Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Progresses in Chalcone Derivatives as Potential Anticancer Agents

Author(s): Jiahui Yang, Jianmei Lv, Shuxian Cheng, Tingyu Jing, Tenghao Meng, Dezhen Huo, Xin Ma and Ran Wen*

Volume 23, Issue 11, 2023

Published on: 20 March, 2023

Page: [1265 - 1283] Pages: 19

DOI: 10.2174/1871520623666230223112530

Price: $65

Abstract

Chalcones are members of the flavonoid family and act as intermediates in the biosynthesis of flavonoids, which are widespread in plants. Meanwhile, chalcones are important precursors for synthetic manipulations and act as mediators in the synthesis of useful therapeutic compounds, which have demonstrated a wide range of biological activities. Numerous studies have reported the synthesis and medicinal significance of chalcone derivatives. Cancer is one of the major causes of death worldwide. Although various therapies have been proposed for diverse types of cancer, their associated limitations and side effects urged researchers to develop more safe, potent and selective anticancer agents. Based on the literature review, the presence of chalcone derivatives as the main component, a substituent, or a side-chain in different biologically active compounds could serve as a reliable platform for synthetic organic chemists to synthesize new compounds bearing this moiety, owing to their similar or superior activities compared to those of the standards. The diversity of the chalcone family also lends itself to broad-spectrum biological applications in oncology. This review, therefore, sheds light on the latest structure and the anticancer potency of different synthetics (bearing other anticancer pharmacophores based on simple, functional groups, and dimer chalcone derivatives) and natural chalcone hybrids. It is confirmed that the information compiled in this review article, many chalcone hybrids have been found with promising anticancer activities. Therefore, this review may be convenient for designing novel chalcone molecules with enhanced medicinal properties according to the structure of the compounds.

Graphical Abstract

[1]
Di Carlo, G.; Mascolo, N.; Izzo, A.A.; Capasso, F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sci., 1999, 65(4), 337-353.
[http://dx.doi.org/10.1016/S0024-3205(99)00120-4] [PMID: 10421421]
[2]
Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: A review. Res. Chem. Intermed., 2017, 43(11), 6043-6077.
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[3]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[4]
Wang, M.; Xu, S.; Wu, C.; Liu, X.; Tao, H.; Huang, Y.; Liu, Y.; Zheng, P.; Zhu, W. Design, synthesis and activity of novel sorafenib ana-logues bearing chalcone unit. Bioorg. Med. Chem. Lett., 2016, 26(22), 5450-5454.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.029] [PMID: 27777009]
[5]
Romagnoli, R.; Prencipe, F.; Lopez-Cara, L.C.; Oliva, P.; Baraldi, S.; Baraldi, P.G.; Estévez-Sarmiento, F.; Quintana, J.; Estévez, F. Synthe-sis and biological evaluation of alpha-bromoacryloylamido indolyl pyridinyl propenones as potent apoptotic inducers in human leukaemia cells. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 727-742.
[http://dx.doi.org/10.1080/14756366.2018.1450749] [PMID: 29620429]
[6]
Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075.
[http://dx.doi.org/10.1016/j.bmc.2016.12.019] [PMID: 28038941]
[7]
Mokale, S.N.; Begum, A.; Sakle, N.S.; Shelke, V.R.; Bhavale, S.A. Design, synthesis and anticancer screening of 3-(3-(substituted phenyl) acryloyl)-2H-chromen-2ones as selective anti-breast cancer agent. Biomed. Pharmacother., 2017, 89, 966-972.
[http://dx.doi.org/10.1016/j.biopha.2017.02.089] [PMID: 28292025]
[8]
Ayati, A.; Oghabi Bakhshaiesh, T.; Moghimi, S.; Esmaeili, R.; Majidzadeh-A, K.; Safavi, M.; Firoozpour, L.; Emami, S.; Foroumadi, A. Synthesis and biological evaluation of new coumarins bearing 2,4-diaminothiazole-5-carbonyl moiety. Eur. J. Med. Chem., 2018, 155, 483-491.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.015] [PMID: 29908441]
[9]
Wang, Y.; Zhang, W.; Dong, J.; Gao, J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Chem., 2020, 95, 103530.
[http://dx.doi.org/10.1016/j.bioorg.2019.103530] [PMID: 31887477]
[10]
Sathish Kumar, K.; Kotra, V.; Praveena Devi, C.B.; Anusha, N.; Hari, Babu B.; Adil, S.F.; Shaik, M.R.; Khan, M.; Al-Warthan, A.; Al-duhaish, O.; Mujahid Alam, M. ZnCl2 catalyzed new coumarinyl-chalcones as cytotoxic agents. Saudi J. Biol. Sci., 2021, 28(1), 386-394.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.020] [PMID: 33424321]
[11]
Tawfik, H.O.; Shaldam, M.A.; Nocentini, A.; Salem, R.; Almahli, H.; Al-Rashood, S.T.; Supuran, C.T.; Eldehna, W.M. Novel 3-(6-methylpyridin-2-yl)coumarin-based chalcones as selective inhibitors of cancer-related carbonic anhydrases IX and XII endowed with an-ti-proliferative activity. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1043-1052.
[http://dx.doi.org/10.1080/14756366.2022.2056734] [PMID: 35437108]
[12]
Ayati, A.; Esmaeili, R.; Moghimi, S.; Oghabi Bakhshaiesh, T.; Eslami-S, Z.; Majidzadeh-A, K.; Safavi, M.; Emami, S.; Foroumadi, A. Syn-thesis and biological evaluation of 4-amino-5-cinnamoylthiazoles as chalcone-like anticancer agents. Eur. J. Med. Chem., 2018, 145, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.015] [PMID: 29335206]
[13]
Farghaly, T.A.; Masaret, G.S.; Muhammad, Z.A.; Harras, M.F. Discovery of thiazole-based-chalcones and 4-hetarylthiazoles as potent anticancer agents: Synthesis, docking study and anticancer activity. Bioorg. Chem., 2020, 98, 103761.
[http://dx.doi.org/10.1016/j.bioorg.2020.103761] [PMID: 32200332]
[14]
Lamie, P.F.; Philoppes, J.N. 2-Thiopyrimidine/chalcone hybrids: Design, synthesis, ADMET prediction, and anticancer evaluation as STAT3/STAT5a inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 864-879.
[http://dx.doi.org/10.1080/14756366.2020.1740922] [PMID: 32208772]
[15]
Kasetti, A.B.; Singhvi, I.; Nagasuri, R.; Bhandare, R.R.; Shaik, A.B. Thiazole–chalcone hybrids as prospective antitubercular and antipro-liferative agents: Design, synthesis, biological, molecular docking studies and in silico ADME evaluation. Molecules, 2021, 26(10), 2847.
[http://dx.doi.org/10.3390/molecules26102847] [PMID: 34064806]
[16]
Shaik, A.B.; Rao, G.K.; Kumar, G.B.; Patel, N.; Reddy, V.S.; Khan, I.; Routhu, S.R.; Kumar, C.G.; Veena, I.; Chandra Shekar, K.; Barkume, M.; Jadhav, S.; Juvekar, A.; Kode, J.; Pal-Bhadra, M.; Kamal, A. Design, synthesis and biological evaluation of novel pyra-zolochalcones as potential modulators of PI3K/Akt/mTOR pathway and inducers of apoptosis in breast cancer cells. Eur. J. Med. Chem., 2017, 139, 305-324.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.056] [PMID: 28803046]
[17]
Khan, I.; Garikapati, K.R.; Setti, A.; Shaik, A.B.; Kanth Makani, V.K.; Shareef, M.A.; Rajpurohit, H.; Vangara, N.; Pal-Bhadra, M.; Kamal, A.; Kumar, C.G. Design, synthesis, in silico pharmacokinetics prediction and biological evaluation of 1,4-dihydroindeno[1,2-c]pyrazole chalcone as EGFR/Akt pathway inhibitors. Eur. J. Med. Chem., 2019, 163, 636-648.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.011] [PMID: 30562699]
[18]
Tok, F.; İrem Abas, B.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. Design, synthesis and biological evaluation of some new 2-Pyrazoline de-rivatives as potential anticancer agents. Bioorg. Chem., 2020, 102, 104063.
[http://dx.doi.org/10.1016/j.bioorg.2020.104063] [PMID: 32663669]
[19]
Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo[1,5-a]pyrimidines as potential anticancer agents. MedChemComm, 2017, 8(9), 1810-1816.
[http://dx.doi.org/10.1039/C7MD00193B] [PMID: 30108891]
[20]
Hsieh, C.Y.; Ko, P.W.; Chang, Y.J.; Kapoor, M.; Liang, Y.C.; Lin, H.H.; Horng, J.C.; Hsu, M.H. Design and synthesis of Benzimidazole-Chalcone derivatives as potential anticancer agents. Molecules, 2019, 24(18), 3259.
[http://dx.doi.org/10.3390/molecules24183259] [PMID: 31500191]
[21]
Yang, J.L.; Ma, Y.H.; Li, Y.H.; Zhang, Y.P.; Tian, H.C.; Huang, Y.C.; Li, Y.; Chen, W.; Yang, L.J. Design, synthesis, and anticancer activi-ty of novel trimethoxyphenyl-derived chalcone-benzimidazolium salts. ACS Omega, 2019, 4(23), 20381-20393.
[http://dx.doi.org/10.1021/acsomega.9b03077] [PMID: 31815242]
[22]
Rahimzadeh Oskuei, S.; Mirzaei, S.; Reza Jafari-Nik, M.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Design, synthesis and biolog-ical evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2021, 112, 104904.
[http://dx.doi.org/10.1016/j.bioorg.2021.104904] [PMID: 33933802]
[23]
Özdemir, A.; Altıntop, M.D.; Sever, B.; Gençer, H.K.; Kapkaç, H.A.; Atlı, Ö.; Baysal, M. A new series of pyrrole-based chalcones: Syn-thesis and evaluation of antimicrobial activity, cytotoxicity, and genotoxicity. Molecules, 2017, 22(12), 2112.
[http://dx.doi.org/10.3390/molecules22122112] [PMID: 29189730]
[24]
Gul, H.I.; Tugrak, M.; Gul, M.; Mazlumoglu, S.; Sakagami, H.; Gulcin, I.; Supuran, C.T. New phenolic Mannich bases with piperazines and their bioactivities. Bioorg. Chem., 2019, 90, 103057.
[http://dx.doi.org/10.1016/j.bioorg.2019.103057] [PMID: 31226471]
[25]
Tugrak, M.; Gul, H.I.; Bandow, K.; Sakagami, H.; Gulcin, I.; Ozkay, Y.; Supuran, C.T. Synthesis and biological evaluation of some new mono Mannich bases with piperazines as possible anticancer agents and carbonic anhydrase inhibitors. Bioorg. Chem., 2019, 90, 103095.
[http://dx.doi.org/10.1016/j.bioorg.2019.103095] [PMID: 31288135]
[26]
Li, Y.; Sun, Y.; Zhou, Y.; Li, X.; Zhang, H.; Zhang, G. Discovery of orally active chalcones as histone lysine specific demethylase 1 in-hibitors for the treatment of leukaemia. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 207-217.
[http://dx.doi.org/10.1080/14756366.2020.1852556] [PMID: 33307878]
[27]
Chen, J.; Kang, C.Y.; Niu, Z.X.; Zhou, H.C.; Yang, H.M. A chalcone inhibits the growth and metastasis of KYSE-4 esophageal cancer cells. J. Int. Med. Res., 2020, 48(6), 0300060520928831.
[http://dx.doi.org/10.1177/0300060520928831] [PMID: 32588681]
[28]
Wang, G.; Qiu, J.; Xiao, X.; Cao, A.; Zhou, F. Synthesis, biological evaluation and molecular docking studies of a new series of chalcones containing naphthalene moiety as anticancer agents. Bioorg. Chem., 2018, 76, 249-257.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.017] [PMID: 29197743]
[29]
Wang, G.; Peng, Z.; Li, Y. Synthesis, anticancer activity and molecular modeling studies of novel chalcone derivatives containing indole and naphthalene moieties as tubulin polymerization inhibitors. Chem. Pharm. Bull., 2019, 67(7), 725-728.
[http://dx.doi.org/10.1248/cpb.c19-00217] [PMID: 30982797]
[30]
Wang, G.; Peng, Z.; Zhang, J.; Qiu, J.; Xie, Z.; Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.028] [PMID: 29627654]
[31]
Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 139-144.
[http://dx.doi.org/10.1080/14756366.2019.1690479] [PMID: 31724435]
[32]
Lim, Y.H.; Oo, C.W.; Koh, R.Y.; Voon, G.L.; Yew, M.Y.; Yam, M.F.; Loh, Y.C. Synthesis, characterization, and anti‐cancer activity of new chalcone derivatives containing naphthalene and fluorine moieties. Drug Dev. Res., 2020, 81(8), 994-1003.
[http://dx.doi.org/10.1002/ddr.21715] [PMID: 32720715]
[33]
Guruswamy, D.K.M.; Balaji, K.D.S.; Dharmappa, K.K.; Jayarama, S. Novel 3-(3,5-difluoro-4-hydroxyphenyl)-1-(naphthalen-2-yl) prop-2-en-1-one as a potent inhibitor of MAP-kinase in HeLa cell lines and anti-angiogenic activity is mediated by HIF-1α in EAC animal mod-el. Oncotarget, 2020, 11(50), 4661-4676.
[http://dx.doi.org/10.18632/oncotarget.27836] [PMID: 33400732]
[34]
Seba, V.; Silva, G.; Santos, M.; Baek, S.; França, S.; Fachin, A.; Regasini, L.; Marins, M. Chalcone derivatives 4′-amino-1-naphthyl-chalcone (D14) and 4′-amino-4-methyl-1-naphthyl-chalcone (D15) suppress migration and invasion of osteosarcoma cells mediated by p53 regulating EMT-Related genes. Int. J. Mol. Sci., 2018, 19(9), 2838.
[http://dx.doi.org/10.3390/ijms19092838] [PMID: 30235848]
[35]
Schmitt, F.; Draut, H.; Biersack, B.; Schobert, R. Halogenated naphthochalcones and structurally related naphthopyrazolines with anti-tumor activity. Bioorg. Med. Chem. Lett., 2016, 26(21), 5168-5171.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.076] [PMID: 27727127]
[36]
Badria, F.A.; Soliman, S.M.; Atef, S.; Islam, M.S.; Al-Majid, A.M.; Dege, N.; Ghabbour, H.A.; Ali, M.; El-Senduny, F.F.; Barakat, A. Anti-cancer indole-based chalcones: A structural and theoretical analysis. Molecules, 2019, 24(20), 3728.
[http://dx.doi.org/10.3390/molecules24203728] [PMID: 31623155]
[37]
Cong, H.; Zhao, X.; Castle, B.T.; Pomeroy, E.J.; Zhou, B.; Lee, J.; Wang, Y.; Bian, T.; Miao, Z.; Zhang, W.; Sham, Y.Y.; Odde, D.J.; Eck-feldt, C.E.; Xing, C.; Zhuang, C. An indole–chalcone inhibits multidrug-resistant cancer cell growth by targeting microtubules. Mol. Pharm., 2018, 15(9), 3892-3900.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00359] [PMID: 30048137]
[38]
Kode, J.; Kovvuri, J.; Nagaraju, B.; Jadhav, S.; Barkume, M.; Sen, S.; Kasinathan, N.K.; Chaudhari, P.; Mohanty, B.S.; Gour, J.; Sigalapalli, D.K.; Ganesh Kumar, C.; Pradhan, T.; Banerjee, M.; Kamal, A. Synthesis, biological evaluation, and molecular docking analysis of phen-statin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 105, 104447.
[http://dx.doi.org/10.1016/j.bioorg.2020.104447] [PMID: 33207276]
[39]
Kuruc, T.; Kello, M.; Petrova, K.; Kudlickova, Z.; Kubatka, P.; Mojzis, J. The newly synthetized chalcone L1 is involved in the cell growth inhibition, Induction of apoptosis and suppression of epithelial-to-mesenchymal transition of hela cells. Molecules, 2021, 26(5), 1356.
[http://dx.doi.org/10.3390/molecules26051356] [PMID: 33802621]
[40]
Yadav, S.K.; Yadav, R.K.; Yadava, U. Computational investigations and molecular dynamics simulations envisioned for potent antioxi-dant and anticancer drugs using indole-chalcone-triazole hybrids. DNA Repair, 2020, 86, 102765.
[http://dx.doi.org/10.1016/j.dnarep.2019.102765] [PMID: 31846836]
[41]
Mirzaei, H.; Shokrzadeh, M.; Modanloo, M.; Ziar, A.; Riazi, G.H.; Emami, S. New indole-based chalconoids as tubulin-targeting antipro-liferative agents. Bioorg. Chem., 2017, 75, 86-98.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.005] [PMID: 28922629]
[42]
Gupta, S.; Maurya, P.; Upadhyay, A.; Kushwaha, P.; Krishna, S.; Siddiqi, M.I.; Sashidhara, K.V.; Banerjee, D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur. J. Med. Chem., 2018, 143, 1981-1996.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.015] [PMID: 29146133]
[43]
Wang, Y.; Hedblom, A.; Koerner, S.K.; Li, M.; Jernigan, F.E.; Wegiel, B.; Sun, L. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation. Bioorg. Med. Chem. Lett., 2016, 26(23), 5703-5706.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.063] [PMID: 27810244]
[44]
Yan, J.; Xu, Y.; Jin, X.; Zhang, Q.; Ouyang, F.; Han, L.; Zhan, M.; Li, X.; Liang, B.; Huang, X. Structure modification and biological evalu-ation of indole-chalcone derivatives as anti-tumor agents through dual targeting tubulin and TrxR. Eur. J. Med. Chem., 2022, 227, 113897.
[http://dx.doi.org/10.1016/j.ejmech.2021.113897] [PMID: 34649064]
[45]
Huang, X.; Liu, Z.; Wang, M.; Yin, X.; Wang, Y.; Dai, L.; Wang, H. Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: In vitro and in vivo studies. Bioorg. Chem., 2020, 105, 104430.
[http://dx.doi.org/10.1016/j.bioorg.2020.104430]
[46]
Huang, X.; Huang, R.; Wang, Z.; Li, L.; Gou, S.; Liao, Z.; Wang, H. Pt(IV) complexes conjugating with chalcone analogue as inhibitors of microtubule polymerization exhibited selective inhibition in human cancer cells. Eur. J. Med. Chem., 2018, 146, 435-450.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.075] [PMID: 29407969]
[47]
Huang, X.; Hua, S.; Huang, R.; Liu, Z.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Dual-targeting antitumor hybrids derived from Pt(IV) species and millepachine analogues. Eur. J. Med. Chem., 2018, 148, 1-25.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.012] [PMID: 29448138]
[48]
Podolski-Renić, A.; Bősze, S.; Dinić, J.; Kocsis, L.; Hudecz, F.; Csámpai, A.; Pešić, M. Ferrocene-cinchona hybrids with triazolyl-chalcone linkers act as pro-oxidants and sensitize human cancer cell lines to paclitaxel. Metallomics, 2017, 9(8), 1132-1141.
[http://dx.doi.org/10.1039/C7MT00183E] [PMID: 28737782]
[49]
Yadav, P.; Lal, K.; Kumar, A.; Guru, S.K.; Jaglan, S.; Bhushan, S. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur. J. Med. Chem., 2017, 126, 944-953.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.030] [PMID: 28011424]
[50]
Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing Triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR Kinase and Tubulin Polymerization Inhibitory Effects. Molecules, 2017, 23(1), 48.
[http://dx.doi.org/10.3390/molecules23010048] [PMID: 29280968]
[51]
Manna, T.; Pal, K.; Jana, K.; Misra, A.K. Anti-cancer potential of novel glycosylated 1,4-substituted triazolylchalcone derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19), 126615.
[http://dx.doi.org/10.1016/j.bmcl.2019.08.019] [PMID: 31447083]
[52]
Mohammed, H.H.H.; Abd El-Hafeez, A.A.; Ebeid, K.; Mekkawy, A.I.; Abourehab, M.A.S.; Wafa, E.I.; Alhaj-Suliman, S.O.; Salem, A.K.; Ghosh, P.; Abuo-Rahma, G.E.D.A.; Hayallah, A.M.; Abbas, S.H. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I & II and tubulin polymerization. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1346-1363.
[http://dx.doi.org/10.1080/14756366.2022.2072308] [PMID: 35548854]
[53]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinolone-based 4,5-dihydro-1 H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[54]
Guan, Y.F.; Liu, X.J.; Yuan, X.Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Tian, X.Y.; Zhang, Y.B.; Song, J.; Li, W.; Zhang, S.Y. Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives. Molecules, 2021, 26(16), 4899.
[http://dx.doi.org/10.3390/molecules26164899] [PMID: 34443487]
[55]
Nassan, M.A.; Aldhahrani, A.; Amer, H.H.; Elhenawy, A.; Swelum, A.A.; Ali, O.M.; Zaki, Y.H. Investigation of the anticancer effect of α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one on the DMBA model of breast cancer in albino rats with in silico prediction of their thymidylate synthase inhibitory effect. Molecules, 2022, 27(3), 756.
[http://dx.doi.org/10.3390/molecules27030756] [PMID: 35164019]
[56]
Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279.
[http://dx.doi.org/10.1016/j.jsps.2016.06.005] [PMID: 28344479]
[57]
Han, X.; Peng, B.; Xiao, B.B.; Sheng-Li, Cao Yang, C.R.; Wang, W.Z.; Wang, F.C.; Li, H.Y.; Yuan, X.L.; Shi, R.; Liao, J.; Wang, H.; Li, J.; Xu, X. Synthesis and evaluation of chalcone analogues containing a 4-oxoquinazolin-2-yl group as potential anti-tumor agents. Eur. J. Med. Chem., 2019, 162, 586-601.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.034] [PMID: 30472605]
[58]
Desai, V.; Desai, S.; Gaonkar, S.N.; Palyekar, U.; Joshi, S.D.; Dixit, S.K. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP re-ductase inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem. Lett., 2017, 27(10), 2174-2180.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.059] [PMID: 28372908]
[59]
Lindamulage, I.K.; Vu, H.Y.; Karthikeyan, C.; Knockleby, J.; Lee, Y.F.; Trivedi, P.; Lee, H. Novel quinolone chalcones targeting colchi-cine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci. Rep., 2017, 7(1), 10298.
[http://dx.doi.org/10.1038/s41598-017-10972-0] [PMID: 28860494]
[60]
Peña-Solórzano, D.; Scholler, M.; Bernhardt, G.; Buschauer, A.; König, B.; Ochoa-Puentes, C. Tariquidar-related chalcones and ketones as ABCG2 modulators. ACS Med. Chem. Lett., 2018, 9(8), 854-859.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00289] [PMID: 30128080]
[61]
Ramya, P.V.S.; Angapelly, S.; Angeli, A.; Digwal, C.S.; Arifuddin, M.; Babu, B.N.; Supuran, C.T.; Kamal, A. Discovery of curcumin in-spired sulfonamide derivatives as a new class of carbonic anhydrase isoforms I, II, IX, and XII inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1274-1281.
[http://dx.doi.org/10.1080/14756366.2017.1380638] [PMID: 28965419]
[62]
Pesaran Seiied Bonakdar, A.; Vafaei, F.; Farokhpour, M.; Nasr Esfahani, M.H.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iran. J. Pharm. Res., 2017, 16(2), 565-568.
[http://dx.doi.org/10.22037/ijpr.2017.2036] [PMID: 28979310]
[63]
Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids ex-hibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.013] [PMID: 31096118]
[64]
Coskun, D.; Erkisa, M.; Ulukaya, E.; Coskun, M.F.; Ari, F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Syn-thesis, characterization and anticancer activity. Eur. J. Med. Chem., 2017, 136, 212-222.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.017] [PMID: 28494257]
[65]
Gaur, R.; Pathania, A.S.; Malik, F.A.; Bhakuni, R.S.; Verma, R.K. Synthesis of a series of novel dihydroartemisinin monomers and dimers containing chalcone as a linker and their anticancer activity. Eur. J. Med. Chem., 2016, 122, 232-246.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.035] [PMID: 27371926]
[66]
Grigoropoulou, S.; Manou, D.; Antoniou, A.I.; Tsirogianni, A.; Siciliano, C.; Theocharis, A.D.; Athanassopoulos, C.M. Synthesis and antiproliferative activity of novel dehydroabietic acid-chalcone hybrids. Molecules, 2022, 27(11), 3623.
[http://dx.doi.org/10.3390/molecules27113623] [PMID: 35684559]
[67]
Gan, F.F.; Zhang, R.; Ng, H.L.; Karuppasamy, M.; Seah, W.; Yeap, W.H.; Ong, S.M.; Hadadi, E.; Wong, S.C.; Chui, W.K.; Chew, E.H. Novel dual-targeting anti-proliferative dihydrotriazine-chalcone derivatives display suppression of cancer cell invasion and inflammation by inhibiting the NF-κB signaling pathway. Food Chem. Toxicol., 2018, 116(Pt B), 238-248.
[http://dx.doi.org/10.1016/j.fct.2018.04.003] [PMID: 29630947]
[68]
Pérès, B.; Nasr, R.; Zarioh, M.; Lecerf-Schmidt, F.; Di Pietro, A.; Baubichon-Cortay, H.; Boumendjel, A. Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity. Eur. J. Med. Chem., 2017, 130, 346-353.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.064] [PMID: 28273561]
[69]
Tang, K.W.; Ke, C.C.; Tseng, C.H.; Chen, Y.L.; Tzeng, C.C.; Chen, Y.J.; Hsu, C.C.; Tai, H.T.; Hsieh, Y.J. Enhancement of anticancer po-tential of pterostilbene derivative by chalcone hybridization. Molecules, 2021, 26(16), 4840.
[http://dx.doi.org/10.3390/molecules26164840] [PMID: 34443427]
[70]
Park, S.; Kim, E.H.; Kim, J.; Kim, S.H.; Kim, I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur. J. Med. Chem., 2018, 144, 435-443.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.056] [PMID: 29288944]
[71]
Li, P.H.; Jiang, H.; Zhang, W.J.; Li, Y.L.; Zhao, M.C.; Zhou, W.; Zhang, L.Y.; Tang, Y.D.; Dong, C.Z.; Huang, Z.S.; Chen, H.X.; Du, Z.Y. Synthesis of carbazole derivatives containing chalcone analogs as non-intercalative topoisomerase II catalytic inhibitors and apoptosis in-ducers. Eur. J. Med. Chem., 2018, 145, 498-510.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.010] [PMID: 29335211]
[72]
Venkataramana Reddy, P.O.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P.N.; Shah, K.; Kumar, D. Synthesis and investigations into the anti-cancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg. Med. Chem. Lett., 2018, 28(8), 1278-1282.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.033] [PMID: 29573910]
[73]
Stanojković, T.; Marković, V.; Matić, I.Z.; Mladenović, M.P.; Petrović, N.; Krivokuća, A.; Petković, M.; Joksović, M.D. Highly selective anthraquinone-chalcone hybrids as potential antileukemia agents. Bioorg. Med. Chem. Lett., 2018, 28(15), 2593-2598.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.048] [PMID: 29970309]
[74]
Fathi, M.A.A.; Abd El-Hafeez, A.A.; Abdelhamid, D.; Abbas, S.H.; Montano, M.M.; Abdel-Aziz, M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg. Chem., 2019, 84, 150-163.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.032] [PMID: 30502626]
[75]
Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89, 102997.
[http://dx.doi.org/10.1016/j.bioorg.2019.102997] [PMID: 31136902]
[76]
Bilginer, S.; Gul, H.I.; Erdal, F.S.; Sakagami, H.; Levent, S.; Gulcin, I.; Supuran, C.T. Synthesis, cytotoxicities, and carbonic anhydrase inhibition potential of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1722-1729.
[http://dx.doi.org/10.1080/14756366.2019.1670657] [PMID: 31576761]
[77]
Huang, X.; Wang, M.; Wang, C.; Hu, W.; You, Q.; Ma, T.; Jia, Q.; Yu, C.; Liao, Z.; Wang, H. Synthesis and biological evaluation of novel millepachine derivative containing aminophosphonate ester species as novel anti-tubulin agents. Bioorg. Chem., 2020, 94, 103486.
[http://dx.doi.org/10.1016/j.bioorg.2019.103486] [PMID: 31818482]
[78]
Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 95, 103565.
[http://dx.doi.org/10.1016/j.bioorg.2019.103565] [PMID: 31927336]
[79]
Takac, P.; Kello, M.; Vilkova, M.; Vaskova, J.; Michalkova, R.; Mojzisova, G.; Mojzis, J. Antiproliferative effect of acridine chalcone is mediated by induction of oxidative stress. Biomolecules, 2020, 10(2), 345.
[http://dx.doi.org/10.3390/biom10020345] [PMID: 32098428]
[80]
Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-Phthalimido-Chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130.
[http://dx.doi.org/10.2147/DDDT.S256756] [PMID: 32848361]
[81]
Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of novel Chalcone-Based phenothiazine derivatives as anti-oxidant and anticancer agents. Molecules, 2020, 25(19), 4566.
[http://dx.doi.org/10.3390/molecules25194566] [PMID: 33036301]
[82]
Moreno, L.; Quiroga, J.; Abonia, R.; Ramírez-Prada, J.; Insuasty, B. Synthesis of new 1,3,5-Triazine-based 2-Pyrazolines as potential anticancer agents. Molecules, 2018, 23(8), 1956.
[http://dx.doi.org/10.3390/molecules23081956] [PMID: 30082588]
[83]
Zhang, J.; Yang, F.; Qiao, Z.; Zhu, M.; Zhou, H. Chalcone-benzoxaborole hybrids as novel anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(23), 5797-5801.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.024] [PMID: 28327308]
[84]
Kocyigit, U.M.; Budak, Y.; Gürdere, M.B.; Tekin, Ş.; Köprülü, T.K.; Ertürk, F.; Özcan, K.; Gülçin, İ.; Ceylan, M. Synthesis, characteriza-tion, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3a R, 4 S, 7 R, 7a S)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives. Bioorg. Chem., 2017, 70, 118-125.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.001] [PMID: 28043719]
[85]
Silbermann, K.; Shah, C.P.; Sahu, N.U.; Juvale, K.; Stefan, S.M.; Kharkar, P.S.; Wiese, M. Novel chalcone and flavone derivatives as se-lective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur. J. Med. Chem., 2019, 164, 193-213.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.019] [PMID: 30594677]
[86]
Jeon, K.H.; Yu, H.B.; Kwak, S.Y.; Kwon, Y.; Na, Y. Synthesis and topoisomerases inhibitory activity of heteroaromatic chalcones. Bioorg. Med. Chem., 2016, 24(22), 5921-5928.
[http://dx.doi.org/10.1016/j.bmc.2016.09.051] [PMID: 27707625]
[87]
Shankaraiah, N.; Nekkanti, S.; Brahma, U.R.; Praveen Kumar, N.; Deshpande, N.; Prasanna, D.; Senwar, K.R.; Jaya Lakshmi, U. Synthesis of different heterocycles-linked chalcone conjugates as cytotoxic agents and tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(17), 4805-4816.
[http://dx.doi.org/10.1016/j.bmc.2017.07.031] [PMID: 28774575]
[88]
El-Wakil, M.H.; Khattab, S.N.; El-Yazbi, A.F.; El-Nikhely, N.; Soffar, A.; Khalil, H.H. New chalcone-tethered 1,3,5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorg. Chem., 2020, 105, 104393.
[http://dx.doi.org/10.1016/j.bioorg.2020.104393] [PMID: 33120322]
[89]
Yang, J.; Yan, W.; Yu, Y.; Wang, Y.; Yang, T.; Xue, L.; Yuan, X.; Long, C.; Liu, Z.; Chen, X.; Hu, M.; Zheng, L.; Qiu, Q.; Pei, H.; Li, D.; Wang, F.; Bai, P.; Wen, J.; Ye, H.; Chen, L. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in β-tubulin. J. Biol. Chem., 2018, 293(24), 9461-9472.
[http://dx.doi.org/10.1074/jbc.RA117.001658] [PMID: 29691282]
[90]
Kozłowska, J.; Potaniec, B.; Baczyńska, D.; Żarowska, B.; Anioł, M. Synthesis and biological evaluation of novel aminochalcones as po-tential anticancer and antimicrobial agents. Molecules, 2019, 24(22), 4129.
[http://dx.doi.org/10.3390/molecules24224129] [PMID: 31731596]
[91]
Wankhede, S.; Kumar, N.; Simon, L.; Biswas, S.; Gourishetti, K.; Ramalingayya, G.V.; Joshi, M.; Rao, C.M. Evaluation of in vitro and in vivo anticancer potential of two 5-acetamido chalcones against breast cancer. EXCLI J., 2017, 16, 1150-1163.
[http://dx.doi.org/10.17179/excli2017-624] [PMID: 29285012]
[92]
Elkhalifa, D.; Siddique, A.B.; Qusa, M.; Cyprian, F.S.; El Sayed, K.; Alali, F.; Al Moustafa, A.E.; Khalil, A. Design, synthesis, and valida-tion of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur. J. Med. Chem., 2020, 187(187), 111954.
[http://dx.doi.org/10.1016/j.ejmech.2019.111954] [PMID: 31838326]
[93]
Lu, C.F.; Wang, S.H.; Pang, X.J.; Zhu, T.; Li, H.L.; Li, Q.R.; Li, Q.Y.; Gu, Y.F.; Mu, Z.Y.; Jin, M.J.; Li, Y.R.; Hu, Y.Y.; Zhang, Y.B.; Song, J.; Zhang, S.Y. Synthesis and biological evaluation of amino chalcone derivatives as antiproliferative agents. Molecules, 2020, 25(23), 5530.
[http://dx.doi.org/10.3390/molecules25235530] [PMID: 33255804]
[94]
Rioux, B.; Pinon, A.; Gamond, A.; Martin, F.; Laurent, A.; Champavier, Y.; Barette, C.; Liagre, B.; Fagnère, C.; Sol, V.; Pouget, C. Synthe-sis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur. J. Med. Chem., 2021, 222, 113586.
[http://dx.doi.org/10.1016/j.ejmech.2021.113586] [PMID: 34116328]
[95]
Zhu, M.; Wang, J.; Xie, J.; Chen, L.; Wei, X.; Jiang, X.; Bao, M.; Qiu, Y.; Chen, Q.; Li, W.; Jiang, C.; Zhou, X.; Jiang, L.; Qiu, P.; Wu, J. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur. J. Med. Chem., 2018, 157, 1395-1405.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.072] [PMID: 30196062]
[96]
Pande, A.N.; Biswas, S.; Reddy, N.D.; Jayashree, B.S.; Kumar, N.; Rao, C.M. In vitro and in vivo anticancer studies of 2′-hydroxy chal-cone derivatives exhibit apoptosis in colon cancer cells by HDAC inhibition and cell cycle arrest. EXCLI J., 2017, 16, 448-463.
[http://dx.doi.org/10.17179/excli2016-643] [PMID: 28694750]
[97]
Teng, Y.; Wang, L.; Liu, H.; Yuan, Y.; Zhang, Q.; Wu, M.; Wang, L.; Wang, H.; Liu, Z.; Yu, P. 3′-Geranyl-mono-substituted chalcone Xanthoangelovl induces apoptosis in human leukemia K562 cells via activation of mitochondrial pathway. Chem. Biol. Interact., 2017, 261, 103-107.
[http://dx.doi.org/10.1016/j.cbi.2016.11.025] [PMID: 27908776]
[98]
Dong, N.; Liu, X.; Zhao, T.; Wang, L.; Li, H.; Zhang, S.; Li, X.; Bai, X.; Zhang, Y.; Yang, B. Apoptosis-inducing effects and growth inhibi-tory of a novel chalcone, in human hepatic cancer cells and lung cancer cells. Biomed. Pharmacother., 2018, 105, 195-203.
[http://dx.doi.org/10.1016/j.biopha.2018.05.126] [PMID: 29857299]
[99]
Marquina, S.; Maldonado-Santiago, M.; Sánchez-Carranza, J.N.; Antúnez-Mojica, M.; González-Maya, L.; Razo-Hernández, R.S.; Alvarez, L. Design, synthesis and QSAR study of 2′-hydroxy-4′-alkoxy chalcone derivatives that exert cytotoxic activity by the mitochondrial apoptotic pathway. Bioorg. Med. Chem., 2019, 27(1), 43-54.
[http://dx.doi.org/10.1016/j.bmc.2018.10.045] [PMID: 30482548]
[100]
Bordoloi, D.; Monisha, J.; Roy, N.K.; Padmavathi, G.; Banik, K.; Harsha, C.; Wang, H.; Kumar, A.P.; Arfuso, F.; Kunnumakkara, A. An investigation on the therapeutic potential of butein, a tretrahydroxychalcone against human oral squamous cell carcinoma. Asian Pac. J. Cancer Prev., 2019, 20(11), 3437-3446.
[http://dx.doi.org/10.31557/APJCP.2019.20.11.3437] [PMID: 31759370]
[101]
Alshangiti, A.M.; Tuboly, E.; Hegarty, S.V.; McCarthy, C.M.; Sullivan, A.M.; O’Keeffe, G.W. 4-hydroxychalcone induces cell death via oxidative stress in MYCN-amplified human neuroblastoma cells. Oxid. Med. Cell. Longev., 2019, 2019, 1670759.
[http://dx.doi.org/10.1155/2019/1670759] [PMID: 31885773]
[102]
Chen, Q.; Lei, J.; Zhou, J.; Ma, S.; Huang, Q.; Ge, B. Chemopreventive effect of 4′ hydroxychalcone on intestinal tumorigenesis in ApcMin mice. Oncol. Lett., 2021, 21(3), 213.
[http://dx.doi.org/10.3892/ol.2021.12474] [PMID: 33510814]
[103]
Ao, M.; Hu, X.; Qian, Y.; Li, B.; Zhang, J.; Cao, Y.; Zhang, Y.; Guo, K.; Qiu, Y.; Jiang, F.; Wu, Z.; Fang, M. Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg. Chem., 2021, 113, 104961.
[http://dx.doi.org/10.1016/j.bioorg.2021.104961] [PMID: 34023650]
[104]
Going, C.C.; Tailor, D.; Kumar, V.; Birk, A.M.; Pandrala, M.; Rice, M.A.; Stoyanova, T.; Malhotra, S.; Pitteri, S.J. Quantitative proteomic profiling reveals key pathways in the anticancer action of methoxychalcone derivatives in triple negative breast cancer. J. Proteome Res., 2018, 17(10), 3574-3585.
[http://dx.doi.org/10.1021/acs.jproteome.8b00636] [PMID: 30200768]
[105]
Lima e Silva, M.C.B.; Bogo, D.; Alexandrino, C.A.F.; Perdomo, R.T.; Figueiredo, P.O.; do Prado, P.R.; Garcez, F.R.; Kadri, M.C.T.; Xime-nes, T.V.N.; Guimarães, R.C.A.; Sarmento, U.C.; Macedo, M.L.R. Antiproliferative activity of extracts of Campomanesia adamantium (Cambess.) O. Berg and isolated compound dimethylchalcone against B16-F10 murine melanoma. J. Med. Food, 2018, 21(10), 1024-1034.
[http://dx.doi.org/10.1089/jmf.2018.0001] [PMID: 29715052]
[106]
Kuete, V.; Omosa, L.K.; Midiwo, J.O.; Karaosmanoğlu, O.; Sivas, H. Cytotoxicity of naturally occurring phenolics and terpenoids from Kenyan flora towards human carcinoma cells. J. Ayurveda Integr. Med., 2019, 10(3), 178-184.
[http://dx.doi.org/10.1016/j.jaim.2018.04.001] [PMID: 30389223]
[107]
Chen, G.; Xie, W.; Nah, J.; Sauvat, A.; Liu, P.; Pietrocola, F.; Sica, V.; Carmona-Gutierrez, D.; Zimmermann, A.; Pendl, T.; Tadic, J.; Bergmann, M.; Hofer, S.J.; Domuz, L.; Lachkar, S.; Markaki, M.; Tavernarakis, N.; Sadoshima, J.; Madeo, F.; Kepp, O.; Kroemer, G. 3,4‐Dimethoxychalcone induces autophagy through activation of the transcription factors TFE 3 and TFEB. EMBO Mol. Med., 2019, 11(11), e10469.
[http://dx.doi.org/10.15252/emmm.201910469] [PMID: 31609086]
[108]
Cai, C.Y.; Zhang, W.; Wang, J.Q.; Lei, Z.N.; Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Tan, C.P.; Wang, B.; Chen, Z.S. Biological evaluation of non-basic chalcone CYB-2 as a dual ABCG2/ABCB1 inhibitor. Biochem. Pharmacol., 2020, 175, 113848.
[http://dx.doi.org/10.1016/j.bcp.2020.113848] [PMID: 32044354]
[109]
Pawlak, A.; Henklewska, M.; Hernández Suárez, B.; Łużny, M.; Kozłowska, E.; Obmińska-Mrukowicz, B.; Janeczko, T. Chalcone meth-oxy derivatives exhibit antiproliferative and proapoptotic activity on canine lymphoma and leukemia cells. Molecules, 2020, 25(19), 4362.
[http://dx.doi.org/10.3390/molecules25194362] [PMID: 32977440]
[110]
Mendanha, D.; Vieira de Castro, J.; Moreira, J.; Costa, B.M.; Cidade, H.; Pinto, M.; Ferreira, H.; Neves, N.M. A new chalcone derivative with promising antiproliferative and anti-invasion activities in glioblastoma cells. Molecules, 2021, 26(11), 3383.
[http://dx.doi.org/10.3390/molecules26113383] [PMID: 34205043]
[111]
Jung, E.; Koh, D.; Lim, Y.; Shin, S.Y.; Lee, Y.H. Overcoming multidrug resistance by activating unfolded protein response of the endo-plasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells. BMB Rep., 2020, 53(2), 88-93.
[http://dx.doi.org/10.5483/BMBRep.2020.53.2.108] [PMID: 31401981]
[112]
Abu Bakar, A.; Akhtar, M.; Mohd Ali, N.; Yeap, S.; Quah, C.; Loh, W.S.; Alitheen, N.; Zareen, S.; Ul-Haq, Z.; Shah, S. Design, synthesis and docking studies of flavokawain b type chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules, 2018, 23(3), 616.
[http://dx.doi.org/10.3390/molecules23030616] [PMID: 29518053]
[113]
Sahin, I.D.; Christodoulou, M.S.; Guzelcan, E.A.; Koyas, A.; Karaca, C.; Passarella, D.; Cetin-Atalay, R. A small library of chalcones in-duce liver cancer cell death through Akt phosphorylation inhibition. Sci. Rep., 2020, 10(1), 11814.
[http://dx.doi.org/10.1038/s41598-020-68775-9] [PMID: 32678233]
[114]
Rice, M.A.; Kumar, V.; Tailor, D.; Garcia-Marques, F.J.; Hsu, E.C.; Liu, S.; Bermudez, A.; Kanchustambham, V.; Shankar, V.; Inde, Z.; Alabi, B.R.; Muruganantham, A.; Shen, M.; Pandrala, M.; Nolley, R.; Aslan, M.; Ghoochani, A.; Agarwal, A.; Buckup, M.; Kumar, M.; Go-ing, C.C.; Peehl, D.M.; Dixon, S.J.; Zare, R.N.; Brooks, J.D.; Pitteri, S.J.; Malhotra, S.V.; Stoyanova, T. SU086, an inhibitor of HSP90, im-pairs glycolysis and represents a treatment strategy for advanced prostate cancer. Cell Rep. Med., 2022, 3(2), 100502.
[http://dx.doi.org/10.1016/j.xcrm.2021.100502] [PMID: 35243415]
[115]
Riaz, S.; Iqbal, M.; Ullah, R.; Zahra, R.; Chotana, G.A.; Faisal, A.; Saleem, R.S.Z. Synthesis and evaluation of novel α-substituted chalcon-es with potent anti-cancer activities and ability to overcome multidrug resistance. Bioorg. Chem., 2019, 87, 123-135.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.014] [PMID: 30884306]
[116]
Maguire, C.J.; Carlson, G.J.; Ford, J.W.; Strecker, T.E.; Hamel, E.; Trawick, M.L.; Pinney, K.G. Synthesis and biological evaluation of structurally diverse α-conformationally restricted chalcones and related analogues. MedChemComm, 2019, 10(8), 1445-1456.
[http://dx.doi.org/10.1039/C9MD00127A] [PMID: 31534659]
[117]
Karimikia, E.; Behravan, J.; Zarghi, A.; Ghandadi, M.; Omid Malayeri, S.; Ghodsi, R. Colchicine-like β-acetamidoketones as inhibitors of microtubule polymerization: Design, synthesis and biological evaluation of in vitro anticancer activity. Iran. J. Basic Med. Sci., 2019, 22(10), 1138-1146.
[http://dx.doi.org/10.22038/ijbms.2019.34760.8242] [PMID: 31998454]
[118]
Saito, Y.; Mizokami, A.; Izumi, K.; Naito, R.; Goto, M.; Nakagawa-Goto, K. α-Trifluoromethyl Chalcones as potent anticancer agents for androgen receptor-independent prostate cancer. Molecules, 2021, 26(9), 2812.
[http://dx.doi.org/10.3390/molecules26092812] [PMID: 34068627]
[119]
Wang, B.; Chen, X.; Gao, J.; Su, L.; Zhang, L.; Xu, H.; Luan, Y. Anti-tumor activity evaluation of novel tubulin and HDAC dual-targeting inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(18), 2638-2645.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.045] [PMID: 31400938]
[120]
Canela, M.D.; Noppen, S.; Bueno, O.; Prota, A.E.; Bargsten, K.; Sáez-Calvo, G.; Jimeno, M.L.; Benkheil, M.; Ribatti, D.; Velázquez, S.; Camarasa, M.J.; Fernando Díaz, J.; Steinmetz, M.O.; Priego, E.M.; Pérez-Pérez, M.J.; Liekens, S. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091. Oncotarget, 2017, 8(9), 14325-14342.
[http://dx.doi.org/10.18632/oncotarget.9527] [PMID: 27224920]
[121]
Gao, S.; Sun, D.; Wang, G.; Zhang, J.; Jiang, Y.; Li, G.; Zhang, K.; Wang, L.; Huang, J.; Chen, L. Growth inhibitory effect of paratocarpin E, a prenylated chalcone isolated from Euphorbia humifusa Wild., by induction of autophagy and apoptosis in human breast cancer cells. Bioorg. Chem., 2016, 69, 121-128.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.005] [PMID: 27814565]
[122]
Zhang, Y.; Yang, J.; Wen, Z.; Chen, X.; Yu, J.; Yuan, D.; Xu, B.; Luo, H.; Zhu, J. A novel 3′,5′-diprenylated chalcone induces concurrent apoptosis and GSDME-dependent pyroptosis through activating PKCδ/JNK signal in prostate cancer. Aging, 2020, 12(10), 9103-9124.
[http://dx.doi.org/10.18632/aging.103178] [PMID: 32427575]
[123]
Wang, T.; Dong, J.; Yuan, X.; Wen, H.; Wu, L.; Liu, J.; Sui, H.; Deng, W. A new chalcone derivative C49 reverses doxorubicin resistance in MCF-7/DOX cells by inhibiting p-glycoprotein expression. Front. Pharmacol., 2021, 12, 653306.
[http://dx.doi.org/10.3389/fphar.2021.653306] [PMID: 33927626]
[124]
Ngameni, B.; Cedric, K.; Mbaveng, A.T.; Erdoğan, M.; Simo, I.; Kuete, V.; Daştan, A. Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives. Bioorg. Med. Chem. Lett., 2021, 35, 127827.
[http://dx.doi.org/10.1016/j.bmcl.2021.127827] [PMID: 33508467]
[125]
Ma, Y.C.; Wang, Z.X.; Jin, S.J.; Zhang, Y.X.; Hu, G.Q.; Cui, D.T.; Wang, J.S.; Wang, M.; Wang, F.Q.; Zhao, Z.J. Dual inhibition of topoi-somerase II and tyrosine kinases by the novel bis-fluoroquinolone chalcone-like derivative HMNE3 in human pancreatic cancer cells. PLoS One, 2016, 11(10), e0162821.
[http://dx.doi.org/10.1371/journal.pone.0162821] [PMID: 27760157]
[126]
Zhao, X.; Dong, W.; Gao, Y.; Shin, D.S.; Ye, Q.; Su, L.; Jiang, F.; Zhao, B.; Miao, J. Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo. Sci. Rep., 2017, 7(1), 3919.
[http://dx.doi.org/10.1038/s41598-017-04411-3] [PMID: 28634389]
[127]
Break, M.K.B.; Hossan, M.S.; Khoo, Y.; Qazzaz, M.E.; Al-Hayali, M.Z.K.; Chow, S.C.; Wiart, C.; Bradshaw, T.D.; Collins, H.; Khoo, T.J. Discovery of a highly active anticancer analogue of cardamonin that acts as an inducer of caspase-dependent apoptosis and modulator of the mTOR pathway. Fitoterapia, 2018, 125, 161-173.
[http://dx.doi.org/10.1016/j.fitote.2018.01.006] [PMID: 29355749]
[128]
Hossan, M.S.; Break, M.K.B.; Bradshaw, T.D.; Collins, H.M.; Wiart, C.; Khoo, T.J.; Alafnan, A. Novel semi-synthetic Cu (II)–cardamonin complex exerts potent anticancer activity against triple-negative breast and pancreatic cancer cells via inhibition of the Akt signaling path-way. Molecules, 2021, 26(8), 2166.
[http://dx.doi.org/10.3390/molecules26082166] [PMID: 33918814]
[129]
Sansalone, L.; Veliz, E.; Myrthil, N.; Stathias, V.; Walters, W.; Torrens, I.; Schürer, S.; Vanni, S.; Leblanc, R.; Graham, R. Novel curcumin inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death. Cancers, 2019, 11(3), 357.
[http://dx.doi.org/10.3390/cancers11030357] [PMID: 30871215]
[130]
Burmaoglu, S.; Ozcan, S.; Balcioglu, S.; Gencel, M.; Noma, S.A.A.; Essiz, S.; Ates, B.; Algul, O. Synthesis, biological evaluation and mo-lecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents. Bioorg. Chem., 2019, 91, 103149.
[http://dx.doi.org/10.1016/j.bioorg.2019.103149] [PMID: 31382060]
[131]
Yang, J.; Mu, W.W.; Liu, G.Y. Synthesis and evaluation of the anticancer activity of bischalcone analogs in human lung carcinoma (A549) cell line. Eur. J. Pharmacol., 2020, 888, 173396.
[http://dx.doi.org/10.1016/j.ejphar.2020.173396] [PMID: 32798508]
[132]
Burmaoglu, S.; Gobek, A.; Aydin, B.O.; Yurtoglu, E.; Aydin, B.N.; Ozkat, G.Y.; Hepokur, C.; Ozek, N.S.; Aysin, F.; Altundas, R.; Algul, O. Design, synthesis and biological evaluation of novel bischalcone derivatives as potential anticancer agents. Bioorg. Chem., 2021, 111, 104882.
[http://dx.doi.org/10.1016/j.bioorg.2021.104882] [PMID: 33839582]
[133]
Bianchi, S.E.; Pegues, M.A.; Dias, C.K.; Mascia, F.; Doneda, E.; Pittol, V.; Rao, V.A.; Klamt, F.; Bassani, V.L. Achyrocline satureioides compounds, achyrobichalcone and 3‐O ‐methylquercetin, induce mitochondrial dysfunction and apoptosis in human breast cancer cell lines. IUBMB Life, 2020, 72(10), 2133-2145.
[http://dx.doi.org/10.1002/iub.2348] [PMID: 32710804]
[134]
Li, J.; Zheng, L.; Yan, M.; Wu, J.; Liu, Y.; Tian, X.; Jiang, W.; Zhang, L.; Wang, R. Activity and mechanism of flavokawain A in inhibiting permeability glycoprotein expression in paclitaxel resistance of lung cancer. Oncol. Lett., 2020, 19(1), 379-387.
[http://dx.doi.org/10.3892/ol.2019.11069] [PMID: 31897150]
[135]
Rossette, M.C.; Moraes, D.C.; Sacramento, E.K.; Romano-Silva, M.A.; Carvalho, J.L.; Gomes, D.A.; Caldas, H.; Friedman, E.; Bastos-Rodrigues, L.; De Marco, L. The in vitro and in vivo antiangiogenic effects of flavokawain B. Phytother. Res., 2017, 31(10), 1607-1613.
[http://dx.doi.org/10.1002/ptr.5891] [PMID: 28816367]
[136]
Hseu, Y.C.; Lin, R.W.; Shen, Y.C.; Lin, K.Y.; Liao, J.W.; Thiyagarajan, V.; Yang, H.L. Flavokawain B and doxorubicin work synergistical-ly to impede the propagation of gastric cancer cells via ROS-mediated apoptosis and autophagy pathways. Cancers (Basel), 2020, 12(9), 2475.
[http://dx.doi.org/10.3390/cancers12092475] [PMID: 32882870]
[137]
Abd Malek, S.N.; Phang, C-W.; Karsani, S.A. Induction of apoptosis and cell cycle arrest by flavokawain C on HT-29 human colon adenocarcinoma via enhancement of reactive oxygen species generation, upregulation of p21, p27, and Gadd153, and inactivation of inhibitor of apoptosis proteins. Pharmacogn. Mag., 2017, 13(50: Suppl. 2), 321.
[http://dx.doi.org/10.4103/0973-1296.210180] [PMID: 28808400]
[138]
Wang, X.; Zhou, X.; Zhang, L.; Zhang, X.; Yang, C.; Piao, Y.; Zhao, J.; Jin, L.; Jin, G.; An, R.; Ren, X. Crowberry inhibits cell proliferation and migration through a molecular mechanism that includes inhibition of DEK and Akt signaling in cholangiocarcinoma. Chin. Med., 2022, 17(1), 69.
[http://dx.doi.org/10.1186/s13020-022-00623-6] [PMID: 35698073]
[139]
Komoto, T.T.; Lee, J.; Lertpatipanpong, P.; Ryu, J.; Marins, M.; Fachin, A.L.; Baek, S.J. Trans-chalcone suppresses tumor growth mediat-ed at least in part by the induction of heme oxygenase-1 in breast cancer. Toxicol. Res., 2021, 37(4), 485-493.
[http://dx.doi.org/10.1007/s43188-021-00089-y] [PMID: 34631505]
[140]
Shi, Y.; Wu, W.Z.; Huo, A.; Zhou, W.; Jin, X.H. Isobavachalcone inhibits the proliferation and invasion of tongue squamous cell carcino-ma cells. Oncol. Lett., 2017, 14(3), 2852-2858.
[http://dx.doi.org/10.3892/ol.2017.6517] [PMID: 28928824]
[141]
Sa, B.K.; Kim, C.; Kim, M.B.; Hwang, J.K.; Panduratin, A. Panduratin a prevents tumor necrosis factor-alpha-induced muscle atrophy in L6 Rat skeletal muscle cells. J. Med. Food, 2017, 20(11), 1047-1054.
[http://dx.doi.org/10.1089/jmf.2017.3970] [PMID: 28933980]
[142]
Song, H.S.; Jang, S.; Kang, S.C. Bavachalcone from Cullen corylifolium induces apoptosis and autophagy in HepG2 cells. Phytomedicine, 2018, 40, 37-47.
[http://dx.doi.org/10.1016/j.phymed.2017.12.030] [PMID: 29496173]
[143]
Choommongkol, V.; Punturee, K.; Klumphu, P.; Rattanaburi, P.; Meepowpan, P.; Suttiarporn, P. microwave-assisted extraction of anti-cancer flavonoid, 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethyl chalcone (DMC), rich extract from Syzygium nervosum Fruits. Molecules, 2022, 27(4), 1397.
[http://dx.doi.org/10.3390/molecules27041397] [PMID: 35209190]
[144]
Utama, K.; Khamto, N.; Meepowpan, P.; Aobchey, P.; Kantapan, J.; Sringarm, K.; Roytrakul, S.; Sangthong, P. Effects of 2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone from Syzygium nervosum seeds on antiproliferative, DNA damage, cell cycle arrest, and apoptosis in human cervical cancer cell lines. Molecules, 2022, 27(4), 1154.
[http://dx.doi.org/10.3390/molecules27041154] [PMID: 35208945]
[145]
Wei, X.; Mo, X.; An, F.; Ji, X.; Lu, Y. 2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone, a potent Nrf2/ARE pathway inhibitor, reverses drug resistance by decreasing glutathione synthesis and drug efflux in BEL-7402/5-FU cells. Food Chem. Toxicol., 2018, 119, 252-259.
[http://dx.doi.org/10.1016/j.fct.2018.04.001] [PMID: 29626576]
[146]
Predes, D.; Oliveira, L.F.S.; Ferreira, L.S.S.; Maia, L.A.; Delou, J.M.A.; Faletti, A.; Oliveira, I.; Amado, N.G.; Reis, A.H.; Fraga, C.A.M.; Kuster, R.; Mendes, F.A.; Borges, H.L.; Abreu, J.G. The chalcone lonchocarpin Inhibits Wnt/β-Catenin signaling and suppresses colorectal cancer proliferation. Cancers, 2019, 11(12), 1968.
[http://dx.doi.org/10.3390/cancers11121968] [PMID: 31817828]
[147]
Liu, X.; An, L.J.; Li, Y.; Wang, Y.; Zhao, L.; Lv, X.; Guo, J.; Song, A.L. Xanthohumol chalcone acts as a powerful inhibitor of carcino-genesis in drug-resistant human colon carcinoma and these effects are mediated via G2/M phase cell cycle arrest, activation of apoptotic pathways, caspase activation and targeting Ras/MEK/ERK pathway. J. BUON, 2019, 24(6), 2442-2447.
[http://dx.doi.org/10.3390/molecules26144214] [PMID: 31983118]
[148]
Nguyen, N.L.; Vo, T.H.; Lin, Y.C.; Liaw, C.C.; Lin, Z.H.; Chen, M.C.; Kuo, Y.H. bioassay-guided isolation and hplc quantification of antiproliferative metabolites from Stahlianthus thorelii. Molecules, 2020, 25(3), 551.
[http://dx.doi.org/10.3390/molecules25030551] [PMID: 32012805]
[149]
Karsani, S.A.; Fong, H.Y.; Abd Malek, S.N.; Yee, H.S. Helichrysetin induces DNA damage that triggers JNK-mediated apoptosis in Ca Ski cells. Pharmacogn. Mag., 2017, 13(52), 607-612.
[http://dx.doi.org/10.4103/pm.pm_53_17] [PMID: 29200721]
[150]
Park, S.H.; Lee, J.; Shon, J.C.; Phuc, N.M.; Jee, J.G.; Liu, K.H. The inhibitory potential of Broussochalcone A for the human cytochrome P450 2J2 isoform and its anti-cancer effects via FOXO3 activation. Phytomedicine, 2018, 42, 199-206.
[http://dx.doi.org/10.1016/j.phymed.2018.03.032] [PMID: 29655687]
[151]
Zhang, J.; Li, J.; Song, H.; Xiong, Y.; Liu, D.; Bai, X. Hydroxysafflor yellow A suppresses angiogenesis of hepatocellular carcinoma through inhibition of p38 MAPK phosphorylation. Biomed. Pharmacother., 2019, 109, 806-814.
[http://dx.doi.org/10.1016/j.biopha.2018.09.086] [PMID: 30551534]
[152]
Ma, Y.; Feng, C.; Wang, J.; Chen, Z.; Wei, P.; Fan, A.; Wang, X.; Yu, X.; Ge, D.; Xie, H.; Liu, L.; Zhang, Q.; Li, X.H. Hydroxyl safflower yellow A regulates the tumor immune microenvironment to produce an anticancer effect in a mouse model of hepatocellular carcinoma. Oncol. Lett., 2019, 17(3), 3503-3510.
[http://dx.doi.org/10.3892/ol.2019.9946] [PMID: 30867790]
[153]
Berning, L.; Scharf, L.; Aplak, E.; Stucki, D.; von Montfort, C.; Reichert, A.S.; Stahl, W.; Brenneisen, P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One, 2019, 14(9), e0222267.
[http://dx.doi.org/10.1371/journal.pone.0222267] [PMID: 31553748]
[154]
Hou, S.; Yuan, Q.; Yu, N.; Liu, B.; Huang, G.; Yuan, X. Cardamonin attenuates chronic inflammation and tumorigenesis in colon. Cell Cycle, 2019, 18(23), 3275-3287.
[http://dx.doi.org/10.1080/15384101.2019.1673620] [PMID: 31570032]
[155]
Badroon, N.A.; Abdul Majid, N.; Alshawsh, M.A. Antiproliferative and apoptotic effects of cardamonin against hepatocellular carcinoma HepG2 Cells. Nutrients, 2020, 12(6), 1757.
[http://dx.doi.org/10.3390/nu12061757] [PMID: 32545423]
[156]
Ruibin, J.; Bo, J.; Danying, W.; Jianguo, F.; Linhui, G. Cardamonin induces G2/M phase arrest and apoptosis through inhibition of NF-κB and mTOR pathways in ovarian cancer. Aging, 2020, 12(24), 25730-25743.
[http://dx.doi.org/10.18632/aging.104184] [PMID: 33234722]
[157]
Kwak, A.W.; Choi, J.S.; Lee, M.H.; Oh, H.N.; Cho, S.S.; Yoon, G.; Liu, K.; Chae, J.I.; Shim, J.H. Retrochalcone echinatin triggers apopto-sis of esophageal squamous cell carcinoma via ROS- and ER stress-mediated signaling pathways. Molecules, 2019, 24(22), 4055.
[http://dx.doi.org/10.3390/molecules24224055] [PMID: 31717502]
[158]
Hong, P.; Liu, Q.W.; Xie, Y.; Zhang, Q.H.; Liao, L.; He, Q.Y.; Li, B.; Xu, W.W. Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis., 2020, 11(7), 524.
[http://dx.doi.org/10.1038/s41419-020-2730-7] [PMID: 32655130]
[159]
Muchtaridi, M.; Yusuf, M.; Syahidah, H.N.; Subarnas, A.; Zamri, A.; Bryant, S.; Langer, T. Cytotoxicity of chalcone of Eugenia aquea Burm F. leaves against T47D breast cancer cell lines and its prediction as an estrogen receptor antagonist based on pharmacophore-molecular dynamics simulation. Adv. Appl. Bioinform. Chem., 2019, 12, 33-43.
[http://dx.doi.org/10.2147/AABC.S217205] [PMID: 31807030]
[160]
Wang, G.; Chen, X.; Wang, N.; Xiao, Y.; Shu, S.; Alsayed, A.M.M.; Liu, L.; Ma, Y.; Liu, P.; Zhang, Q.; Chen, X.; Liu, Z.; Zheng, X. The discovery of novel sanjuanolide derivatives as chemotherapeutic agents targeting castration-resistant prostate cancer. Bioorg. Chem., 2021, 111, 104880.
[http://dx.doi.org/10.1016/j.bioorg.2021.104880] [PMID: 33839585]
[161]
Zhang, H.L.; Zhang, Y.; Yan, X.L.; Xiao, L.G.; Hu, D.X.; Yu, Q.; An, L.K. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg. Med. Chem., 2020, 28(11), 115527.
[http://dx.doi.org/10.1016/j.bmc.2020.115527] [PMID: 32345458]
[162]
Hou, C.; Li, W.; Li, Z.; Gao, J.; Chen, Z.; Zhao, X.; Yang, Y.; Zhang, X.; Song, Y. Synthetic isoliquiritigenin inhibits human tongue squa-mous carcinoma cells through its antioxidant mechanism. Oxid. Med. Cell. Longev., 2017, 2017, 1379430.
[http://dx.doi.org/10.1155/2017/1379430] [PMID: 28203317]
[163]
Peng, F.; Tang, H.; Liu, P.; Shen, J.; Guan, X.; Xie, X.; Gao, J.; Xiong, L.; Jia, L.; Chen, J.; Peng, C. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci. Rep., 2017, 7(1), 9022.
[http://dx.doi.org/10.1038/s41598-017-08422-y] [PMID: 28827662]
[164]
Kim, D.H.; Park, J.E.; Chae, I.G.; Park, G.; Lee, S.; Chun, K.S. Isoliquiritigenin inhibits the proliferation of human renal carcinoma Caki cells through the ROS-mediated regulation of the Jak2/STAT3 pathway. Oncol. Rep., 2017, 38(1), 575-583.
[http://dx.doi.org/10.3892/or.2017.5677] [PMID: 28560439]
[165]
Huang, Y.; Liu, C.; Zeng, W.C.; Xu, G.Y.; Wu, J.M.; Li, Z.W.; Huang, X.Y.; Lin, R.J.; Shi, X. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Biosci. Rep., 2020, 40(1), BSR20192727.
[http://dx.doi.org/10.1042/BSR20192727] [PMID: 31840737]
[166]
Chen, C.; Huang, S.; Chen, C.L.; Su, S.B.; Fang, D.D. Isoliquiritigenin inhibits ovarian cancer metastasis by reversing epithelial-to-mesenchymal transition. Molecules, 2019, 24(20), 3725.
[http://dx.doi.org/10.3390/molecules24203725] [PMID: 31623144]
[167]
Song, L.; Luo, Y.; Li, S.; Hong, M.; Wang, Q.; Chi, X.; Yang, C. ISL induces apoptosis and autophagy in hepatocellular carcinoma via downregulation of PI3K/AKT/mTOR pathway in vivo and in vitro. Drug Des. Devel. Ther., 2020, 14, 4363-4376.
[http://dx.doi.org/10.2147/DDDT.S270124] [PMID: 33116421]
[168]
Jin, H.; Seo, G.S.; Lee, S.H. Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspa-se-8 activation in colorectal cancer cells. Eur. J. Pharmacol., 2018, 841, 90-97.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.015] [PMID: 30339814]
[169]
Xiang, S.; Chen, H.; Luo, X.; An, B.; Wu, W.; Cao, S.; Ruan, S.; Wang, Z.; Weng, L.; Zhu, H.; Liu, Q. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 184.
[http://dx.doi.org/10.1186/s13046-018-0844-x] [PMID: 30081934]
[170]
Alshangiti, A.M.; Togher, K.L.; Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signal., 2019, 3(1), NS20180201.
[http://dx.doi.org/10.1042/NS20180201] [PMID: 32269833]
[171]
Zhang, B.; Lai, Y.; Li, Y.; Shu, N.; Wang, Z.; Wang, Y.; Li, Y.; Chen, Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol., 2018, 821, 57-67.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.053] [PMID: 29277717]
[172]
Bortolotto, L.F.B.; Barbosa, F.R.; Silva, G.; Bitencourt, T.A.; Beleboni, R.O.; Baek, S.J.; Marins, M.; Fachin, A.L. Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother., 2017, 85, 425-433.
[http://dx.doi.org/10.1016/j.biopha.2016.11.047] [PMID: 27903423]
[173]
Qiu, C.; Zhang, T.; Zhang, W.; Zhou, L.; Yu, B.; Wang, W.; Yang, Z.; Liu, Z.; Zou, P.; Liang, G.; Licochalcone, A.; Licochalcone, A. Inhibits the proliferation of human lung cancer cell lines A549 and H460 by Inducing G2/M cell cycle arrest and ER stress. Int. J. Mol. Sci., 2017, 18(8), 1761.
[http://dx.doi.org/10.3390/ijms18081761] [PMID: 28805696]
[174]
Chen, X.; Liu, Z.; Meng, R.; Shi, C.; Guo, N. Antioxidative and anticancer properties of Licochalcone A from licorice. J. Ethnopharmacol., 2017, 198, 331-337.
[http://dx.doi.org/10.1016/j.jep.2017.01.028] [PMID: 28111219]
[175]
Wang, J.; Zhang, Y.S.; Thakur, K.; Hussain, S.S.; Zhang, J.G.; Xiao, G.R.; Wei, Z.J. Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest. Food Chem. Toxicol., 2018, 120, 407-417.
[http://dx.doi.org/10.1016/j.fct.2018.07.044] [PMID: 30055311]
[176]
Hong, S.H.; Cha, H.J.; Hwang-Bo, H.; Kim, M.Y.; Kim, S.Y.; Ji, S.Y.; Cheong, J.; Park, C.; Lee, H.; Kim, G.Y.; Moon, S.K.; Yun, S.J.; Chang, Y.C.; Kim, W.J.; Choi, Y.H. Anti-proliferative and pro-apoptotic effects of licochalcone A through ROS-mediated cell cycle arrest and apoptosis in human bladder cancer cells. Int. J. Mol. Sci., 2019, 20(15), 3820.
[http://dx.doi.org/10.3390/ijms20153820] [PMID: 31387245]
[177]
Shen, T.S.; Hsu, Y.K.; Huang, Y.F.; Chen, H.Y.; Hsieh, C.P.; Chen, C.L. Licochalcone A suppresses the proliferation of osteosarcoma cells through autophagy and ATM-Chk2 activation. Molecules, 2019, 24(13), 2435.
[http://dx.doi.org/10.3390/molecules24132435] [PMID: 31269698]
[178]
Wu, P.; Yu, T.; Wu, J.; Chen, J. Licochalcone a induces ROS-mediated apoptosis through TrxR1 inactivation in colorectal cancer cells. BioMed Res. Int., 2020, 2020, 5875074.
[http://dx.doi.org/10.1155/2020/5875074] [PMID: 32596335]
[179]
Liu, X.; Xing, Y.; Li, M.; Zhang, Z.; Wang, J.; Ri, M.; Jin, C.; Xu, G.; Piao, L.; Jin, H.; Zuo, H.; Ma, J.; Jin, X. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-KB and Ras/Raf/MEK pathways. J. Ethnopharmacol., 2021, 273, 113989.
[http://dx.doi.org/10.1016/j.jep.2021.113989] [PMID: 33677006]
[180]
Mu, Y.; Dong, J.; Cui, H.; Hu, J.; Liang, J.; Yan, L. Effect of Licochalcone-A combined with Rab23 gene on proliferation of glioma U251 cells. Evid. Based Complement. Alternat. Med., 2022, 2022, 9299442.
[http://dx.doi.org/10.1155/2022/9299442] [PMID: 35497928]
[181]
Kang, T.H.; Yoon, G.; Kang, I.A.; Oh, H.N.; Chae, J.I.; Shim, J.H. Natural compound Licochalcone B induced extrinsic and intrinsic apop-tosis in human skin melanoma (A375) and squamous cell carcinoma (A431) cells. Phytother. Res., 2017, 31(12), 1858-1867.
[http://dx.doi.org/10.1002/ptr.5928] [PMID: 29027311]
[182]
Oh, H.N.; Lee, M.H.; Kim, E.; Yoon, G.; Chae, J.I.; Shim, J.H. Licochalcone B inhibits growth and induces apoptosis of human non-small-cell lung cancer cells by dual targeting of EGFR and MET. Phytomedicine, 2019, 63, 153014.
[http://dx.doi.org/10.1016/j.phymed.2019.153014] [PMID: 31323446]
[183]
Oh, H.N.; Lee, M.H.; Kim, E.; Kwak, A.W.; Yoon, G.; Cho, S.S.; Liu, K.; Chae, J.I.; Shim, J.H. Licochalcone D induces ROSdependent apoptosis in gefitinib-sensitive or resistant lung cancer cells by targeting EGFR and MET. Biomolecules, 2020, 10(2), 297.
[http://dx.doi.org/10.3390/biom10020297]
[184]
Nho, S.H.; Yoon, G.; Seo, J.H.; Oh, H.N.; Cho, S.S.; Kim, H.; Choi, H.; Shim, J.H.; Chae, J.I. Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncol. Rep., 2018, 41(1), 333-340.
[http://dx.doi.org/10.3892/or.2018.6784] [PMID: 30320347]
[185]
Oh, H.N.; Oh, K.B.; Lee, M.H.; Seo, J.H.; Kim, E.; Yoon, G.; Cho, S.S.; Cho, Y.S.; Choi, H.W.; Chae, J.I.I.; Shim, J.H. JAK2 regulation by licochalcone H inhibits the cell growth and induces apoptosis in oral squamous cell carcinoma. Phytomedicine, 2019, 52, 60-69.
[http://dx.doi.org/10.1016/j.phymed.2018.09.180] [PMID: 30599913]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy