Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Case Report

A New de novo Mosaic Mutation of PHEX Gene: A Case Report of a Boy with Hypophosphatemic Rickets

Author(s): Alessandra Terracciano, Margherita Lucia De Bernardi, Roberto Novizio*, Davide De Brasi, Achille Iolascon, Matteo Della Monica, Francesco Scavuzzo, Domenico Serino, Antonio Novelli and Carmelo Piscopo

Volume 23, Issue 9, 2023

Published on: 07 April, 2023

Page: [1235 - 1239] Pages: 5

DOI: 10.2174/1871530323666230227142202

Price: $65

Abstract

Background: X-linked hypophosphatemia is the most prevalent form of heritable rickets, characterized by an X-linked dominant inheritance pattern. The genetic basis of X-linked hypophosphatemia is a loss-of-function mutation in the PHEX gene (Phosphate regulating gene with Homology to Endopeptidases on the X chromosome), which leads to an enhanced production of phosphaturic hormone FGF23. X-linked hypophosphatemia causes rickets in children and osteomalacia in adults. Clinical manifestations are numerous and variable, including slowdown in growth, swing-through gait and progressive tibial bowing, related to skeletal and extraskeletal actions of FGF23. PHEX gene spans over 220 kb and consists of 22 exons. To date, hereditary and sporadic mutations are known (missense, nonsense, deletions and splice site mutations).

Case Presentation: Herein, we describe a male patient carrying a novel de novo mosaic nonsense mutation c.2176G>T (p.Glu726Ter) located in exon 22 of PHEX gene.

Conclusion: We highlight this new mutation among possible causative of X-linked hypophosphatemia and suggest that mosaicism of PHEX mutations is not so uncommon and should be excluded in diagnostic workflow of heritable rickets both in male and female patients.

Graphical Abstract

[1]
Beck-Nielsen, S.S.; Brock-Jacobsen, B.; Gram, J.; Brixen, K.; Jensen, T.K. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur. J. Endocrinol., 2009, 160(3), 491-497.
[http://dx.doi.org/10.1530/EJE-08-0818] [PMID: 19095780]
[2]
Grieff, M.; Mumm, S.; Waeltz, P.; Mazzarella, R.; Whyte, M.P.; Thakker, R.V.; Schlessinger, D. Expression and cloning of the human X-linked hypophosphatemia gene cDNA. Biochem. Biophys. Res. Commun., 1997, 231(3), 635-639.
[http://dx.doi.org/10.1006/bbrc.1997.6153] [PMID: 9070861]
[3]
Filisetti, D.; Ostermann, G.; von Bredow, M.; Strom, T.; Filler, G.; Ehrich, J.; Pannetier, S.; Garnier, J.M.; Rowe, P.; Francis, F.; Julienne, A.; Hanauer, A.; Econs, M.J.; Oudet, C. Non-random distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues. Eur. J. Hum. Genet., 1999, 7(5), 615-619.
[http://dx.doi.org/10.1038/sj.ejhg.5200341] [PMID: 10439971]
[4]
Francis, F.; Strom, T.M.; Hennig, S.; Böddrich, A.; Lorenz, B.; Brandau, O.; Mohnike, K.L.; Cagnoli, M.; Steffens, C.; Klages, S.; Borzym, K.; Pohl, T.; Oudet, C.; Econs, M.J.; Rowe, P.S.N.; Reinhardt, R.; Meitinger, T.; Lehrach, H. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res., 1997, 7(6), 573-585.
[http://dx.doi.org/10.1101/gr.7.6.573] [PMID: 9199930]
[5]
Ishihara, Y.; Ohata, Y.; Takeyari, S.; Kitaoka, T.; Fujiwara, M.; Nakano, Y.; Yamamoto, K.; Yamada, C.; Yamamoto, K.; Michigami, T.; Mabe, H.; Yamaguchi, T.; Matsui, K.; Tamada, I.; Namba, N.; Yamamoto, A.; Etoh, J.; Kawaguchi, A.; Kosugi, R.; Ozono, K.; Kubota, T. Genotype-phenotype analysis, and assessment of the importance of the zinc-binding site in PHEX in Japanese patients with X-linked hypo-phosphatemic rickets using 3D structure modeling. Bone, 2021, 153, 116135.
[http://dx.doi.org/10.1016/j.bone.2021.116135] [PMID: 34333162]
[6]
Gaucher, C.; Walrant-Debray, O.; Nguyen, T.M.; Esterle, L.; Garabédian, M.; Jehan, F. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum. Genet., 2009, 125(4), 401-411.
[http://dx.doi.org/10.1007/s00439-009-0631-z] [PMID: 19219621]
[7]
Holm, I.A.; Nelson, A.E.; Robinson, B.G.; Mason, R.S.; Marsh, D.J.; Cowell, C.T.; Carpenter, T.O. Mutational analysis and genotype-phenotype correlation of the PHEX gene in X-linked hypophosphatemic rickets. J. Clin. Endocrinol. Metab., 2001, 86(8), 3889-3899.
[http://dx.doi.org/10.1210/jcem.86.8.7761] [PMID: 11502829]
[8]
Riley, D.S.; Barber, M.S.; Kienle, G.S.; Aronson, J.K.; von Schoen-Angerer, T.; Tugwell, P.; Kiene, H.; Helfand, M.; Altman, D.G.; Sox, H.; Werthmann, P.G.; Moher, D.; Rison, R.A.; Shamseer, L.; Koch, C.A.; Sun, G.H.; Hanaway, P.; Sudak, N.L.; Kaszkin-Bettag, M.; Carpenter, J.E.; Gagnier, J.J. CARE guidelines for case reports: Explanation and elaboration document. J. Clin. Epidemiol., 2017, 89, 218-235.
[http://dx.doi.org/10.1016/j.jclinepi.2017.04.026] [PMID: 28529185]
[9]
Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; Voelkerding, K.; Rehm, H.L. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet. Med., 2015, 17(5), 405-424.
[http://dx.doi.org/10.1038/gim.2015.30] [PMID: 25741868]
[10]
Goji, K.; Ozaki, K.; Sadewa, A.H.; Nishio, H.; Matsuo, M. Clinical case seminar: Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait. J. Clin. Endocrinol. Metab., 2006, 91(2), 365-370.
[11]
Weng, C.; Chen, J.; Sun, L.; Zhou, Z.W.; Feng, X.; Sun, J.H.; Lu, L.P.; Yu, P.; Qi, M. A de novo mosaic mutation of PHEX in a boy with hypophosphatemic rickets. J. Hum. Genet., 2016, 61(3), 223-227.
[http://dx.doi.org/10.1038/jhg.2015.133] [PMID: 26559751]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy