Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Metal Matrix Nanocomposites: A Brief Overview

Author(s): Prashil U. Sarode, Jhantu G. Raul, Aditya S. Gaikwad and Shravan Gawande*

Volume 13, Issue 2, 2023

Published on: 04 May, 2023

Article ID: e010323214231 Pages: 19

DOI: 10.2174/2210681213666230301152349

Price: $65

Abstract

The need for lightweight materials is increasing at a faster rate in the engineering field. It demands materials with high strength, low weight, and properties like ductility and formability which are required for easier processing of the material. When conventional pure metals and alloys failed to meet this demand, many researchers turned their attention toward developing composites. Composites can be fabricated from metal, polymer, and ceramic as base materials which are known as metal matrix composites (MMC), polymer matrix composites (PMC), and ceramic matrix composites (CMC), MMC are of special importance due to properties like strength, stiffness, and formability which are difficult to obtain from PMC and CMC. Even though conventional composites with micron-size reinforcement have enhanced certain properties like strength, hardness, and wear resistance, it deteriorated other desirable properties like ductility. To overcome these limitations of micro-composites, a new category of materials known as nanocomposite has been developed. Nano composites are materials that contain nano-scale reinforcement in different forms. This review article summarizes the recent progress in the field of metal matrix Nano composite (MMNC). Methods of fabrication which are applicable for metal alloys and micro- composites are mostly not suitable for nanocomposite fabrication, the recently developed fabrication process which are applicable for MMNC’s are discussed in this article. The effects of added nano reinforcement on the microstructure are also discussed with suitable examples. Enhancements in mechanical, tribological, and physical properties are explained in depth with the help of recently published data. Strengthening mechanisms are described with the help of empirical relations. Although industrial applications of metal matrix nano composites are limited due to the ongoing developments in this field, a few important potential application areas are also discussed at the end of this article.

Graphical Abstract

[1]
Malaki, M.; Xu, W.; Kasar, A.; Menezes, P.; Dieringa, H.; Varma, R.; Gupta, M. Advanced Metal Matrix Nanocomposites. Metals (Basel), 2019, 9(3), 330.
[http://dx.doi.org/10.3390/met9030330]
[2]
Matli, P.R.; Manakari, V.; Parande, G.; Gupta, M. Tensile Response of Al-Based Nanocomposites.Encyclopedia of Materials: Composites; Elsevier, 2021, pp. 313-324.
[http://dx.doi.org/10.1016/B978-0-12-819724-0.00003-3]
[3]
Dorri Moghadam, A.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – A review. Compos., Part B Eng., 2015, 77, 402-420.
[http://dx.doi.org/10.1016/j.compositesb.2015.03.014]
[4]
Mohanty, P.; Mahapatra, R.; Padhi, P.; Ramana, C.; Mishra, D.K. Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review. Nano-Structures & Nano-Objects, 2020, 23, 100475.
[http://dx.doi.org/10.1016/j.nanoso.2020.100475]
[5]
Sharifi, S.; Lotfipour, F.; Ghavimi, M.A.; Maleki Dizaj, S.; Shahi, S.; Yazdani, J.; Mokhtarpour, M.; Khalilov, R. Hydroxyapatite-gelatin and calcium carbonate- gelatin nanocomposite scaffolds: Production, physicochemical characterization and comparison of their bioactivity in simulated body fluid. Eurasian Chemical Communications, 2021, 3(2), 70-80.
[http://dx.doi.org/10.22034/ecc.2021.256060.1112]
[6]
Radhy, N.D.; Jasim, L.S. A novel economical friendly treatment approach: Composite hydrogels. Caspian J. Environ. Sci., 2021, 19(5), 841-852.
[http://dx.doi.org/10.22124/cjes.2021.5233]
[7]
Motahharinia, M.; Zamani, H.A.; Karimi-Maleh, H. Electrochemical Determination of Doxorubicin in Injection Samples Using Paste Electrode Amplified with Reduced Graphene Oxide/Fe3O4 Nanocomposite and 1-Hexyl-3-methylimidazolium Hexafluorophosphate. Chemical Methodologies, 2021, 5(2), 107-113.
[http://dx.doi.org/10.22034/chemm.2021.119678]
[8]
Kumar, N.; Kumbhat, S. Nanocomposites.Essentials in Nanoscience and Nanotechnology, 1st ed; Wiley, 2016, pp. 271-325.
[http://dx.doi.org/10.1002/9781119096122.ch7]
[9]
Basak, A.K.; Pramanik, A.; Islam, M.N.; Anandakrishnan, V. 14 - Challenges and recent developments on nanoparticle-reinforced metal matrix composites.Fillers and Reinforcements for Advanced Nanocomposites, 1st ed; Woodhead Publishing, 2015.
[http://dx.doi.org/10.1016/B978-0-08-100079-3.00014-4]
[10]
Selvam, J.D.R.; Dinaharan, I.; Rai, R.S. Matrix and Reinforcement Materials for Metal Matrix Composites.Encyclopedia of materials: composites; Elsevier, 2020.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.11890-9]
[11]
Selvam, B.; Marimuthu, P.; Narayanasamy, R.; Anandakrishnan, V.; Tun, K.S.; Gupta, M.; Kamaraj, M. Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites. Mater. Des., 2014, 58, 475-481.
[http://dx.doi.org/10.1016/j.matdes.2014.02.006]
[12]
Bathula, S.; Anandani, R.C.; Dhar, A.; Srivastava, A.K. Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A, 2012, 545, 97-102.
[http://dx.doi.org/10.1016/j.msea.2012.02.095]
[13]
Shorowordi, K.M.; Laoui, T.; Haseeb, A.S.M.A.; Celis, J.P.; Froyen, L. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J. Mater. Process. Technol., 2003, 142(3), 738-743.
[http://dx.doi.org/10.1016/S0924-0136(03)00815-X]
[14]
Seetharaman, S.; Gupta, M. Fundamentals of Metal Matrix Composites, 2021.
[http://dx.doi.org/10.1016/B978-0-12-819724-0.00001-X]
[15]
Reddy, M.P.; Shakoor, R.A.; Parande, G.; Manakari, V.; Ubaid, F.; Mohamed, A.M.A.; Gupta, M. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat. Sci., 2017, 27(5), 606-614.
[http://dx.doi.org/10.1016/j.pnsc.2017.08.015]
[16]
Mahmoud, T.S.; El-Kady, E.Y.; Al-Shihri, A. Mechanical and corrosion behaviours of Al/SiC and Al/Al 2 O 3 metal matrix nanocomposites fabricated using powder metallurgy route. Corros. Eng. Sci. Technol., 2012, 47(1), 45-53.
[http://dx.doi.org/10.1179/1743278211Y.0000000014]
[17]
Ozkaya, S.; Canakci, A. Effect of the B 4 C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B 4 C nanocomposites synthesized by mechanical milling. Powder Technol., 2016, 297, 8-16.
[http://dx.doi.org/10.1016/j.powtec.2016.04.004]
[18]
Reddy, M.P.; Himyan, M.A.; Ubaid, F.; Shakoor, R.A.; Vyasaraj, M.; Gururaj, P.; Yusuf, M.; Mohamed, A.M.A.; Gupta, M. Enhancing thermal and mechanical response of aluminum using nanolength scale TiC ceramic reinforcement. Ceram. Int., 2018, 44(8), 9247-9254.
[http://dx.doi.org/10.1016/j.ceramint.2018.02.135]
[19]
Ajayan, P.M.; Schadler, L.S.; Braun, P.V. Nanocomposite Science and Technology, 1st ed; Wiley-VCH, 2003.
[http://dx.doi.org/10.1002/3527602127]
[20]
Ma, P.; Jia, Y.; Konda Gokuldoss, P.; Yu, Z.; Yang, S.; Zhao, J.; Li, C. Effect of Al2O3 Nanoparticles as Reinforcement on the Tensile Behavior of Al-12Si Composites. Metals (Basel), 2017, 7(9), 359.
[http://dx.doi.org/10.3390/met7090359]
[21]
Scharf, T.W.; Neira, A.; Hwang, J.Y.; Tiley, J.; Banerjee, R. Self-lubricating carbon nanotube reinforced nickel matrix composites. J. Appl. Phys., 2009, 106(1), 013508.
[http://dx.doi.org/10.1063/1.3158360]
[22]
Lim, C.Y.H.; Leo, D.K.; Ang, J.J.S.; Gupta, M. Wear of magnesium composites reinforced with nano-sized alumina particulates. Wear, 2005, 259(1-6), 620-625.
[http://dx.doi.org/10.1016/j.wear.2005.02.006]
[23]
Nie, K.B.; Wang, X.J.; Wu, K.; Hu, X.S.; Zheng, M.Y. Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mater. Sci. Eng. A, 2012, 540, 123-129.
[http://dx.doi.org/10.1016/j.msea.2012.01.112]
[24]
Nassar, A.E.; Nassar, E.E. Properties of aluminum matrix Nano composites prepared by powder metallurgy processing. Journal of King Saud University - Engineering Sciences, 2017, 29(3), 295-299.
[http://dx.doi.org/10.1016/j.jksues.2015.11.001]
[25]
Jia, S.; Zhang, D.; Nastac, L. Experimental and Numerical Analysis of the 6061-Based Nanocomposites Fabricated via Ultrasonic Processing. J. Mater. Eng. Perform., 2015, 24(6), 2225-2233.
[http://dx.doi.org/10.1007/s11665-015-1467-4]
[26]
Hu, Z.; Tong, G.; Nian, Q.; Xu, R.; Saei, M.; Chen, F.; Chen, C.; Zhang, M.; Guo, H.; Xu, J. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Compos., Part B Eng., 2016, 93, 352-359.
[http://dx.doi.org/10.1016/j.compositesb.2016.03.043]
[27]
Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology, 2006, 17(1), 7-12.
[http://dx.doi.org/10.1088/0957-4484/17/1/002]
[28]
AlMangour, B.; Grzesiak, D.; Yang, J.M. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater. Des., 2016, 96, 150-161.
[http://dx.doi.org/10.1016/j.matdes.2016.02.022]
[29]
Matli, P.R.; Ubaid, F.; Shakoor, R.A.; Parande, G.; Manakari, V.; Yusuf, M.; Amer Mohamed, A.M.; Gupta, M. Improved properties of Al–Si 3 N 4 nanocomposites fabricated through a microwave sintering and hot extrusion process. RSC Advances, 2017, 7(55), 34401-34410.
[http://dx.doi.org/10.1039/C7RA04148A]
[30]
Tu, J.P.; Wang, N.Y.; Yang, Y.Z.; Qi, W.X.; Liu, F.; Zhang, X.B.; Lu, H.M.; Liu, M.S. Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing. Mater. Lett., 2002, 52(6), 448-452.
[http://dx.doi.org/10.1016/S0167-577X(01)00442-6]
[31]
Cepeda-Jiménez, C.M.; Pérez-Prado, M.T. 4.12 Processing of Nanoparticulate Metal Matrix Composites, Reference Module in Materials Science and Materials Engineering.Comprehensive Composite Materials II; Elsevier, 2018, pp. 313-330.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.09984-7]
[32]
Tun, K.S.; Gupta, M. Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos. Sci. Technol., 2007, 67(13), 2657-2664.
[http://dx.doi.org/10.1016/j.compscitech.2007.03.006]
[33]
Simões, S.; Viana, F.; Reis, M.; Vieira, M. Aluminum and Nickel Matrix Composites Reinforced by CNTs: Dispersion/Mixture by Ultrasonication. Metals (Basel), 2017, 7(7), 279.
[http://dx.doi.org/10.3390/met7070279]
[34]
Gupta, M.; Wong, W.L.E. Magnesium-based nanocomposites: Lightweight materials of the future. Mater. Charact., 2015, 105, 30-46.
[http://dx.doi.org/10.1016/j.matchar.2015.04.015]
[35]
Cintas, J.; Montes, J.M.; Cuevas, F.G.; Herrera, E.J. Heat-resistant bulk nanostructured P/M aluminium. J. Alloys Compd., 2008, 458(1-2), 282-285.
[http://dx.doi.org/10.1016/j.jallcom.2007.04.209]
[36]
Sharifi, E.M.; Karimzadeh, F. Wear behavior of aluminum matrix hybrid nanocomposites fabricated by powder metallurgy. Wear, 2011, 271(7-8), 1072-1079.
[http://dx.doi.org/10.1016/j.wear.2011.05.015]
[37]
Habibi, M.K.; Joshi, S.P.; Gupta, M. Hierarchical magnesium nano-composites for enhanced mechanical response. Acta Mater., 2010, 58(18), 6104-6114.
[http://dx.doi.org/10.1016/j.actamat.2010.07.028]
[38]
Rashad, M.; Pan, F.; Hu, H.; Asif, M.; Hussain, S.; She, J. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A, 2015, 630, 36-44.
[http://dx.doi.org/10.1016/j.msea.2015.02.002]
[39]
Sabzevari, M.; Sajjadi, S.A.; Moloodi, A. Physical and mechanical properties of porous copper nanocomposite produced by powder metallurgy. Adv. Powder Technol., 2016, 27(1), 105-111.
[http://dx.doi.org/10.1016/j.apt.2015.11.005]
[40]
Dabhade, V.V.; Mohan, T.R.R.; Ramakrishnan, P. Sintering behavior of titanium–titanium nitride nanocomposite powders. J. Alloys Compd., 2008, 453(1-2), 215-221.
[http://dx.doi.org/10.1016/j.jallcom.2006.11.187]
[41]
Ujah, C.O.; Popoola, A.P.I.; Popoola, O.M.; Aigbodion, V.S. Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite. Int. J. Adv. Manuf. Technol., 2019, 101(9-12), 2275-2282.
[http://dx.doi.org/10.1007/s00170-018-3128-x]
[42]
Ujah, C.O.; Popoola, A.P.I.; Popoola, O.M.; Aigbodion, V.S. Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int. J. Adv. Manuf. Technol., 2019, 100(5-8), 1563-1573.
[http://dx.doi.org/10.1007/s00170-018-2705-3]
[43]
Dash, K.; Chaira, D.; Ray, B.C. Synthesis and characterization of aluminium–alumina micro- and nano-composites by spark plasma sintering. Mater. Res. Bull., 48(7), 2415-2750.
[http://dx.doi.org/10.1016/j.materresbull.2013.03.014]
[44]
Razavi, M.; Farajipour, A.R.; Zakeri, M.; Rahimipour, M.R.; Firouzbakht, A.R. Production of Al 2 O 3 –SiC nano-composites by spark plasma sintering. Bol. Soc. Esp. Ceram. Vidr., 2017, 56(4), 186-194.
[http://dx.doi.org/10.1016/j.bsecv.2017.01.002]
[45]
Kubota, M.; Kaneko, J.; Sugamata, M. Properties of mechanically milled and spark plasma sintered Al–AlB2 and Al–MgB2 nano-composite materials. Mater. Sci. Eng. A, 2008, 475(1-2), 96-100.
[http://dx.doi.org/10.1016/j.msea.2007.02.130]
[46]
Pérez-Bustamante, R.; Estrada-Guel, I.; Amézaga-Madrid, P.; Miki-Yoshida, M.; Herrera-Ramírez, J.M.; Martínez-Sánchez, R. Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion. J. Alloys Compd., 2010, 495(2), 399-402.
[http://dx.doi.org/10.1016/j.jallcom.2009.10.099]
[47]
Chandrasekhar, S.B.; Sudhakara Sarma, S.; Ramakrishna, M.; Suresh Babu, P.; Rao, T.N.; Kashyap, B.P. Microstructure and properties of hot extruded Cu–1wt% Al2O3 nano-composites synthesized by various techniques. Mater. Sci. Eng. A, 2014, 591, 46-53.
[http://dx.doi.org/10.1016/j.msea.2013.10.074]
[48]
Ramezanalizadeh, H.; Emamy, M.; Shokouhimehr, M. A novel aluminum based nanocomposite with high strength and good ductility. J. Alloys Compd., 2015, 649, 461-473. [DOI]
[http://dx.doi.org/10.1016/j.jallcom.2015.07.088]
[49]
Xu, W.; Wu, X.; Honma, T.; Ringer, S.P.; Xia, K. Nanostructured Al–Al2O3 composite formed in situ during consolidation of ultrafine Al particles by back pressure equal channel angular pressing. Acta Mater., 2009, 57(14), 4321-4330.
[http://dx.doi.org/10.1016/j.actamat.2009.06.010]
[50]
Casati, R.; Fabrizi, A.; Tuissi, A.; Xia, K.; Vedani, M. ECAP consolidation of Al matrix composites reinforced with in-situ γ-Al2O3 nanoparticles. Mater. Sci. Eng. A, 2015, 648, 113-122.
[http://dx.doi.org/10.1016/j.msea.2015.09.025]
[51]
Zhang, Q.; Xiao, B.L.; Wang, Q.Z.; Ma, Z.Y. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system. Mater. Lett., 2011, 65(13), 2070-2072.
[http://dx.doi.org/10.1016/j.matlet.2011.04.030]
[52]
Bauri, R.; Yadav, D.; Suhas, G. Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater. Sci. Eng. A, 2011, 528(13-14), 4732-4739.
[http://dx.doi.org/10.1016/j.msea.2011.02.085]
[53]
Liao, H.; Chen, J.; Peng, L.; Han, J.; Yi, H.; Zheng, F.; Wu, Y.; Ding, W. Fabrication and characterization of magnesium matrix composite processed by combination of friction stir processing and high-energy ball milling. Mater. Sci. Eng. A, 2017, 683, 207-214.
[http://dx.doi.org/10.1016/j.msea.2016.11.104]
[54]
Alizadeh, M.; Paydar, M.H. Fabrication of nanostructure Al/SiCP composite by accumulative roll-bonding (ARB) process. J. Alloys Compd., 2010, 492, 231-235.
[http://dx.doi.org/10.1016/j.jallcom.2009.12.026]
[55]
Soltani, M.A.; Jamaati, R.; Toroghinejad, M.R. The influence of TiO2 nano-particles on bond strength of cold roll bonded aluminum strips. Mater. Sci. Eng. A, 2012, 550, 367-374.
[http://dx.doi.org/10.1016/j.msea.2012.04.089]
[56]
Jamaati, R.; Amirkhanlou, S.; Toroghinejad, M.R.; Niroumand, B. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process. Mater. Sci. Eng. A, 2011, 528(4-5), 2143-2148.
[http://dx.doi.org/10.1016/j.msea.2010.11.056]
[57]
Huang, Y.; Bazarnik, P.; Wan, D.; Luo, D.; Pereira, P.H.R.; Lewandowska, M.; Yao, J.; Hayden, B.E.; Langdon, T.G. The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Mater., 2019, 164, 499-511.
[http://dx.doi.org/10.1016/j.actamat.2018.10.060]
[58]
Akbarpour, M.R.; Farvizi, M.; Lee, D.J.; Rezaei, H.; Kim, H.S. Effect of high-pressure torsion on the microstructure and strengthening mechanisms of hot-consolidated Cu–CNT nanocomposite. Mater. Sci. Eng. A, 2015, 638, 289-295.
[http://dx.doi.org/10.1016/j.msea.2015.04.085]
[59]
Ahn, B.; Lee, H.J.; Choi, I.C.; Kawasaki, M.; Jang, J.I.; Langdon, T.G. Micro-Mechanical Behavior of an Exceptionally Strong Metal Matrix Nanocomposite Processed by High-Pressure Torsion. Adv. Eng. Mater., 2016, 18(6), 1001-1008.
[http://dx.doi.org/10.1002/adem.201500520]
[60]
Ramanathan, A.; Krishnan, P.K.; Muraliraja, R. A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities. J. Manuf. Process., 2019, 42, 213-245.
[http://dx.doi.org/10.1016/j.jmapro.2019.04.017]
[61]
Sillekens, W.H.; Jarvis, D.J.; Vorozhtsov, A.; Bojarevics, V.; Badini, C.F.; Pavese, M.; Terzi, S.; Salvo, L.; Katsarou, L.; Dieringa, H. The ExoMet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2014, 45(8), 3349-3361.
[http://dx.doi.org/10.1007/s11661-014-2321-2]
[62]
Shayan, M.; Eghbali, B.; Niroumand, B. Fabrication of AA2024−TiO2 nanocomposites through stir casting process. Trans. Nonferrous Met. Soc. China, 2020, 30(11), 2891-2903.
[http://dx.doi.org/10.1016/S1003-6326(20)65429-2]
[63]
Sajjadi, S.A.; Ezatpour, H.R.; Beygi, H. Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater. Sci. Eng. A, 2011, 528(29-30), 8765-8771.
[http://dx.doi.org/10.1016/j.msea.2011.08.052]
[64]
Poovazhagan, L.; Kalaichelvan, K.; Rajadurai, A. Preparation of SiC Nano-particulates Reinforced Aluminum Matrix Nanocomposites by High Intensity Ultrasonic Cavitation Process. Trans. Indian Inst. Met., 2014, 67(2), 229-237.
[http://dx.doi.org/10.1007/s12666-013-0340-0]
[65]
Madhukar, P.; Selvaraj, N.; Rao, C.S.P.; Veeresh Kumar, G.B. Fabrication and characterization two step stir casting with ultrasonic assisted novel AA7150-hBN nanocomposites. J. Alloys Compd., 2020, 815, 152464.
[http://dx.doi.org/10.1016/j.jallcom.2019.152464]
[66]
Prabu, S.B.; Karunamoorthy, L.; Kathiresan, S.; Mohan, B. Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol., 2006, 171(2), 268-273.
[http://dx.doi.org/10.1016/j.jmatprotec.2005.06.071]
[67]
Ezatpour, H.R.; Sajjadi, S.A.; Sabzevar, M.H.; Huang, Y. Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater. Des., 2014, 55, 921-928.
[http://dx.doi.org/10.1016/j.matdes.2013.10.060]
[68]
Gupta, M.; Sharon, N.M.L. In book: Magnesium, Magnesium Alloys, and Magnesium Composites; Wiley, 2011.
[http://dx.doi.org/10.1002/9780470905098]
[69]
Li, Y.Y.X. Ultrasonic Cavitation-Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites. J. Manuf. Sci. Eng., 2006, 129(3), 497-501.
[http://dx.doi.org/10.1016/j.compositesa.2005.01.032]
[70]
Cao, G.; Konishi, H.; Li, X. Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater. Sci. Eng. A, 2008, 486(1-2), 357-362.
[http://dx.doi.org/10.1016/j.msea.2007.09.054]
[71]
Chen, L.Y.; Peng, J.Y.; Xu, J.Q.; Choi, H.; Li, X-C. Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr. Mater., 2013, 69(8), 634-637.
[http://dx.doi.org/10.1016/j.scriptamat.2013.07.016]
[72]
Venkatesan, S.; Anthony Xavior, M. Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes. Science and Technology of Materials, 2018, 30(2), 74-85.
[http://dx.doi.org/10.1016/j.stmat.2018.02.005]
[73]
Senthil, S.; Raguraman, M.; Thamarai Manalan, D. Manufacturing processes & recent applications of aluminium metal matrix composite materials: A review. Mater. Today Proc., 2021, 45(7), 5934-5938.
[http://dx.doi.org/10.1016/j.matpr.2020.08.792]
[74]
singh, M.; Rana, R.S.; Purohit, R.; sahu, Development and Analysis of Al-Matrix Nano Composites fabricated by ultrasonic assisted Squeeze casting process. Mater. Today Proc., 2015, 2(4-5), 3697-3703.
[http://dx.doi.org/10.1016/j.matpr.2015.07.146]
[75]
Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater. Sci. Eng. A, 2006, 423(1-2), 153-156. 153- 156.
[http://dx.doi.org/10.1016/j.msea.2005.10.071]
[76]
Goh, C.; Wei, J.; Lee, L.; Gupta, M. Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater., 2007, 55(15), 5115-5121.
[http://dx.doi.org/10.1016/j.actamat.2007.05.032]
[77]
Rashad, M.; Pan, F.; Lin, D.; Asif, M. High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets. Mater. Des., 2016, 89, 1242-1250.
[http://dx.doi.org/10.1016/j.matdes.2015.10.101]
[78]
Alam, M.E.; Han, S.; Nguyen, Q.B.; Salem Hamouda, A.M.; Gupta, M. Development of new magnesium based alloys and their nanocomposites. J. Alloys Compd., 2011, 509(34), 8522-8529.
[http://dx.doi.org/10.1016/j.jallcom.2011.06.020]
[79]
Chen, C.Y.; Tsao, C.Y.A. Spray forming of silicon added AZ91 magnesium alloy and its workability. Mater. Sci. Eng. A, 2004, 383(1), 21-29.
[http://dx.doi.org/10.1016/j.msea.2004.02.032]
[80]
Meenashisundaram, G.K.; Nai, M.H.; Almajid, A.; Gupta, M. Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications. Mater. Des., 2015, 65, 104-114.
[http://dx.doi.org/10.1016/j.matdes.2014.08.041]
[81]
Jayalakshmi, S.; Arvind Singh, R.; Sankaranarayanan, S.; Shabadi, R.; Konovalov, S.; Chen, X.; Gupta, M. Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique. Mater. Today Proc., 2018, 5(8), 16280-16285.
[http://dx.doi.org/10.1016/j.matpr.2018.05.120]
[82]
Chen, Y.; Tekumalla, S.; Guo, Y.B.; Gupta, M. Introducing Mg-4Zn-3Gd-1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel. Sci. Rep., 2016, 6(1), 32395.
[http://dx.doi.org/10.1038/srep32395] [PMID: 27572903]
[83]
Hsu, C.J.; Chang, C.Y.; Kao, P.W.; Ho, N.J.; Chang, C.P. Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater., 2006, 54(19), 5241-5249.
[http://dx.doi.org/10.1016/j.actamat.2006.06.054]
[84]
Fouad, O.A.; Ali, G.A.M.; El-Erian, M.A.I.; Makhlouf, S.A. Humidity Sensing Properties of Cobalt Oxide/Silica Nanocomposites Prepared Vis SOL–GEL and related routes. Nano, 2012, 7(5), 1250038.
[http://dx.doi.org/10.1142/S1793292012500385]
[85]
Abdel Ghafar, H.H.; Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A. Enhancement of adsorption efficiency of methylene blue on Co 3 O 4/SiO 2 nanocomposite. Desalination Water Treat., 2015, 53(11), 2980-2989.
[http://dx.doi.org/10.1080/19443994.2013.871343]
[86]
Fouad, O.A.; Makhlouf, S.A.; Ali, G.A.M.; El-Sayed, A.Y. Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Mater. Chem. Phys., 2011, 128(1-2), 70-76.
[http://dx.doi.org/10.1016/j.matchemphys.2011.02.072]
[87]
Niu, P.; Gich, M.; Fernández-Sánchez, C.; Roig, A. Sol–Gel Nanocomposites for Electrochemical Sensor Applications. In: The Sol-Gel Handbook; Wiley‐VCH, 2015.
[http://dx.doi.org/10.1002/9783527670819.ch46]
[88]
Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A. Structural, optical and electrical properties of sol–gel prepared mesoporous Co3O4/SiO2 nanocomposites. J. Alloys Compd., 2013, 579, 606-611.
[http://dx.doi.org/10.1016/j.jallcom.2013.07.095]
[89]
Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A.; Yusoff, M.M.; Chong, K.F. Co3O4/SiO2 nanocomposites for supercapacitor application. J. Solid State Electrochem., 2014, 18(9), 2505-2512.
[http://dx.doi.org/10.1007/s10008-014-2510-3]
[90]
Kandemir, S.; Atkinson, H.V.; Weston, D.P.; Hainsworth, S.V. Thixoforming of A356/SiC and A356/TiB2 Nanocomposites Fabricated by a Combination of Green Compact Nanoparticle Incorporation and Ultrasonic Treatment of the Melted Compact. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2014, 45(12), 5782-5798.
[http://dx.doi.org/10.1007/s11661-014-2501-0]
[91]
Sidhu, T.S.; Prakash, S.; Agrawal, R.D. Performance of High-Velocity Oxyfuel-Sprayed Coatings on an Fe-Based Superalloy in Na2SO4-60%V2O5 Environment at 900 °C Part I: Characterization of the Coatings. J. Mater. Eng. Perform., 2006, 15, 122-129.
[http://dx.doi.org/10.1361/105994906X83402]
[92]
Baik, K.H.; Kim, J.H.; Seong, B.G. Improvements in hardness and wear resistance of thermally sprayed WC-Co nanocomposite coatings. Mater. Sci. Eng. A, 2007, 449-451, 846-849.
[http://dx.doi.org/10.1016/j.msea.2006.02.295]
[93]
Lima, C.R.C.; Libardi, R.; Camargo, F.; Fals, H.C.; Ferraresi, V.A. Assessment of Abrasive Wear of Nanostructured WC-Co and Fe-Based Coatings Applied by HP-HVOF, Flame, and Wire Arc Spray. Journal of Thermal Spray Technology, 2014, 23(7), 1097-1104.
[http://dx.doi.org/10.1007/s11666-014-0101-6]
[94]
Reddy, A.P. Krishna, P.V.; Rao, R.N. Al/SiC NP and Al/SiC NP/X nanocomposites fabrication and properties: A review. Proc. Inst. Mech. Eng., Part N, Nanomater. Nanoeng. Nanosyst., 2017, 231(4), 155-172.
[http://dx.doi.org/10.1177/2397791417744706]
[95]
Kim, C.S.; Sohn, I.; Nezafati, M.; Ferguson, J.B.; Schultz, B.F.; Bajestani-Gohari, Z.; Rohatgi, P.K.; Cho, K. Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci., 2013, 48(12), 4191-4204.
[http://dx.doi.org/10.1007/s10853-013-7232-x]
[96]
Zhang, Z.; Chen, D.L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A, 2008, 483-484, 148-152.
[http://dx.doi.org/10.1016/j.msea.2006.10.184]
[97]
Sanaty-Zadeh, A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater. Sci. Eng. A, 2012, 531, 112-118.
[http://dx.doi.org/10.1016/j.msea.2011.10.043]
[98]
Zhou, X.; Su, D.; Wu, C.; Liu, L. Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle reinforced magnesium alloy composites. J. Nanomater., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/851862]
[99]
Hassan, S.F. Effect of primary processing techniques on the microstructure and mechanical properties of nano-Y2O3 reinforced magnesium nanocomposites. Mater. Sci. Eng. A, 2011, 528(16-17), 5484-5490.
[http://dx.doi.org/10.1016/j.msea.2011.03.063]
[100]
Hassan, S.F.; Gupta, M. Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J. Alloys Compd., 2007, 429(1-2), 176-183.
[http://dx.doi.org/10.1016/j.jallcom.2006.04.033]
[101]
Tjong, S.C. Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties. Adv. Eng. Mater., 2007, 9(8), 639-652.
[http://dx.doi.org/10.1002/adem.200700106]
[102]
Shen, J.; Yin, W.; Wei, Q.; Li, Y.; Liu, J.; An, L. Effect of ceramic nanoparticle reinforcements on the quasistatic and dynamic mechanical properties of magnesium-based metal matrix composites. J. Mater. Res., 2013, 28(13), 1835-1852.
[http://dx.doi.org/10.1557/jmr.2013.16]
[103]
Alam, M.T.; Ansari, A.H.; Arif, S.; Alam, M.N. Mechanical properties and morphology of aluminium metal matrix nanocomposites-stir cast products. Advances in Materials and Processing Technologies, 2017, 3(4), 600-615.
[http://dx.doi.org/10.1080/2374068X.2017.1350543]
[104]
Mula, S.; Pabi, S.K.; Koch, C.C.; Padhi, P.; Ghosh, S. Workability and mechanical properties of ultrasonically cast Al–Al2O3 nanocomposites. Mater. Sci. Eng. A, 2012, 558, 485-491.
[http://dx.doi.org/10.1016/j.msea.2012.08.032]
[105]
Harichandran, R.; Selvakumar, N. Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Arch. Civ. Mech. Eng., 2016, 16(1), 147-158.
[http://dx.doi.org/10.1016/j.acme.2015.07.001]
[106]
Li, H.; Dai, X.; Zhao, L.; Li, B.; Wang, H.; Liang, C.; Fan, J. Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process. J. Alloys Compd., 2019, 785, 146-155.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.144]
[107]
Yang, Y.; Lan, J.; Li, X. Study on bulk aluminum matrix nanocomposite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater. Sci. Eng. A, 2004, 380(1-2), 378-383.
[http://dx.doi.org/10.1016/j.msea.2004.03.073]
[108]
Shen, M.J.; Ying, W.F.; Wang, X.J.; Zhang, M.F.; Wu, K. Development of High Performance Magnesium Matrix Nanocomposites Using Nano-SiC Particulates as Reinforcement. J. Mater. Eng. Perform., 2015, 24(10), 3798-3807.
[http://dx.doi.org/10.1007/s11665-015-1707-7]
[109]
Fathy, A.; El-Kady, O. Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites. Mater. Des., 2013, 46, 355-359.
[http://dx.doi.org/10.1016/j.matdes.2012.10.042]
[110]
Guan, Z.; Yao, G.; Zeng, Y.; Li, X. Fabrication and Characterization of In Situ Zn-TiB2 Nanocomposite. Procedia Manuf., 2020, 48, 332-337.
[http://dx.doi.org/10.1016/j.promfg.2020.05.055] [PMID: 34189188]
[111]
Madhukar, P.; Selvaraj, N.; Rao, C.S.P.; Veeresh Kumar, G.B. Enhanced performance of AA7150-SiC nanocomposites synthesized by novel fabrication process. Ceram. Int., 2020, 46(10), 17103-17111.
[http://dx.doi.org/10.1016/j.ceramint.2020.04.007]
[112]
Bastwros, M.M.H.; Esawi, A.M.K.; Wifi, A. Friction and wear behavior of Al–CNT composites. Wear, 2013, 307(1-2), 164-173.
[http://dx.doi.org/10.1016/j.wear.2013.08.021]
[113]
Rao, R.N.; Das, S. Effect of sliding distance on the wear and friction behavior of as cast and heat-treated Al–SiCp composites. Mater. Des., 2011, 32(5), 3051-3058.
[http://dx.doi.org/10.1016/j.matdes.2011.01.033]
[114]
Zhang, F.; Zhao, P.; Liu, T.; Liu, S.; Zhang, P.; Yu, J.; Sun, J. In-situ synthesis of nanodiamonds reinforced iron-nickel matrix nanocomposites and their properties. Diamond Related Materials, 2018, 83, 60-66.
[http://dx.doi.org/10.1016/j.diamond.2018.01.025]
[115]
Kumar, A.; Pal, K.; Mula, S. Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075-2% SiC micro- and nanocomposites by friction stir processing. J. Manuf. Process., 2017, 30, 1-13.
[http://dx.doi.org/10.1016/j.jmapro.2017.09.005]
[116]
Suresh, S.; Gowd, G.H.; Kumar, M.L.S.D. Mechanical and wear behavior of Al 7075/Al2O3/SiC/mg metal matrix nanocomposite by liquid state process. Adv. Compos. Hybrid Mater., 2019, 2(3), 530-539.
[http://dx.doi.org/10.1007/s42114-019-00101-y]
[117]
Madhukar, P.; Selvaraj, N.; Gujjala, R.; Rao, C.S.P. Production of high performance AA7150-1% SiC nanocomposite by novel fabrication process of ultrasonication assisted stir casting. Ultrason. Sonochem., 2019, 58, 104665.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104665] [PMID: 31450338]
[118]
Singh, B.; Chandel, S.; Singhal, P. Investigation of mechanical properties of synthesized AA2024-T351/SiO2 metal matrix nanocomposite. Mater. Today Proc., 2020, 26(2), 1082-1086.
[http://dx.doi.org/10.1016/j.matpr.2020.02.214]
[119]
Pan, S.; Saso, T.; Yu, N.; Sokoluk, M.; Yao, G.; Umehara, N.; Li, X. New study on tribological performance of AA7075-TiB2 nanocomposites. Tribol. Int., 2020, 152, 106565.
[http://dx.doi.org/10.1016/j.triboint.2020.106565]
[120]
Singh, S.; Gangwar, S.; Yadav, S. A Review on Mechanical and Tribological Properties of Micro/Nano Filled Metal Alloy Composites. Mater. Today Proc., 2017, 4(4), 5583-5592.
[http://dx.doi.org/10.1016/j.matpr.2017.06.015]
[121]
L., R. K.; S., A. K. Corrosion and wear behaviour of nano Al2O3 reinforced copper metal matrix composites synthesized by high energy ball milling. Particul. Sci. Technol., 2020, 38(2), 228-235.
[http://dx.doi.org/10.1080/02726351.2018.1526834]
[122]
Hassan, S.F.; Gupta, M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater. Sci. Eng. A, 2005, 392(1-2), 163-168.
[http://dx.doi.org/10.1016/j.msea.2004.09.047]
[123]
Rahmani, K.; Sadooghi, A.; Hashemi, S.J. The effect of Al2O3 content on tribology and corrosion properties of Mg-Al2O3 nanocomposites produced by single and double-action press. Mater. Chem. Phys., 2020, 250, 123058.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123058]
[124]
Dirisenapu, G.; Dumpala, L.; Reddy, S.P. Dry Sliding Tribological Behavior of Al7010/B4C/BN Hybrid Metal Matrix Nanocomposites Prepared by Ultrasonic-Assisted Stir Casting. Trans. Indian Inst. Met., 2021, 74(1), 149-158.
[http://dx.doi.org/10.1007/s12666-020-02128-y]
[125]
Prasad Reddy, A.; Vamsi Krishna, P.; Rao, R.N. Tribological Behaviour of Al6061–2SiC-xGr Hybrid Metal Matrix Nanocomposites Fabricated through Ultrasonically Assisted Stir Casting Technique. Silicon, 2019, 11(6), 2853-2871.
[http://dx.doi.org/10.1007/s12633-019-0072-9]
[126]
Paulraj, P.; Harichandran, R. The tribological behavior of hybrid aluminum alloy nanocomposites at High temperature: Role of nanoparticles. J. Mater. Res. Technol., 2020, 9(5), 11517-11530.
[http://dx.doi.org/10.1016/j.jmrt.2020.08.044]
[127]
Bahmani, E.; Abouei, V.; Shajari, Y.; Razavi, S.H.; Bayat, O. Investigation on Microstructure, Wear Behavior and Microhardness of Al−Si/SiC Nanocomposite. Surg. Eng. Appl. Electrochem., 2018, 54(4), 350-358.
[http://dx.doi.org/10.3103/S1068375518040038]
[128]
Sadoun, A.M.; Mohammed, M.M.; Fathy, A.; El-Kady, O.A. Effect of Al2O3 addition on hardness and wear behavior of Cu–Al2O3 electro-less coated Ag nanocomposite. J. Mater. Res. Technol., 2020, 9(3), 5024-5033.
[http://dx.doi.org/10.1016/j.jmrt.2020.03.020]
[129]
Moustafa, E.B.; Melaibari, A.; Basha, M. Wear and microhardness behaviors of AA7075/SiC-BN hybrid nanocomposite surfaces fabricated by friction stir processing. Ceram. Int., 2020, 46(10), 16938-16943.
[http://dx.doi.org/10.1016/j.ceramint.2020.03.274]
[130]
Abd-Elwahed, M.S.; Ibrahim, A.F.; Reda, M.M. Effects of ZrO2 nanoparticle content on microstructure and wear behavior of titanium matrix composite. J. Mater. Res. Technol., 2020, 9(4), 8528-8534.
[http://dx.doi.org/10.1016/j.jmrt.2020.05.021]
[131]
Ünlü, B.S. Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method. Mater. Des., 2008, 29(10), 2002-2008.
[http://dx.doi.org/10.1016/j.matdes.2008.04.014]
[132]
Pal, K.; Navin, K.; Kurchania, R. Study of structural and mechanical behaviour of Al-ZrO2 metal matrix nanocomposites prepared by powder metallurgy method. Mater. Today Proc., 2020, 26(5), 2714-2719.
[http://dx.doi.org/10.1016/j.matpr.2020.02.570]
[133]
Koti, V.; George, R.; Koppad, P.G.; Murthy, K.V.S.; Shakiba, A. Friction and wear characteristics of copper nanocomposites reinforced with uncoated and nickel coated carbon nanotubes. Mater. Res. Express, 2018, 5(9), 095607.
[http://dx.doi.org/10.1088/2053-1591/aad8fa]
[134]
Mosleh-Shirazi, S.; Akhlaghi, F.; Li, D. Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites. Trans. Nonferrous Met. Soc. China, 2016, 26(7), 1801-1808.
[http://dx.doi.org/10.1016/S1003-6326(16)64294-2]
[135]
Chu, K.; Jia, C.; Guo, H.; Li, W. On the thermal conductivity of Cu–Zr/diamond composites. Mater. Des., 2013, 45, 36-42.
[http://dx.doi.org/10.1016/j.matdes.2012.09.006]
[136]
Kong, J.; Zhang, C.; Cheng, X. Novel Cu–Cr alloy matrix CNT composites with enhanced thermal conductivity. Appl. Phys., A Mater. Sci. Process., 2013, 112(3), 631-636.
[http://dx.doi.org/10.1007/s00339-013-7839-4]
[137]
Fulay, P.P; Askeland, D.R. Every Day Is An Opportunity., Available from: https://www.cengage.co.in/
[138]
Ghasemvand, M.; Behjat, B.; Ebrahimi, S. Experimental investigation of the effects of adhesive defects on the strength and creep behavior of single-lap adhesive joints at various temperatures. J. Adhes., 2023, 99(7), 1227-1243.
[http://dx.doi.org/10.1080/00218464.2022.2095262]
[139]
Kai, X.; Huang, S.; Wu, L.; Tao, R.; Peng, Y.; Mao, Z.; Chen, F.; Li, G.; Chen, G.; Zhao, Y. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction. J. Mater. Sci. Technol., 2019, 35(9), 2107-2114.
[http://dx.doi.org/10.1016/j.jmst.2019.04.020]
[140]
Haghshenas, M.; Gupta, M. Magnesium nanocomposites: An overview on time-dependent plastic (creep) deformation. Defence Technology, 2019, 15(2), 123-131.
[http://dx.doi.org/10.1016/j.dt.2018.08.008]
[141]
Liu, J.; Wu, M.; Yang, Y.; Yang, G.; Yan, H.; Jiang, K. Preparation and mechanical performance of graphene platelet reinforced titanium nanocomposites for high temperature applications. J. Alloys Compd., 2018, 765, 1111-1118.
[http://dx.doi.org/10.1016/j.jallcom.2018.06.148]
[142]
Casati, R.; Vedani, M. Metal Matrix Composites Reinforced by Nano-Particles—A Review. Metals (Basel), 2014, 4(1), 65-83.
[http://dx.doi.org/10.3390/met4010065]
[143]
Zhou, D.; Qiu, F.; Jiang, Q. Simultaneously increasing the strength and ductility of nano-sized TiN particle reinforced Al–Cu matrix composites. Mater. Sci. Eng. A, 2014, 596, 98-102.
[http://dx.doi.org/10.1016/j.msea.2013.12.049]
[144]
Suresh, S.M.; Mishra, D.; Srinivasan, A.; Arunachalam, R.M.; Sasikumar, R. Production and Characterization of Micro and Nano Al2o3 Particle-Reinforced Lm25 Aluminium Alloy Composites, ARPN. J. Eng. Appl. Sci. (Asian Res. Publ. Netw.), 2011, 6(6), 94-98.
[145]
Mazahery, A.; Shabani, M.O. Characterization of cast A356 alloy reinforced with nano SiC composites. Trans. Nonferrous Met. Soc. China, 2012, 22(2), 275-280.
[http://dx.doi.org/10.1016/S1003-6326(11)61171-0]
[146]
Sankaranarayanan, S.; Jayalakshmi, S.; Gupta, M. Effect of individual and combined addition of micro/nano-sized metallic elements on the microstructure and mechanical properties of pure Mg. Mater. Des., 2012, 37, 274-284.
[http://dx.doi.org/10.1016/j.matdes.2012.01.009]
[147]
Zarghami, V.; Ghorbani, M. Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings. J. Alloys Compd., 2014, 598, 236-242.
[http://dx.doi.org/10.1016/j.jallcom.2014.01.220]
[148]
Vaezi, M.R.; Sadrnezhaad, S.K.; Nikzad, L. Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids Surf. A Physicochem. Eng. Asp., 2008, 315(1-3), 176-182.
[http://dx.doi.org/10.1016/j.colsurfa.2007.07.027]
[149]
Wu, B.; Xu, B.; Zhang, B.; Lü, Y. Preparation and properties of Ni/nano-Al2O3 composite coatings by automatic brush plating. Surf. Coat. Tech., 2007, 201(16-17), 6933-6939.
[http://dx.doi.org/10.1016/j.surfcoat.2006.12.022]
[150]
Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000, 246(1-2), 1-11.
[http://dx.doi.org/10.1016/S0043-1648(00)00488-9]
[151]
Rezende, T.G.L.; Cesar, D.V.; Lago, D.C.B.d.; Senna, L.F. A review of Corrosion Resistance Nanocomposite Coatings, 2016.
[http://dx.doi.org/10.5772/62048]
[152]
Sen, R.; Das, S.; Das, K. Effect of stirring rate on the microstructure and microhardness of Ni–CeO2 nanocomposite coating and investigation of the corrosion property. Surf. Coat. Tech., 2011, 205(13-14), 3847-3855.
[http://dx.doi.org/10.1016/j.surfcoat.2011.01.057]
[153]
Zamblau, I.; Varvara, S.; Muresan, L.M. Corrosion behavior of Cu–SiO2 nanocomposite coatings obtained by electrodeposition in the presence of cetyl trimethyl ammonium bromide. J. Mater. Sci., 2011, 46(20), 6484-6490.
[http://dx.doi.org/10.1007/s10853-011-5594-5]
[154]
Li, J.; Sun, Y.; Sun, X.; Qiao, J. Mechanical and corrosion-resistance performance of electrodeposited titania–nickel nanocomposite coat-ings. Surf. Coat. Tech., 2005, 192(2-3), 331-335.
[http://dx.doi.org/10.1016/j.surfcoat.2004.04.082]
[155]
Shahin, M.; Munir, K.; Wen, C.; Li, Y. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomater., 2019, 96, 1-19.
[http://dx.doi.org/10.1016/j.actbio.2019.06.007] [PMID: 31181263]
[156]
Razavi, M.; Fathi, M.H.; Meratian, M. Fabrication and characterization of magnesium–fluorapatite nanocomposite for biomedical applications. Mater. Charact., 2010, 61(12), 1363-1370.
[http://dx.doi.org/10.1016/j.matchar.2010.09.008]
[157]
Razavi, M.; Fathi, M.H.; Meratian, M. Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Lett., 2010, 64(22), 2487-2490.
[http://dx.doi.org/10.1016/j.matlet.2010.07.079]
[158]
Attar, H.; Ehtemam-Haghighi, S.; Soro, N.; Kent, D.; Dargusch, M.S. Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development. J. Alloys Compd., 2020, 827, 154263.
[http://dx.doi.org/10.1016/j.jallcom.2020.154263]
[159]
Srinivasan, V.; Kunjiappan, S.; Palanisamy, P. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications. Int. Nano Lett., 2021, 11(4), 321-345.
[http://dx.doi.org/10.1007/s40089-021-00328-y]
[160]
Koli, D.K.; Agnihotri, G.; Purohit, R. Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields. Mater. Today Proc., 2015, 2(4-5), 3032-3041.
[http://dx.doi.org/10.1016/j.matpr.2015.07.290]
[161]
Dorri Moghadam, A.; Schultz, B.F.; Ferguson, J.B.; Omrani, E.; Rohatgi, P.K.; Gupta, N. Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. J. Miner. Met. Mater. Soc., 2014, 66(6), 872-881.
[http://dx.doi.org/10.1007/s11837-014-0948-5]
[162]
Borgonovo, C.; Apelian, D.; Makhlouf, M.M. Aluminum nanocomposites for elevated temperature applications. J. Miner. Met. Mater. Soc., 2011, 63(2), 57-64.
[http://dx.doi.org/10.1007/s11837-011-0030-5]
[163]
Pank, D.R.; Jackson, J. J. Metal- matrix composite processing technologies for aircraft engine applications. J. Mater. Eng. Perform., 1993, 2(3), 341-346.
[http://dx.doi.org/10.1007/BF02648820]
[164]
Jamwal, A.; Vates, U.K.; Gupta, P. 2019.
[http://dx.doi.org/10.1007/978-981-13-6412-9_33]
[165]
Han, X-H.; Wang, Q.; Park, Y-G. T’Joen, C.; Sommers, A.; Jacobi, A. A Review of metal foam and metal matrix composites for heat exchangers and heat sinks. Heat Transf. Eng., 2012, 33(12), 991-1009.
[http://dx.doi.org/10.1080/01457632.2012.659613]
[166]
Miracle, D. Metal matrix composites – From science to technological significance. Compos. Sci. Technol., 2005, 65(15-16), 2526-2540.
[http://dx.doi.org/10.1016/j.compscitech.2005.05.027]
[167]
Rohatgi, P. Cast aluminum-matrix composites for automotive applications. J. Miner. Met. Mater. Soc., 1991, 43(4), 10-15.
[http://dx.doi.org/10.1007/BF03220538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy