Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

General Research Article

In Situ Oxidative Stress and Atrial Cell Deaths in Patients with Valve Disease

Author(s): Bashir M. Matata * and Maqsood M. Elahi

Volume 19, Issue 1, 2019

Page: [79 - 87] Pages: 9

DOI: 10.2174/1871529X18666180723094926

Price: $65

Abstract

Background: Left ventricular hypertrophy and myocardial remodeling occur with aortic valve disease and may lead to heart failure. Although increased oxidative stress and inflammatory factors have been implicated in heart failure, their role in the progression of valve disease remains unclear.

Objectives: We investigated the role of oxidative stress and inflammatory factors in valve disease whether this relates to cell death.

Methods: Blood samples were taken from 24 patients with valve disease before surgery and the results were compared with those from blood samples from 30 control healthy subjects. Myocardial biopsies from patients with valve disease were also collected before cannulation of the right atrial appendage. NF-κB activities in atrial and mononuclear cells nuclear extracts were determined by electrophoretic mobility shift assay.

Results: Nuclear factor kappaB activities were significantly greater in mononuclear cells from AVD patients compared with healthy controls and the antigens were detectable in atrial tissues valve disease patients. Plasma C-reactive protein, B-natriuretic peptides, plasma tumor necrosis factor alpha and soluble tumor necrosis factor receptor 1 and 3-nitrotyrosine levels were significantly higher in valve disease patients. Inducible nitric oxide and 3-nitrotyrosine antigens and cells expressing CD45 antigens were detected within atrial tissues obtained from valve disease patients suggesting oxidative stress originated from in situ leukocytes.

Conclusion: The findings suggest that oxidative stress originating from in situ leukocytes within the atrial myocardium may be the potential trigger for excessive transcriptional activities and apoptotic cell death within the atrial myocardium of valve disease patients. This represents a potential therapeutic target.

Keywords: 3-nitrotyrosine, C-reactive protein, B-type natriuretic peptide, 8-iso-prostaglandin F2α, human myocardium, mononuclear cells, NF-κB, aortic valve disease.

« Previous
Graphical Abstract

[1]
Jalil, J.E.; Doering, C.W.; Janicki, J.S.; Pick, R.; Shroff, S.G.; Weber, K.T. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ. Res., 1989, 64, 1041-1050.
[2]
Verdecchia, P.; Schillaci, G.; Borgioni, C.; Ciucci, A.; Gattobigio, R.; Zampi, I.; Reboldi, G.; Porcellati, C. Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation, 1998, 273, 2161-2168.
[3]
Sia, Y.T.; Lapointe, N.; Parker, T.G.; Tsoporis, J.N.; Deschepper, C.F.; Calderone, A.; Pourdjabbar, A.; Jasmin, J.F.; Sarrazin, J.F.; Liu, P.; Adam, A.; Butany, J.; Rouleau, J.L. Beneficial effects of long-term use of the antioxidant probucol in heart failure in rat. Circulation, 2002, 105, 2549-2555.
[4]
Gerber, I.L.; Stewart, R.A.; Hammett, C.J.; Legget, M.E.; Oxenham, H.; West, T.M.; French, J.K.; White, H.D. Effect of aortic valve replacement on C-reactive protein in non-rheumatic aortic stenosis. Am. J. Cardiol., 2003, 92, 1129-1132.
[5]
Tsutamoto, T.; Wada, A.; Maeda, K.; Hisanaga, T.; Maeda, Y.; Fukai, D.; Ohnishi, M.; Sugimoto, Y.; Kinoshita, M. Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation, 1997, 96, 509-516.
[6]
Berger, R.; Huelsmann, M.; Strecker, K.; Bojic, A.; Moser, P.; Stanek, B.; Brigitte Stanek, B.; Pacher, R. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation, 2002, 105, 2392-2397.
[7]
Jalil, J.E.; Doering, C.W.; Janicki, J.S.; Pick, R.; Clark, W.A.; Abrahams, C.; Weber, K.T. Structural vs. contractile protein remodeling and myocardial stiffness in hypertrophied rat left ventricle. J. Mol. Cell. Cardiol., 1988, 20, 1179-1187.
[8]
Khan, J.; Brennan, D.M.; Bradley, N.; Gao, B.; Bruckdorfer, R.; Jacobs, M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem. J., 1998, 300, 795-801.
[9]
Nourooz-Zadeh, J.; Tjaddini-Sarmadi, J.; Wolff, S.P. Measurement of plasma hydroperoxide concentrations by ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal. Biochem., 1994, 220, 403-409.
[10]
Banerjee, M.; Kang, K.H.; Morrow, J.D.; Roberts, L.J.; Newman, J.H. Effects of a novel prostaglandin, 8-epi-PGF2 alpha in rabbit lung in situ. Am. J. Physiol., 1992, 263, H660.
[11]
Pratico, D.; Lawson, J.A.; FitzGerald, G.A. Cylooxygenase-dependent formation of the isoprostane, 8-Epi prostaglandin F-2α. J. Biol. Chem., 1995, 270, 9800.
[12]
Matata, B.M.; Galiñanes, M. Peroxynitrite is an essential component of cytokine production by monocytes by altering DNA-binding capacity of NF-kappa B. J. Biol. Chem., 2002, 277, 2330-2335.
[13]
Kyriakis, J.M. Activation of the AP-1 transcription factor by inflammatory cytokines of the TNF family. Gene Expr., 1999, 7, 217-231.
[14]
Kuwahara, F.; Kai, H.; Tokuda, K.; Kai, M.; Takeshita, A.; Egashira, K.; Imaizumi, T. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation, 2002, 106, 130-135.
[15]
Sivasubramanian, N.; Coker, M.L.; Kurrelmeyer, K.; DeMayo, F.; Spinale, F.G.; Mann, D.L. Left ventricular remodelling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation, 2001, 2001, 826-831.
[16]
Kapadia, S.; Oral, H.; Lee, J.; Nakano, M.; Taffet, G.E.; Mann, D.L. Hemodynamic regulation of tumor necrosis factor-α gene and protein expression in adult feline myocardium. Circ. Res., 1997, 81, 187-195.
[17]
Blackwell, T.S.; Christman, J.E. The role of nuclear factor-κB in cytokine gene regulation. Am. J. Respir. Cell. Mol., 1997, 17, 3-9.
[18]
Brand, K.; Eisele, T.; Kreusel, U.; Page, M.; Page, S.; Haas, M.; Gerling, A.; Kaltschmidt, C.; Neumann, F-J.; Mackman, N.; Patrick, A. Baeuerle, P.A.; Autar K. Walli, A.K.; Neumeier, D. Dyregulation of monocytic nuclear factor-kappa B by oxidized low-density lipoprotein. Arterioscler. Thromb. Vasc. Biol., 1997, 17, 1901-1909.
[19]
Ferari, R.; Bachetti, T.; Confortini, R.; Opasich, C.; Febo, O.; Corti, A.; Cassani, G.; Visioli, O. Tumor necrosis factor soluble receptors in patients with various degrees of congestive failure. Circulation, 1995, 92, 1479-1486.
[20]
Tamura, N.; Ogawa, Y.; Chusho, H.; Nakamura, K.; Nakao, K.; Suda, M.; Kasahara, M.; Hashimoto, R.; Katsuura, G.; Mukoyama, M.; Itoh, H.; Saito, Y.; Tanaka, I.; Otani, H.; Katsuki, M. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc. Natl. Acad. Sci. USA, 2000, 97, 4239-4244.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy