved upon addition of another H2O molecule as a catalyst. It is worth mentioning that like H2O and ammonia (NH3), H2S could also play an important role in the “loss mechanism” of various atmospherically important species such as ketones and aldehydes.

Aims: This study aims to get insight into the energetics and kinetics of a reaction between ketene and H2S in the troposphere which has not been done before.

Objective: Due to close similarity of H2O and H2S, studying the sulfolysis reaction between ketene and H2S could provide some interesting insights into the nature of various hydrogen bonded complexes of ketene as well as the impact on the products formed under the atmospheric conditions.

Methods: The water and ammonia catalyzed gas-phase addition reactions of ketene with H2S has been investigated using CCSD(T)-F12a/cc-pVTZ-F12a//M06-2X/6-311++G** level of theory. In this study, rate constants for all possible reaction channels are calculated using transition state theory.

Results: It is found that, under tropospheric conditions at 298 K and 1 atm, the rates via catalyzed reaction channels are significantly faster than those via uncatalyzed reactions. Between the two catalysts, ammonia acts as far better catalyst than water for this reaction. However, since the concentration of water is significantly larger than ammonia, the effective rate of water catalyzed reaction becomes higher than that of ammonia catalyzed reaction. Combustion is a major source of ketene in atmosphere. Under combustion conditions such as in the presence of air and at or above ignition temperature, the ammonia catalyzed channel is faster below 1500 K, while the uncatalyzed reaction channel becomes faster above that temperature.

Conclusion: Results from the present study show that the barrier for thioacetic acid formation through uncatalyzed sulfolysis of ketene via faster C=O addition pathway is substantially high as 40.6 kcal mol-1. The barrier height of the two transition states TS1 and TS2 are 19.7 and 13.8 kcal mol-1 for water catalyzed reaction and 14.4 and 7.2 kcal mol-1 for ammonia catalyzed reaction. Thus, ammonia has appreciably lowered the barrier height compared to water as catalyst. It has been observed that the hydrolysis reaction is more probable than the sulfolysis reaction under atmospheric conditions in the troposphere, but the ammonia catalysed sulfolysis is the fastest one at 298 K. The effective rate constant of the water catalysed hydrolysis reaction is found to be more than the ammonia catalysed reaction due to the higher monomer concentration of water than ammonia. Ammonia catalyzed reaction rate increases monotonously with increasing temperature. Further rate coefficient for uncatalyzed reaction is found to be dominant under combustion conditions, i.e., above 1500 K.

Graphical Abstract

[1]
Lee, C-F.; Codella, C.; Li, Z-Y.; Liu, S-Y. First abundance measurement of organic molecules in the atmosphere of HH 212 protostellar disk. Astrophys. J., 2019, 876(63)
[2]
Wakelam, V.; Herbst, E. Polycyclic aromatic hydrocarbons in dense cloud chemistry. Astrophys. J., 2008, 680(1), 371-383.
[http://dx.doi.org/10.1086/587734]
[3]
Vasiliou, A.; Nimlos, M.R.; Daily, J.W.; Ellison, G.B. Thermal decomposition of furan generates propargyl radicals. J. Phys. Chem. A, 2009, 113(30), 8540-8547.
[http://dx.doi.org/10.1021/jp903401h] [PMID: 19719311]
[4]
Sendt, K.; Bacskay, G.B.; Mackie, J.C. Pyrolysis of furan: Ab initio quantum chemical and kinetic modeling studies. J. Phys. Chem. A, 2000, 104(9), 1861-1875.
[http://dx.doi.org/10.1021/jp993537b]
[5]
Tian, Z.; Yuan, T.; Fournet, R.; Glaude, P.A.; Sirjean, B.; Battin-Leclerc, F.; Zhang, K.; Qi, F. An experimental and kinetic investigation of premixed furan/oxygen/argon flames. Combust. Flame, 2011, 158(4), 756-773.
[http://dx.doi.org/10.1016/j.combustflame.2010.12.022] [PMID: 23814311]
[6]
Wei, L.; Tang, C.; Man, X.; Jiang, X.; Huang, Z. High-temperature ignition delay times and kinetic study of furan. Energy Fuels, 2012, 26(4), 2075-2081.
[http://dx.doi.org/10.1021/ef300336y]
[7]
Flowers, M.C.; Honeyman, M.R. Photochemical reactions of ketene and diazomethane with 2, 3-dimethyl-2, 3-epoxybutane. J. Chem. Soc. Faraday Trans.1. Physical Chemistry in Condensed Phases, 1983, 79, 2185-2193.
[8]
Kistiakowsky, G.B.; Rosenberg, N.W. Photochemical decomposition of ketene. II. J. Am. Chem. Soc., 1950, 72(1), 321-326.
[http://dx.doi.org/10.1021/ja01157a084]
[9]
Kistiakowsky, G.B.; Marshall, W.L. Photochemical decomposition of ketene. III. J. Am. Chem. Soc., 1952, 74(1), 88-91.
[http://dx.doi.org/10.1021/ja01121a020]
[10]
Ho, S.Y.; Noyes, W.A. Photochemistry of ketene and of ketene-benzene mixtures. Reactions of methylene radicals. J. Am. Chem. Soc., 1967, 89(20), 5091-5098.
[http://dx.doi.org/10.1021/ja00996a001]
[11]
Patai, S. The chemistry of ketenes, allenes, and related compounds; John Wiley & Sons: New York, USA, 1980, p. 2.
[12]
Nguyen, T.L.; Xue, B.C.; Ellison, G.B.; Stanton, J.F. Theoretical study of reaction of ketene with water in the gas phase: Formation of acetic acid? J. Phys. Chem. A, 2013, 117(43), 10997-11005.
[http://dx.doi.org/10.1021/jp408337y] [PMID: 24087932]
[13]
Louie, M.K.; Francisco, J.S.; Verdicchio, M.; Klippenstein, S.J.; Sinha, A. Hydrolysis of ketene catalyzed by formic acid: Modification of reaction mechanism, energetics, and kinetics with organic acid catalysis. J. Phys. Chem. A, 2015, 119(19), 4347-4357.
[http://dx.doi.org/10.1021/jp5076725] [PMID: 25590617]
[14]
Sarkar, S.; Mallick, S.; Kumar, P.; Bandyopadhyay, B. Ammonolysis of ketene as a potential source of acetamide in the troposphere: a quantum chemical investigation. Phys. Chem. Chem. Phys., 2018, 20(19), 13437-13447.
[http://dx.doi.org/10.1039/C8CP01650J] [PMID: 29722396]
[15]
Ping, L.; Zhu, Y.; Li, A.; Song, H.; Li, Y.; Yang, M. Dynamics and kinetics of the reaction OH + H2S → H2O + SH on an accurate potential energy surface. Phys. Chem. Chem. Phys., 2018, 20(41), 26315-26324.
[http://dx.doi.org/10.1039/C8CP05276J] [PMID: 30303213]
[16]
Smith, M.C.; Chao, W.; Kumar, M.; Francisco, J.S.; Takahashi, K.; Lin, J.J.M. Temperature-dependent rate coefficients for the reaction of CH2OO with hydrogen sulfide. J. Phys. Chem. A, 2017, 121(5), 938-945.
[http://dx.doi.org/10.1021/acs.jpca.6b12303] [PMID: 28067517]
[17]
Tang, M.; Chen, X.; Sun, Z.; Xie, Y.; Schaefer, H.F. The hydrogen abstraction reaction H2S + OH → H2O + SH: Convergent quantum mechanical predictions. J. Phys. Chem. A, 2017, 121(47), 9136-9145.
[http://dx.doi.org/10.1021/acs.jpca.7b09563] [PMID: 29112437]
[18]
Kumar, M.; Francisco, J.S. Heteroatom tuning of bimolecular criegee reactions and its implications. Angew. Chem. Int. Ed., 2016, 55(43), 13432-13435.
[http://dx.doi.org/10.1002/anie.201604848] [PMID: 27678012]
[19]
Scaldaferri, M.C.L.; Pimentel, A.S. Theoretical study of the reaction of hydrogen sulfide with nitrate radical. Chem. Phys. Lett., 2009, 470(4-6), 203-209.
[http://dx.doi.org/10.1016/j.cplett.2009.01.070]
[20]
Mousavipour, S.H.; Namdar-Ghanbari, M.A.; Sadeghian, L. A theoretical study on the kinetics of hydrogen abstraction reactions of methyl or hydroxyl radicals with hydrogen sulfide. J. Phys. Chem. A, 2003, 107(19), 3752-3758.
[http://dx.doi.org/10.1021/jp022291z]
[21]
Wilson, C.; Hirst, D.M. Reaction of H2S with OH and a study of the HSO and SOH isomers. High-level ab initio calculations. J. Chem. Soc., Faraday Trans., 1994, 90(20), 3051-3059.
[http://dx.doi.org/10.1039/ft9949003051]
[22]
Luke, B.T.; McLean, A.D. A theoretical investigation of atmospheric sulfur chemistry. 1. The HSO/HOS energy separation and the heat of formation of HSO, HOS, and HS2. J. Phys. Chem., 1985, 89(21), 4592-4596.
[http://dx.doi.org/10.1021/j100267a036] [PMID: 11542011]
[23]
Hales, J.M.; Wilkes, J.O.; York, J.L. The rate of reaction between dilute hydrogen sulfide and ozone in air. Atmos. Environ., 1969, 3(6), 657-667.
[http://dx.doi.org/10.1016/0004-6981(69)90023-7] [PMID: 5382203]
[24]
Obesity: preventing and managing the global epidemic; World Health Organization, 2000.
[25]
Brimblecombe, P. Air composition and chemistry; Cambridge University Press: Cambrdge, 1996.
[26]
Sulfide, H. Environmental health criteria 19 World Health Organization. Geneva, 1981.
[27]
Cremlyn, R. An Introduction to Organosulfur Chemistry; John Wiley and Sons: Chichester, 1996.
[28]
Volkov, A.; Volkova, K. Substituted acetylenes in reactions with sulfide, thioacetate and thiocyanate anions. J. Sulfur Chem., 2004, 25(6), 413-431.
[http://dx.doi.org/10.1080/17415990412331317919]
[29]
Neff, J.M. Long-term environmental effects of offshore oil and gas development; CRC Press: Boca Raton, Florida, 2003, pp. 479-548.
[30]
Chandru, K.; Gilbert, A.; Butch, C.; Aono, M.; Cleaves, H.J. The abiotic chemistry of thiolated acetate derivatives and the origin of life. Sci. Rep., 2016, 6(1), 29883.
[http://dx.doi.org/10.1038/srep29883] [PMID: 27443234]
[31]
Sánchez-Andrada, P.; Alkorta, I.; Elguero, J. A theoretical study of the addition reactions of HF, H2O, H2S, NH3 and HCN to carbodiimide and related heterocumulenes. J. Mol. Struct. THEOCHEM, 2001, 544(1-3), 5-23.
[http://dx.doi.org/10.1016/S0166-1280(00)00515-7]
[32]
Buszek, R.J.; Francisco, J.S.; Anglada, J.M. Water effects on atmospheric reactions. Int. Rev. Phys. Chem., 2011, 30(3), 335-369.
[http://dx.doi.org/10.1080/0144235X.2011.634128]
[33]
Sennikov, P.G.; Ignatov, S.K.; Schrems, O. Complexes and clusters of water relevant to atmospheric chemistry: H2O complexes with oxidants. ChemPhysChem, 2005, 6(3), 392-412.
[http://dx.doi.org/10.1002/cphc.200400405] [PMID: 15799459]
[34]
Staikova, M.; Donaldson, D.J. Water complexes as catalysts in atmospheric reactions. Phys. Chem. Earth, Part C Sol.-terr. Planet. Sci., 2001, 26(7), 473-478.
[http://dx.doi.org/10.1016/S1464-1917(01)00034-4]
[35]
Vaida, V.; Kjaergaard, H.G.; Feierabend, K.J. Hydrated complexes: Relevance to atmospheric chemistry and climate. Int. Rev. Phys. Chem., 2003, 22(1), 203-219.
[http://dx.doi.org/10.1080/0144235031000075780]
[36]
Vaida, V. Perspective: Water cluster mediated atmospheric chemistry. J. Chem. Phys., 2011, 135(2), 020901.
[http://dx.doi.org/10.1063/1.3608919] [PMID: 21766916]
[37]
Anglada, J.M.; González, J.; Torrent-Sucarrat, M. Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water. Phys. Chem. Chem. Phys., 2011, 13(28), 13034-13045.
[http://dx.doi.org/10.1039/c1cp20872a] [PMID: 21687896]
[38]
Mallick, S.; Sarkar, S.; Bandyopadhyay, B.; Kumar, P. Effect of ammonia and formic acid on the OH• + HCl reaction in the troposphere: Competition between single and double hydrogen atom transfer pathways. J. Phys. Chem. A, 2018, 122(1), 350-363.
[http://dx.doi.org/10.1021/acs.jpca.7b09889] [PMID: 29212320]
[39]
Sarkar, S.; Mallick, S. Deepak; Kumar, P.; Bandyopadhyay, B. Isomerization of methoxy radical in the troposphere: Competition between acidic, neutral and basic catalysts. Phys. Chem. Chem. Phys., 2017, 19(40), 27848-27858.
[http://dx.doi.org/10.1039/C7CP05475K] [PMID: 28991295]
[40]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
[41]
Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2(1), 73-78.
[http://dx.doi.org/10.1002/wcms.81]
[42]
Sarkar, S.; Oram, B.K.; Bandyopadhyay, B. Influence of ammonia and water on the fate of sulfur trioxide in the troposphere: Theoretical investigation of sulfamic acid and sulfuric acid formation pathways. J. Phys. Chem. A, 2019, 123(14), 3131-3141.
[http://dx.doi.org/10.1021/acs.jpca.8b09306] [PMID: 30901223]
[43]
Zhang, T.; Zhai, K.; Zhang, Y.; Geng, L.; Geng, Z.; Zhou, M.; Lu, Y.; Shao, X.; Lily, M. Effect of water and ammonia on the HO + NH3 → NH2 + H2O reaction in troposphere: Competition between single and double hydrogen atom transfer pathways. Comput. Theor. Chem., 2020, 1176, 112747.
[http://dx.doi.org/10.1016/j.comptc.2020.112747]
[44]
Ali, M.A. M, B.; Jang, S. Can a single water molecule catalyze the OH+CH2CH2 and OH+CH2O reactions? Atmos. Environ., 2019, 207, 82-92.
[http://dx.doi.org/10.1016/j.atmosenv.2019.03.025]
[45]
Herbine, P.; Hu, T.A.; Johnson, G.; Dyke, T.R. The structure of NH 3 ⋅H 2 S and free internal rotation effects. J. Chem. Phys., 1990, 93(8), 5485-5495.
[http://dx.doi.org/10.1063/1.459618]
[46]
Duncan, W.T.; Bell, R.L.; Truong, T.N. TheRate: Program forab initio direct dynamics calculations of thermal and vibrational-state-selected rate constants. J. Comput. Chem., 1998, 19(9), 1039-1052.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19980715)19:9<1039:AID-JCC5>3.0.CO;2-R]
[47]
Zhang, S.; Truong, T.N. VKLab version 1.0; University of Utah, 2001.
[48]
Kumar, P.; Biswas, P.; Bandyopadhyay, B. Isomerization of the methoxy radical revisited: The impact of water dimers. Phys. Chem. Chem. Phys., 2016, 18(40), 27728-27732.
[http://dx.doi.org/10.1039/C6CP04544H] [PMID: 27711502]
[49]
Bandyopadhyay, B.; Kumar, P.; Biswas, P. Ammonia catalyzed formation of sulfuric acid in troposphere: The curious case of a base promoting acid rain. J. Phys. Chem. A, 2017, 121(16), 3101-3108.
[http://dx.doi.org/10.1021/acs.jpca.7b01172] [PMID: 28368597]
[50]
Mallick, S.; Sarkar, S.; Bandyopadhyay, B.; Kumar, P. Effect of ammonia-water complex on decomposition of carbonic acid in troposphere: A quantum chemical investigation. Comput. Theor. Chem., 2018, 1132, 50-58.
[http://dx.doi.org/10.1016/j.comptc.2018.04.005]
[51]
Sarkar, S. Monu; Bandyopadhyay, B. Aldehyde as a potential source of aminol in troposphere: Influence of water and formic acid catalysis on ammonolysis of formaldehyde. Atmos. Environ., 2019, 213, 223-230.
[http://dx.doi.org/10.1016/j.atmosenv.2019.05.069]
[52]
Sarkar, S.; Oram, B.K.; Bandyopadhyay, B. Ammonolysis as an important loss process of acetaldehyde in the troposphere: energetics and kinetics of water and formic acid catalyzed reactions. Phys. Chem. Chem. Phys., 2019, 21(29), 16170-16179.
[http://dx.doi.org/10.1039/C9CP01720H] [PMID: 31298235]
[53]
Dransfield, T.J.; Perkins, K.K.; Donahue, N.M.; Anderson, J.G.; Sprengnether, M.M.; Demerjian, K.L. Temperature and pressure dependent kinetics of the gas-phase reaction of the hydroxyl radical with nitrogen dioxide. Geophys. Res. Lett., 1999, 26(6), 687-690.
[http://dx.doi.org/10.1029/1999GL900028]
[54]
Smith, M.C.; Chang, C.H.; Chao, W.; Lin, L.C.; Takahashi, K.; Boering, K.A.; Lin, J.J.M. Strong negative temperature dependence of the simplest Criegee intermediate CH2OO reaction with water dimer. J. Phys. Chem. Lett., 2015, 6(14), 2708-2713.
[http://dx.doi.org/10.1021/acs.jpclett.5b01109] [PMID: 26266852]
[55]
Chao, W.; Yin, C.; Li, Y.L.; Takahashi, K.; Lin, J.J.M. Synergy of water and ammonia hydrogen bonding in a gas-phase reaction. J. Phys. Chem. A, 2019, 123(7), 1337-1342.
[http://dx.doi.org/10.1021/acs.jpca.9b00672] [PMID: 30681339]
[56]
Anglada, J.M.; Hoffman, G.J.; Slipchenko, L.V.M.; Costa, M.; Ruiz-López, M.F.; Francisco, J.S. Atmospheric significance of water clusters and ozone-water complexes. J. Phys. Chem. A, 2013, 117(40), 10381-10396.
[http://dx.doi.org/10.1021/jp407282c] [PMID: 24028451]
[57]
Hiranuma, N.; Brooks, S.D.; Thornton, D.C.O.; Auvermann, B.W. Atmospheric ammonia mixing ratios at an open-air cattle feeding facility. J. Air Waste Manag. Assoc., 2010, 60(2), 210-218.
[http://dx.doi.org/10.3155/1047-3289.60.2.210] [PMID: 20222534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy