Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Study on Thermal Decomposition Mechanisms of Indian Honey of Different Origins using Differential Scanning Calorimetry and Vector Elemental Analyzer Techniques

Author(s): Mohamad Abdul Sajid, Sateesh Marojus, Hakeem Aleem Basha, Anil Kumar Chaudhary* and Kaleem Ahmad Jaleeli

Volume 13, Issue 2, 2023

Published on: 03 March, 2023

Page: [138 - 146] Pages: 9

DOI: 10.2174/1877946813666230123123127

Price: $65

Abstract

Background: This paper reports the thermal decomposition mechanisms of five pure honey samples of Indian origin using Differential Scanning Calorimetry (DSC) and Euro Vector Elemental Analyzer (EVEA) techniques.

Methods: We have identified three transition temperatures along with a change in specific heat capacity (ΔCp), change in enthalpy (ΔH), and Gibbs free energy (ΔG) of these samples. Finally, samples were subjected to thermal elemental analyses to quantify the released amount of O, N, C, and H. Since glucose, fructose, and sucrose are the principal ingredients, they are present in the honey sample, along with good numbers of other organic molecules in small quantities. In addition, we have also recorded the C, H, and O percentages of pure glucose, fructose, and sucrose powders and correlated the ratio of C/H and C/O with honey samples.

Results: The decomposition temperature for honey samples lies between 113.83°C and 127.07°C range. The ratios of these elements help us to ascertain the purity of these samples as well as to identify the dominating percentage of principal ingredients present in the given honey sample.

Conclusion: The obtained experimental results were further used to identify the source of origin and medicinal quality and stability of honey samples.

Next »
Graphical Abstract

[1]
Codex alimentarius standard for honey CXS 12-19811, adopted in 1981, revised in 1987, 2001. 2019.
[2]
Živkov, B.M. Jakšić S.; Popov, N.; Vidaković K.S.; Ljubojević P.D.; Pelić M.; Polaček, V.; Milanov, D. Physiochemical characteristics of Serbian honeydew honey. Arh. Vet. Med., 2019, 12(2), 49-61.
[http://dx.doi.org/10.46784/e-avm.v12i2.62]
[3]
Posudin, Y. Spectroscopic analysis of honey. Ukr. Food J., 2016, 5(3), 437-450.
[http://dx.doi.org/10.24263/2304-974X-2016-5-3-3]
[4]
Alvarez-Suarez, J.; Giampieri, F.; Battino, M. Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem., 2013, 20(5), 621-638.
[http://dx.doi.org/10.2174/092986713804999358] [PMID: 23298140]
[5]
Jones, R.; Munn, P. Honey and healing. J. Apiproduct Apimed. Sc., 2009, 1(1), 2-5.
[6]
Vlaeva, I.; Nikolova, K.; Bodurov, I.; Marudova, M.; Tsankova, D.; Lekova, S.; Viraneva, A.; and Yovcheva, T. Using differential scanning calorimetry, laser refractometry, electrical conductivity and spectrophotometry for discrimination of different types of Bulgarian honey, IOP Conf. Series: J. Phys., 2017, 794(01), 012034.
[http://dx.doi.org/10.1088/1742-6596/794/1/012034]
[7]
Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: A focus on Manuka honey foods. Foods, 2014, 420-432.
[http://dx.doi.org/10.3390/foods3030420] [PMID: 28234328]
[8]
Bogdanov, S. The honey book, types of honey. Encycloped. Insects, 2009, 1(20), 71-75.
[9]
Abd-Elghany, M.; Klapötke, T.M. A review on differential scanning calorimetry technique and its importance in the field of energetic material. Phys. Sci. Rev., 2018, 3(4), 20170103.
[http://dx.doi.org/10.1515/psr-2017-0103]
[10]
Roduit, B.; Borgeat, C.; Berger, B.; Folly, P.; Andres, H.; Schädeli, U.; Vogelsanger, B. Up-scaling of dsc data of high energetic materials. J. Therm. Anal. Calorim., 2006, 85(1), 195-202.
[http://dx.doi.org/10.1007/s10973-005-7388-y]
[11]
Canadas, O.; Casals, C. Differential scanning calorimetry of protein-lipid interactions. In: Lipid protein interactions, Methods in molecular biology (Methods and protocols); Kleinschmidt, J., Ed.; Humana Press: Totowa, NJ, 2013; 974, p. 55-71.
[12]
Araujo, A.A.S.; Bezerra, D.S.; Storpirtis, S.; Matos, J.D.R. Determination of the melting temperature, heat of fusion and purity analysis of different samples of zidovudine (AZT) using DSC. Brazil. J. Pharmaceut. Sci., 2010, 46(1), 37-43.
[http://dx.doi.org/10.1590/S1984-82502010000100005]
[13]
Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech., 2010, 21(4), 167-193.
[PMID: 21119929]
[14]
Wen, J.; Arthur, K.; Chemmalil, L.; Muzammil, S.; Gabrielson, J.; Jiang, Y. Applications of differential scanning calorimetry for thermal stability analysis of proteins: Qualification of DSC. J. Pharm. Sci., 2012, 101(3), 955-964.
[http://dx.doi.org/10.1002/jps.22820] [PMID: 22147423]
[15]
Yehya, F.; Chaudhary, A.K.; Srinivas, D.; Muralidharan, K. Study of thermal decomposition mechanisms and low-level detection of explosives using pulsed photoacoustic technique. Appl. Phys. B, 2015, 121(2), 193-202.
[http://dx.doi.org/10.1007/s00340-015-6218-6]
[16]
Rao, K.S.; Yehya, F.; Chaudhary, A.K.; Kumar, A.S.; Sahoo, A.K. Thermal stability study of nitro-rich triazole derivatives using temperature dependent time resolved pulsed photoacoustic (PA) technique. J. Anal. Appl. Pyrolysis, 2014, 109, 132-139.
[http://dx.doi.org/10.1016/j.jaap.2014.07.002]
[17]
Lupano, C.E. DSC study of honey granulation stored at various temperatures. Food Res. Int., 1997, 30(9), 683-688.
[http://dx.doi.org/10.1016/S0963-9969(98)00030-1]
[18]
Kántor, Z.; Pitsi, G.; Thoen, J. Glass transition temperature of honey as a function of water content as determined by differential scanning calorimetry. J. Agric. Food Chem., 1999, 47(6), 2327-2330.
[http://dx.doi.org/10.1021/jf981070g] [PMID: 10794630]
[19]
Cardona, Y.; Torres, A.; Hoffmann, W.; Lamprecht, I. Differentiation of honey from Melipona species using differential scanning calorimetry. Food Anal. Methods, 2018, 11(4), 1056-1067.
[http://dx.doi.org/10.1007/s12161-017-1083-z]
[20]
Al-Habsi, N.A.; Davis, F.J.; Niranjan, K. Development of novel methods to determine drystalline glucose content of honey based on DSC. J. Food Sci., 2013, 78(6), E845-E852.
[http://dx.doi.org/10.1111/1750-3841.12103]
[21]
Cordella, C.; Faucon, J.P.; Cabrol-Bass, D.; Sbirrazzuoli, N. Application of DSC as a tool for honey floral species characterization and adulteration detuction. J. Therm. Anal. Calorim., 2003, 71(1), 279-290.
[http://dx.doi.org/10.1023/A:1022251208688]
[22]
Cordella, C.; Antinelli, J.F.; Aurieres, C.; Faucon, J.P.; Cabrol-Bass, D.; Sbirrazzuoli, N.; Sbirrazzuoli, N. Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. J. Agric. Food Chem., 2002, 50(1), 203-208.
[http://dx.doi.org/10.1021/jf010752s] [PMID: 11754568]
[23]
Tomaszewska-Gras, J.; Bakier, S.; Goderska, K.; Mansfeld, K. Differential scanning calorimetry for determining the thermodynamic properties of selected honeys. J. Apic. Sci., 2015, 59(1), 109-117.
[http://dx.doi.org/10.1515/jas-2015-0012]
[24]
Rodrıguez, Y.C.; Torres, A.; Hoffmann, W. Thermo-analytical investigations of honey produced by Trigona species using differential scanning calorimetry. J. Apicul. Res., 2022, 61(3), 408-415.
[http://dx.doi.org/10.1080/00218839.2020.1735730]
[25]
Saravana Kumar, J.; Mandal, M. Rheology and thermal properties of marketed Indian honey. Nutr. Food Sci., 2009, 39(2), 111-117.
[http://dx.doi.org/10.1108/00346650910943217]
[26]
Eksperiandova, L.P.; Fedorov, O.I.; Stepanenko, N.A. Estimation of metrological characteristics of the element analyzer EuroVector EA-3000 and its potential in the single-reactor CHNS mode. Microchem. J., 2011, 99(2), 235-238.
[http://dx.doi.org/10.1016/j.microc.2011.05.005]
[27]
Fadeeva, V.P.; Tikhova, V.D.; Nikulicheva, O.N. Elemental analysis of organic compounds with the use of automated CHNS analyzers. J. Anal. Chem., 2008, 63(11), 1094-1106.
[http://dx.doi.org/10.1134/S1061934808110142]
[28]
Farina, A.; Piergallini, R.; Doldo, A.; Salsano, E.P.; Abballe, F. The determination of C-H-N by an automated elemental analyzer. Microchem. J., 1991, 43(3), 181-190.
[http://dx.doi.org/10.1016/S0026-265X(10)80003-7]
[29]
dos Santos, Z.M.; Caroni, A.L.P.F.; Pereira, M.R.; da Silva, D.R.; Fonseca, J.L.C. Determination of deacetylation degree of chitosan: A comparison between conductometric titration and CHN elemental analysis. Carbohydr. Res., 2009, 344(18), 2591-2595.
[http://dx.doi.org/10.1016/j.carres.2009.08.030] [PMID: 19853840]
[30]
Eksperiandova, L.P.; Fedorov, A.I.; Stepanenko, N.A.; Blank, T.A. Method for water determination using an elemental analyzer. Inorg. Mater., 2011, 47(15), 1635-1639.
[http://dx.doi.org/10.1134/S0020168511150052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy