Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Glioblastoma as a Novel Drug Repositioning Target: Updated State

Author(s): Hamed Hosseinalizadeh, Ammar Ebrahimi, Ahmad Tavakoli and Seyed Hamidreza Monavari*

Volume 23, Issue 11, 2023

Published on: 03 March, 2023

Page: [1253 - 1264] Pages: 12

DOI: 10.2174/1871520623666230202163112

Price: $65

Abstract

Glioblastoma multiforme (GBM) is an aggressive form of adult brain tumor that can arise from a low-grade astrocytoma. In recent decades, several new conventional therapies have been developed that have significantly improved the prognosis of patients with GBM. Nevertheless, most patients have a limited long-term response to these treatments and survive < 1 year. Therefore, innovative anti-cancer drugs that can be rapidly approved for patient use are urgently needed. One way to achieve accelerated approval is drug repositioning, extending the use of existing drugs for new therapeutic purposes, as it takes less time to validate their biological activity as well as their safety in preclinical models. In this review, a comprehensive analysis of the literature search was performed to list drugs with antiviral, antiparasitic, and antidepressant properties that may be effective in GBM and their putative anti-tumor mechanisms in GBM cells.

Graphical Abstract

[1]
Ghaffari, H.; Tavakoli, A.; Faranoush, M.; Naderi, A.; Kiani, S.J.; Sadeghipour, A.; Javanmard, D.; Farahmand, M.; Ghorbani, S.; Seda-ghati, F.; Monavari, S.H. Molecular investigation of human cytomegalovirus and epstein-barr virus in glioblastoma brain tumor: A case-control study in iran. Iran. Biomed. J., 2021, 25(6), 426-433.
[http://dx.doi.org/10.52547/ibj.25.6.426] [PMID: 34696577]
[2]
Zavala-Vega, S.; Palma-Lara, I.; Ortega-Soto, E.; Trejo-Solis, C.; de Arellano, I.T.R.; Ucharima-Corona, L.E.; Garcia-Chacón, G.; Ochoa, S.A.; Xicohtencatl-Cortes, J.; Cruz-Córdova, A.; Luna-Pineda, V.M.; Jiménez-Hernández, E.; Vázquez-Meraz, E.; Mejía-Aranguré, J.M.; Guzmán-Bucio, S.; Rembao-Bojorquez, D.; Sánchez-Gómez, C.; Salazar-Garcia, M.; Arellano-Galindo, J. Role of Epstein-barr virus in gli-oblastoma. Crit. Rev. Oncog., 2019, 24(4), 307-338.
[http://dx.doi.org/10.1615/CritRevOncog.2019032655] [PMID: 32421988]
[3]
Sadeghi, F.; Bokharaei-Salim, F.; Salehi-Vaziri, M.; Monavari, S.H.; Alavian, S.M.; Salimi, S.; Vahabpour, R.; Keyvani, H. Associations between human TRIM22 gene expression and the response to combination therapy with Peg-IFNα-2a and ribavirin in Iranian patients with chronic hepatitis C. J. Med. Virol., 2014, 86(9), 1499-1506.
[http://dx.doi.org/10.1002/jmv.23985] [PMID: 24889558]
[4]
Salehi-Vaziri, M.; Sadeghi, F.; Bokharaei-Salim, F.; Younesi, S.; Alinaghi, S.; Monavari, S.H.; Keyvani, H. The prevalence and genotype distribution of human papillomavirus in the genital tract of males in Iran. Jundishapur J. Microbiol., 2015, 8(12), e21912.
[http://dx.doi.org/10.5812/jjm.21912] [PMID: 26862386]
[5]
Moghoofei, M.; Keshavarz, M.; Ghorbani, S.; Babaei, F.; Nahand, J.S.; Tavakoli, A.; Mortazavi, H.S.; Marjani, A.; Mostafaei, S.; Monava-ri, S.H. Association between human Papillomavirus infection and prostate cancer: A global systematic review and meta‐analysis. Asia Pac. J. Clin. Oncol., 2019, 15(5), e59-e67.
[http://dx.doi.org/10.1111/ajco.13124] [PMID: 30740893]
[6]
Fateh, A.; Aghasadeghi, M.; Siadat, S.D.; Vaziri, F.; Sadeghi, F.; Fateh, R.; Keyvani, H.; Tasbiti, A.H.; Yari, S.; Ataei-Pirkooh, A.; Monava-ri, S.H. Comparison of three different methods for detection of IL28 rs12979860 polymorphisms as a predictor of treatment outcome in patients with hepatitis C virus. Osong Public Health Res. Perspect., 2016, 7(2), 83-89.
[http://dx.doi.org/10.1016/j.phrp.2015.11.004] [PMID: 27169005]
[7]
Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O’Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110.
[http://dx.doi.org/10.1016/j.ccr.2009.12.020] [PMID: 20129251]
[8]
Clarke, J.; Penas, C.; Pastori, C.; Komotar, R.J.; Bregy, A.; Shah, A.H.; Wahlestedt, C.; Ayad, N.G. Epigenetic pathways and glioblastoma treatment. Epigenetics, 2013, 8(8), 785-795.
[http://dx.doi.org/10.4161/epi.25440] [PMID: 23807265]
[9]
Park, S.H.; Kim, M.J.; Jung, H.H.; Chang, W.S.; Choi, H.S.; Rachmilevitch, I.; Zadicario, E.; Chang, J.W. One-year outcome of multiple blood–brain barrier disruptions with temozolomide for the treatment of glioblastoma. Front. Oncol., 2020, 10, 1663.
[http://dx.doi.org/10.3389/fonc.2020.01663] [PMID: 33014832]
[10]
Jain, K.K. A critical overview of targeted therapies for glioblastoma. Front. Oncol., 2018, 8, 419.
[http://dx.doi.org/10.3389/fonc.2018.00419] [PMID: 30374421]
[11]
Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[12]
Tan, S.K.; Jermakowicz, A.; Mookhtiar, A.K.; Nemeroff, C.B.; Schürer, S.C.; Ayad, N.G. Drug repositioning in glioblastoma: A pathway perspective. Front. Pharmacol., 2018, 9, 218.
[http://dx.doi.org/10.3389/fphar.2018.00218] [PMID: 29615902]
[13]
Yadavalli, S.; Yenugonda, V.M.; Kesari, S. Repurposed drugs in treating glioblastoma multiforme: Clinical trials update. Cancer J., 2019, 25(2), 139-146.
[http://dx.doi.org/10.1097/PPO.0000000000000365] [PMID: 30896537]
[14]
Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front. Pharmacol., 2020, 11, 588654.
[http://dx.doi.org/10.3389/fphar.2020.588654] [PMID: 33240091]
[15]
Chu, C.W.; Ko, H.J.; Chou, C.H.; Cheng, T.S.; Cheng, H.W.; Liang, Y.H.; Lai, Y.L.; Lin, C.Y.; Wang, C.; Loh, J.K.; Cheng, J.T.; Chiou, S.J.; Su, C.L.; Huang, C.Y.F.; Hong, Y.R. Thioridazine enhances P62-mediated autophagy and apoptosis through Wnt/β-catenin signaling path-way in glioma cells. Int. J. Mol. Sci., 2019, 20(3), 473.
[http://dx.doi.org/10.3390/ijms20030473] [PMID: 30678307]
[16]
Rahman, M.; Dastmalchi, F.; Karachi, A.; Mitchell, D. The role of CMV in glioblastoma and implications for immunotherapeutic strategies. OncoImmunology, 2019, 8(1), e1514921.
[http://dx.doi.org/10.1080/2162402X.2018.1514921] [PMID: 30546954]
[17]
Peng, C.; Wang, J.; Tanksley, J.P.; Mobley, B.C.; Ayers, G.D.; Moots, P.L.; Clark, S.W. Valganciclovir and bevacizumab for recurrent glioblastoma: A single-institution experience. Mol. Clin. Oncol., 2016, 4(2), 154-158.
[http://dx.doi.org/10.3892/mco.2015.692] [PMID: 26893852]
[18]
Cobbs, C.S. Does valganciclovir have a role in glioblastoma therapy? Neuro-oncol., 2014, 16(3), 330-331.
[http://dx.doi.org/10.1093/neuonc/nou009] [PMID: 24523453]
[19]
Stragliotto, G.; Pantalone, M.R.; Rahbar, A.; Söderberg-Nauclér, C. Valganciclovir as add-on to standard therapy in secondary glioblasto-ma. Microorganisms, 2020, 8(10), 1471.
[http://dx.doi.org/10.3390/microorganisms8101471] [PMID: 32987955]
[20]
Ding, D.; Zhao, A.; Sun, Z.; Zuo, L.; Wu, A.; Sun, J. Is the presence of HCMV components in CNS tumors a glioma-specific phenome-non? Virol. J., 2019, 16(1), 96.
[http://dx.doi.org/10.1186/s12985-019-1198-5] [PMID: 31370833]
[21]
Dey, M.; Ahmed, A.U.; Lesniak, M.S. Cytomegalovirus and glioma: Putting the cart before the horse. J. Neurol. Neurosurg. Psychiatry, 2015, 86(2), 191-199.
[http://dx.doi.org/10.1136/jnnp-2014-307727] [PMID: 24906494]
[22]
ClinicalTrials.gov. Efficacy and safety of valcyte® as an add-on therapy in patients with Malignant Glioblastoma and Cytomegalovirus (CMV) infection., 2006. Available from: https://ClinicalTrials.gov/show/NCT00400322
[23]
Stragliotto, G.; Pantalone, M.R.; Rahbar, A.; Bartek, J.; Söderberg-Naucler, C. Valganciclovir as add-on to standard therapy in glioblastoma patients. Clin. Cancer Res., 2020, 26(15), 4031-4039.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0369] [PMID: 32423968]
[24]
Kohli, A.; Shaffer, A.; Sherman, A.; Kottilil, S. Treatment of hepatitis C: A systematic review. JAMA, 2014, 312(6), 631-640.
[http://dx.doi.org/10.1001/jama.2014.7085] [PMID: 25117132]
[25]
Borden, K.L.B.; Culjkovic-Kraljacic, B. Ribavirin as an anti-cancer therapy: Acute myeloid leukemia and beyond? Leuk. Lymphoma, 2010, 51(10), 1805-1815.
[http://dx.doi.org/10.3109/10428194.2010.496506] [PMID: 20629523]
[26]
Kentsis, A.; Topisirovic, I.; Culjkovic, B.; Shao, L.; Borden, K.L.B. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc. Natl. Acad. Sci., 2004, 101(52), 18105-18110.
[http://dx.doi.org/10.1073/pnas.0406927102] [PMID: 15601771]
[27]
De La, C.H.E.; Medina-Franco, J.L.; Trujillo, J.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Perez-Cardenas, E.; Gonzalez-Fierro, A.; Taja-Chayeb, L.; Dueñas-Gonzalez, A. Ribavirin as a tri-targeted antitumor repositioned drug. Oncol. Rep., 2015, 33(5), 2384-2392.
[http://dx.doi.org/10.3892/or.2015.3816] [PMID: 25738706]
[28]
Ochiai, Y.; Sumi, K.; Sano, E.; Yoshimura, S.; Yamamuro, S.; Ogino, A.; Ueda, T.; Suzuki, Y.; Nakayama, T.; Hara, H.; Katayama, Y.; Yoshino, A. Antitumor effects of ribavirin in combination with TMZ and IFN β in malignant glioma cells. Oncol. Lett., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/ol.2020.12039] [PMID: 32934745]
[29]
Volpin, F.; Casaos, J.; Sesen, J.; Mangraviti, A.; Choi, J.; Gorelick, N.; Frikeche, J.; Lott, T.; Felder, R.; Scotland, S.J.; Eisinger-Mathason, T.S.K.; Brem, H.; Tyler, B.; Skuli, N. Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic. Oncogene, 2017, 36(21), 3037-3047.
[http://dx.doi.org/10.1038/onc.2016.457] [PMID: 27941882]
[30]
Tan, K.; Culjkovic, B.; Amri, A.; Borden, K.L.B. Ribavirin targets eIF4E dependent Akt survival signaling. Biochem. Biophys. Res. Commun., 2008, 375(3), 341-345.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.163] [PMID: 18706892]
[31]
Urtishak, K.A.; Wang, L.S.; Culjkovic-Kraljacic, B.; Davenport, J.W.; Porazzi, P.; Vincent, T.L.; Teachey, D.T.; Tasian, S.K.; Moore, J.S.; Seif, A.E.; Jin, S.; Barrett, J.S.; Robinson, B.W.; Chen, I.M.L.; Harvey, R.C.; Carroll, M.P.; Carroll, A.J.; Heerema, N.A.; Devidas, M.; Dreyer, Z.E.; Hilden, J.M.; Hunger, S.P.; Willman, C.L.; Borden, K.L.B.; Felix, C.A. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene, 2019, 38(13), 2241-2262.
[http://dx.doi.org/10.1038/s41388-018-0567-7] [PMID: 30478448]
[32]
Robinson, J.P.; Vanbrocklin, M.W.; McKinney, A.J.; Gach, H.M.; Holmen, S.L. Akt signaling is required for glioblastoma maintenance in vivo. Am. J. Cancer Res., 2011, 1(2), 155-167.
[PMID: 21796274]
[33]
Ge, Y.; Zhou, F.; Chen, H.; Cui, C.; Liu, D.; Li, Q.; Yang, Z.; Wu, G.; Sun, S.; Gu, J.; Wei, Y.; Jiang, J. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. Biochem. Biophys. Res. Commun., 2010, 397(4), 711-717.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.015] [PMID: 20537983]
[34]
Carrasco-Garcia, E.; Santos, J.C.; Garcia, I.; Brianti, M.; García-Puga, M.; Pedrazzoli, J., Jr; Matheu, A.; Ribeiro, M.L. Paradoxical role of SOX2 in gastric cancer. Am. J. Cancer Res., 2016, 6(4), 701-713.
[PMID: 27186426]
[35]
Velcheti, V.; Schalper, K.; Yao, X.; Cheng, H.; Kocoglu, M.; Dhodapkar, K.; Deng, Y.; Gettinger, S.; Rimm, D.L. High SOX2 levels predict better outcome in non-small cell lung carcinomas. PLoS One, 2013, 8(4), e61427.
[http://dx.doi.org/10.1371/journal.pone.0061427] [PMID: 23620753]
[36]
Li, Y.Q.; Zheng, Z.; Liu, Q.X.; Lu, X.; Zhou, D.; Zhang, J.; Zheng, H.; Dai, J.G. Repositioning of antiparasitic drugs for tumor treatment. Front. Oncol., 2021, 11, 670804.
[http://dx.doi.org/10.3389/fonc.2021.670804] [PMID: 33996598]
[37]
Arora, N.; Kaur, R.; Anjum, F.; Tripathi, S.; Mishra, A.; Kumar, R.; Prasad, A. Neglected agent eminent disease: Linking human helminthic infection, inflammation, and malignancy. Front. Cell. Infect. Microbiol., 2019, 9, 402.
[http://dx.doi.org/10.3389/fcimb.2019.00402] [PMID: 31867284]
[38]
van Tong, H.; Brindley, P.J.; Meyer, C.G.; Velavan, T.P. Parasite infection, carcinogenesis and human malignancy. EBioMedicine, 2017, 15, 12-23.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.034] [PMID: 27956028]
[39]
Bai, R.Y.; Staedtke, V.; Wanjiku, T.; Rudek, M.A.; Joshi, A.; Gallia, G.L.; Riggins, G.J. Brain penetration and efficacy of different meben-dazole polymorphs in a mouse brain tumor model. Clin. Cancer Res., 2015, 21(15), 3462-3470.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2681] [PMID: 25862759]
[40]
Bai, R.Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-oncol., 2011, 13(9), 974-982.
[http://dx.doi.org/10.1093/neuonc/nor077] [PMID: 21764822]
[41]
Sasaki, J.; Ramesh, R.; Chada, S.; Gomyo, Y.; Roth, J.A.; Mukhopadhyay, T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther., 2002, 1(13), 1201-1209.
[PMID: 12479701]
[42]
De Witt, M.; Gamble, A.; Hanson, D.; Markowitz, D.; Powell, C.; Al Dimassi, S.; Atlas, M.; Boockvar, J.; Ruggieri, R.; Symons, M. Repur-posing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol. Med., 2017, 23(1), 50-56.
[http://dx.doi.org/10.2119/molmed.2017.00011] [PMID: 28386621]
[43]
Gallia, G.L.; Holdhoff, M.; Brem, H.; Joshi, A.D.; Hann, C.L.; Bai, R.Y.; Staedtke, V.; Blakeley, J.O.; Sengupta, S.; Jarrell, T.C.; Wollett, J.; Szajna, K.; Helie, N.; Mattox, A.K.; Ye, X.; Rudek, M.A.; Riggins, G.J. Mebendazole and temozolomide in patients with newly diagnosed high-grade gliomas: Results of a phase 1 clinical trial. Neurooncol. Adv., 2021, 3(1), vdaa154.
[http://dx.doi.org/10.1093/noajnl/vdaa154] [PMID: 33506200]
[44]
ClinicalTrials.gov.Mebendazole in newly diagnosed high-grade glioma patients receiving temozolomide, 2021. Available from: https://ClinicalTrials.gov/show/NCT01729260
[45]
A phase I study of mebendazole for the treatment of pediatric gliomas, 2022. Available from: https://ClinicalTrials.gov/show/NCT01837862
[46]
Phase I study of mebendazole therapy for recurrent/progressive pediatric brain tumors, 2022. Available from: https://ClinicalTrials.gov/show/NCT02644291
[47]
Lin, G.L.; Wilson, K.M.; Ceribelli, M.; Stanton, B.Z.; Woo, P.J.; Kreimer, S.; Qin, E.Y.; Zhang, X.; Lennon, J.; Nagaraja, S.; Morris, P.J.; Quezada, M.; Gillespie, S.M.; Duveau, D.Y.; Michalowski, A.M.; Shinn, P.; Guha, R.; Ferrer, M.; Klumpp-Thomas, C.; Michael, S.; McKnight, C.; Minhas, P.; Itkin, Z.; Raabe, E.H.; Chen, L.; Ghanem, R.; Geraghty, A.C.; Ni, L.; Andreasson, K.I.; Vitanza, N.A.; Warren, K.E.; Thomas, C.J.; Monje, M. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci. Transl. Med., 2019, 11(519), eaaw0064.
[http://dx.doi.org/10.1126/scitranslmed.aaw0064] [PMID: 31748226]
[48]
Liu, Y.; Fang, S.; Sun, Q.; Liu, B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through induc-ing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2016, 480(3), 415-421.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.064] [PMID: 27771251]
[49]
Draganov, D.; Gopalakrishna-Pillai, S.; Chen, Y.R.; Zuckerman, N.; Moeller, S.; Wang, C.; Ann, D.; Lee, P.P. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci. Rep., 2015, 5(1), 16222.
[http://dx.doi.org/10.1038/srep16222] [PMID: 26552848]
[50]
Song, D.; Liang, H.; Qu, B.; Li, Y.; Liu, J.; Zhang, Y.; Li, L.; Hu, L.; Zhang, X.; Gao, A. Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo. J. Cell. Biochem., 2019, 120(1), 622-633.
[http://dx.doi.org/10.1002/jcb.27420] [PMID: 30596403]
[51]
Xie, Y.; Bergström, T.; Jiang, Y.; Johansson, P.; Marinescu, V.D.; Lindberg, N.; Segerman, A.; Wicher, G.; Niklasson, M.; Baskaran, S.; Sreedharan, S.; Everlien, I.; Kastemar, M.; Hermansson, A.; Elfineh, L.; Libard, S.; Holland, E.C.; Hesselager, G.; Alafuzoff, I.; Wester-mark, B.; Nelander, S.; Forsberg-Nilsson, K.; Uhrbom, L. The human glioblastoma cell culture resource: Validated cell models represent-ing all molecular subtypes. EBioMedicine, 2015, 2(10), 1351-1363.
[http://dx.doi.org/10.1016/j.ebiom.2015.08.026] [PMID: 26629530]
[52]
Gao, C.F.; Xie, Q.; Su, Y.L.; Koeman, J.; Khoo, S.K.; Gustafson, M.; Knudsen, B.S.; Hay, R.; Shinomiya, N.; Woude, G.F.V. Proliferation and invasion: Plasticity in tumor cells. Proc. Natl. Acad. Sci., 2005, 102(30), 10528-10533.
[http://dx.doi.org/10.1073/pnas.0504367102] [PMID: 16024725]
[53]
Gerstner, E.R.; Batchelor, T.T. Antiangiogenic therapy for glioblastoma. Cancer J., 2012, 18(1), 45-50.
[http://dx.doi.org/10.1097/PPO.0b013e3182431c6f] [PMID: 22290257]
[54]
Kalghatgi, S; Spina, CS; Costello, JC Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med., 2013, 5(192), 192ra85-ra85.
[http://dx.doi.org/10.1126/scitranslmed.3006055]
[55]
Maycotte, P.; Aryal, S.; Cummings, C.T.; Thorburn, J.; Morgan, M.J.; Thorburn, A. Chloroquine sensitizes breast cancer cells to chemo-therapy independent of autophagy. Autophagy, 2012, 8(2), 200-212.
[http://dx.doi.org/10.4161/auto.8.2.18554] [PMID: 22252008]
[56]
Solomon, V.R.; Lee, H. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol., 2009, 625(1-3), 220-233.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.063] [PMID: 19836374]
[57]
Weyerhäuser, P.; Kantelhardt, S.R.; Kim, E.L. Re-purposing chloroquine for glioblastoma: Potential merits and confounding variables. Front. Oncol., 2018, 8, 335.
[http://dx.doi.org/10.3389/fonc.2018.00335] [PMID: 30211116]
[58]
Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781.
[http://dx.doi.org/10.3332/ecancer.2017.781] [PMID: 29225688]
[59]
Zhang, Y.; Li, Y.; Li, Y.; Li, R.; Ma, Y.; Wang, H.; Wang, Y. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol. Med. Rep., 2015, 11(2), 1366-1371.
[http://dx.doi.org/10.3892/mmr.2014.2839] [PMID: 25369757]
[60]
Chang, N.C. Autophagy and stem cells: Self-eating for self-renewal. Front. Cell Dev. Biol., 2020, 8, 138.
[http://dx.doi.org/10.3389/fcell.2020.00138] [PMID: 32195258]
[61]
Kimura, T.; Takabatake, Y.; Takahashi, A.; Isaka, Y. Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Res., 2013, 73(1), 3-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2464] [PMID: 23288916]
[62]
Viry, E.; Paggetti, J.; Baginska, J.; Mgrditchian, T.; Berchem, G.; Moussay, E.; Janji, B. Autophagy: An adaptive metabolic response to stress shaping the antitumor immunity. Biochem. Pharmacol., 2014, 92(1), 31-42.
[http://dx.doi.org/10.1016/j.bcp.2014.07.006] [PMID: 25044308]
[63]
Zhang, Y.; Zhang, L.; Gao, J.; Wen, L. Pro-death or pro-survival: Contrasting paradigms on nanomaterial-induced autophagy and exploita-tions for cancer therapy. Acc. Chem. Res., 2019, 52(11), 3164-3176.
[http://dx.doi.org/10.1021/acs.accounts.9b00397] [PMID: 31621285]
[64]
Lim, S.M.; Mohamad Hanif, E.A.; Chin, S.F. Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell Biosci., 2021, 11(1), 56.
[http://dx.doi.org/10.1186/s13578-021-00570-z] [PMID: 33743781]
[65]
Cheong, H. Integrating autophagy and metabolism in cancer. Arch. Pharm. Res., 2015, 38(3), 358-371.
[http://dx.doi.org/10.1007/s12272-015-0562-2] [PMID: 25614051]
[66]
Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820.
[http://dx.doi.org/10.1172/JCI20039] [PMID: 14638851]
[67]
Menon, M.B.; Dhamija, S. Beclin 1 phosphorylation-at the center of autophagy regulation. Front. Cell Dev. Biol., 2018, 6, 137.
[http://dx.doi.org/10.3389/fcell.2018.00137] [PMID: 30370269]
[68]
Homewood, C.A.; Warhurst, D.C.; Peters, W.; Baggaley, V.C. Lysosomes, pH and the anti-malarial action of chloroquine. Nature, 1972, 235(5332), 50-52.
[http://dx.doi.org/10.1038/235050a0] [PMID: 4550396]
[69]
Slater, A.F.G. Chloroquine: Mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol. Ther., 1993, 57(2-3), 203-235.
[http://dx.doi.org/10.1016/0163-7258(93)90056-J] [PMID: 8361993]
[70]
ClinicalTrials.gov. The addition of chloroquine to chemoradiation for glioblastoma., 2020. Available from: https://ClinicalTrials.gov/show/NCT02378532
[71]
ClinicalTrials.gov. Chloroquine for glioblastoma., 2021. Available from: https://ClinicalTrials.gov/show/NCT04772846
[72]
ClinicalTrials.gov. Partial brain RT, temozolomide, chloroquine, and TTF therapy for the treatment of newly diagnosed glioblastoma., 2022. Available from: https://ClinicalTrials.gov/show/NCT04397679
[73]
ClinicalTrials.gov. Chloroquine for Treatment of Glioblastoma Multiforme., 2009. Available from: https://ClinicalTrials.gov/show/NCT00224978
[74]
Sotelo, J.; Briceño, E.; López-González, M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med., 2006, 144(5), 337-343.
[http://dx.doi.org/10.7326/0003-4819-144-5-200603070-00008] [PMID: 16520474]
[75]
Biller, H.; Schachtschabel, D.O.; Leising, H.B.; Pfab, R.; Hess, F. Influence of x-rays and quinacrine (atebrine) or chloroquine (resochine) alone or in combination on growth and melanin formation of Harding-Passey melanoma cells in monolayer culture. Strahlentherapie, 1982, 158(7), 450-456.
[PMID: 7135443]
[76]
Briceño, E.; Reyes, S.; Sotelo, J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg. Focus, 2003, 14(2), 1-6.
[http://dx.doi.org/10.3171/foc.2003.14.2.4] [PMID: 15727424]
[77]
Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[78]
Bhutia, S.K.; Mukhopadhyay, S.; Sinha, N.; Das, D.N.; Panda, P.K.; Patra, S.K.; Maiti, T.K.; Mandal, M.; Dent, P.; Wang, X.Y.; Das, S.K.; Sarkar, D.; Fisher, P.B. Autophagy. Adv. Cancer Res., 2013, 118, 61-95.
[http://dx.doi.org/10.1016/B978-0-12-407173-5.00003-0] [PMID: 23768510]
[79]
Tang, C.; Livingston, M.J.; Liu, Z.; Dong, Z. Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol., 2020, 16(9), 489-508.
[http://dx.doi.org/10.1038/s41581-020-0309-2] [PMID: 32704047]
[80]
Isaka, Y.; Kimura, T.; Takabatake, Y. The protective role of autophagy against aging and acute ischemic injury in kidney proximal tubular cells. Autophagy, 2011, 7(9), 1085-1087.
[http://dx.doi.org/10.4161/auto.7.9.16465] [PMID: 21606682]
[81]
Lyne, S.B.; Yamini, B. An alternative pipeline for glioblastoma therapeutics: A systematic review of drug repurposing in glioblastoma. Cancers, 2021, 13(8), 1953.
[http://dx.doi.org/10.3390/cancers13081953] [PMID: 33919596]
[82]
Jeon, S.H.; Kim, S.H.; Kim, Y.; Kim, Y.S.; Lim, Y.; Lee, Y.H.; Shin, S.Y. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem. Biophys. Res. Commun., 2011, 413(2), 311-317.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.093] [PMID: 21889492]
[83]
Levkovitz, Y.; Gil-Ad, I.; Zeldich, E.; Dayag, M.; Weizman, A. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: Evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J. Mol. Neurosci., 2005, 27(1), 029-042.
[http://dx.doi.org/10.1385/JMN:27:1:029] [PMID: 16055945]
[84]
Kamarudin, M.N.A.; Parhar, I. Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehen-sive review. Oncotarget, 2019, 10(39), 3952-3977.
[http://dx.doi.org/10.18632/oncotarget.26994] [PMID: 31231472]
[85]
Beaney, R.P.; Gullan, R.W.; Pilkington, G.J. Therapeutic potential of antidepressants in malignant glioma: Clinical experience with clomi-pramine. J. Clin. Oncol., 2005, 23(Suppl. 16), 1535.
[http://dx.doi.org/10.1200/jco.2005.23.16_suppl.1535]
[86]
Abadi, B.; Shahsavani, Y.; Faramarzpour, M.; Rezaei, N.; Rahimi, H.R. Antidepressants with anti‐tumor potential in treating glioblastoma: A narrative review. Fundam. Clin. Pharmacol., 2022, 36(1), 35-48.
[http://dx.doi.org/10.1111/fcp.12712] [PMID: 34212424]
[87]
Kong, R.; Liu, T.; Zhu, X.; Ahmad, S.; Williams, A.L.; Phan, A.T.; Zhao, H.; Scott, J.E.; Yeh, L.A.; Wong, S.T.C. Old drug new use amox-apine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity. Clin. Cancer Res., 2014, 20(13), 3521-3530.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0395] [PMID: 24780296]
[88]
Magni, G.; Conlon, P.; Arsie, D. Tricyclic antidepressants in the treatment of cancer pain: A review. Pharmacopsychiatry, 1987, 20(4), 160-164.
[http://dx.doi.org/10.1055/s-2007-1017095] [PMID: 3303068]
[89]
Shchors, K.; Massaras, A.; Hanahan, D. Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell, 2015, 28(4), 456-471.
[http://dx.doi.org/10.1016/j.ccell.2015.08.012] [PMID: 26412325]
[90]
Hsu, F.T.; Chiang, I.T.; Wang, W.S. Induction of apoptosis through extrinsic/intrinsic pathways and suppression of ERK/NF‐κB signalling participate in anti‐glioblastoma of imipramine. J. Cell. Mol. Med., 2020, 24(7), 3982-4000.
[http://dx.doi.org/10.1111/jcmm.15022] [PMID: 32149465]
[91]
Wang, Y.; Wang, X.; Wang, X.; Wu, D.; Qi, J.; Zhang, Y.; Wang, K.; Zhou, D.; Meng, Q.M.; Nie, E.; Wang, Q.; Yu, R.T.; Zhou, X.P. Imi-pramine impedes glioma progression by inhibiting YAP as a Hippo pathway independent manner and synergizes with temozolomide. J. Cell. Mol. Med., 2021, 25(19), 9350-9363.
[http://dx.doi.org/10.1111/jcmm.16874] [PMID: 34469035]
[92]
Orr, B.A.; Bai, H.; Odia, Y.; Jain, D.; Anders, R.A.; Eberhart, C.G. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J. Neuropathol. Exp. Neurol., 2011, 70(7), 568-577.
[http://dx.doi.org/10.1097/NEN.0b013e31821ff8d8] [PMID: 21666501]
[93]
Oldrini, B.; Vaquero-Siguero, N.; Mu, Q.; Kroon, P.; Zhang, Y.; Galán-Ganga, M.; Bao, Z.; Wang, Z.; Liu, H.; Sa, J.K.; Zhao, J.; Kim, H.; Rodriguez-Perales, S.; Nam, D.H.; Verhaak, R.G.W.; Rabadan, R.; Jiang, T.; Wang, J.; Squatrito, M. MGMT genomic rearrangements con-tribute to chemotherapy resistance in gliomas. Nat. Commun., 2020, 11(1), 3883.
[http://dx.doi.org/10.1038/s41467-020-17717-0] [PMID: 32753598]
[94]
Hegi, M.E.; Diserens, A.C.; Godard, S.; Dietrich, P.Y.; Regli, L.; Ostermann, S.; Otten, P.; Van Melle, G.; de Tribolet, N.; Stupp, R. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res., 2004, 10(6), 1871-1874.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0384] [PMID: 15041700]
[95]
ClinicalTrials.gov. Investigator-initiated study of imipramine hydrochloride and lomustine in recurrent glioblastoma., 2022. Available from: https://ClinicalTrials.gov/show/NCT04863950
[96]
Clarke, M.F.; Dick, J.E.; Dirks, P.B.; Eaves, C.J.; Jamieson, C.H.M.; Jones, D.L.; Visvader, J.; Weissman, I.L.; Wahl, G.M. Cancer stem cells perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res., 2006, 66(19), 9339-9344.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3126] [PMID: 16990346]
[97]
Safa, A.R.; Saadatzadeh, M.R.; Cohen-Gadol, A.A.; Pollok, K.E.; Bijangi-Vishehsaraei, K. Glioblastoma stem cells (GSCs) epigenetic plas-ticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis., 2015, 2(2), 152-163.
[http://dx.doi.org/10.1016/j.gendis.2015.02.001] [PMID: 26137500]
[98]
Bielecka-Wajdman, A.M.; Lesiak, M.; Ludyga, T.; Sieroń, A.; Obuchowicz, E. Reversing glioma malignancy: A new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme. Cancer Chemother. Pharmacol., 2017, 79(6), 1249-1256.
[http://dx.doi.org/10.1007/s00280-017-3329-2] [PMID: 28500556]
[99]
Seymour, T.; Nowak, A.; Kakulas, F. Targeting aggressive cancer stem cells in glioblastoma. Front. Oncol., 2015, 5, 159.
[http://dx.doi.org/10.3389/fonc.2015.00159] [PMID: 26258069]
[100]
Parker, K.A.; Pilkington, G.J. Apoptosis of human malignant glioma-derived cell cultures treated with clomipramine hydrochloride, as detected by Annexin-V assay. Radiol. Oncol., 2006, 40(2)
[101]
Higgins, S.C.; Pilkington, G.J. The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res., 2010, 30(2), 391-397.
[PMID: 20332444]
[102]
Lowry, O.H.; Berger, S.J.; Carter, J.G.; Chi, M.M.Y.; Manchester, J.K.; Knor, J.; Pusateri, M.E. Diversity of metabolic patterns in human brain tumors: enzymes of energy metabolism and related metabolites and cofactors. J. Neurochem., 1983, 41(4), 994-1010.
[http://dx.doi.org/10.1111/j.1471-4159.1983.tb09043.x] [PMID: 6619861]
[103]
Meixensberger, J.; Herting, B.; Roggendorf, W.; Reichmann, H. Metabolic patterns in malignant gliomas. J. Neurooncol., 1995, 24(2), 153-161.
[http://dx.doi.org/10.1007/BF01078485] [PMID: 7562002]
[104]
Daley, E.; Wilkie, D.; Loesch, A.; Hargreaves, I.P.; Kendall, D.A.; Pilkington, G.J.; Bates, T.E. Chlorimipramine: A novel anticancer agent with a mitochondrial target. Biochem. Biophys. Res. Commun., 2005, 328(2), 623-632.
[http://dx.doi.org/10.1016/j.bbrc.2005.01.028] [PMID: 15694394]
[105]
Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front. Pharmacol., 2016, 6, 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[106]
Tsuruo, T.; Iida, H.; Nojiri, M.; Tsukagoshi, S.; Sakurai, Y. Potentiation of chemotherapeutic effect of vincristine in vincristine resistant tumor bearing mice by calmodulin inhibitor clomipramine. J. Pharmacobiodyn., 1983, 6(2), 145-147.
[http://dx.doi.org/10.1248/bpb1978.6.145] [PMID: 6864439]
[107]
Walker, A.J.; Card, T.; Bates, T.E.; Muir, K. Tricyclic antidepressants and the incidence of certain cancers: A study using the GPRD. Br. J. Cancer, 2011, 104(1), 193-197.
[http://dx.doi.org/10.1038/sj.bjc.6605996] [PMID: 21081933]
[108]
Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through en-hanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res., 1981, 41(5), 1967-1972.
[PMID: 7214365]
[109]
Merry, S.; Hamilton, T.G.; Flanigan, P.; Ian Freshney, R.; Kaye, S.B. Circumvention of pleiotropic drug resistance in subcutaneous tu-mours in vivo with verapamil and clomipramine. Eur. J. Cancer Clin. Oncol., 1991, 27(1), 31-34.
[http://dx.doi.org/10.1016/0277-5379(91)90054-H] [PMID: 1826436]
[110]
Bongiorno-Borbone, L.; Giacobbe, A.; Compagnone, M.; Eramo, A.; De Maria, R.; Peschiaroli, A.; Melino, G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget, 2015, 6(19), 16926-16938.
[http://dx.doi.org/10.18632/oncotarget.4700] [PMID: 26219257]
[111]
Bielecka-Wajdman, A.M.; Ludyga, T.; Machnik, G.; Gołyszny, M.; Obuchowicz, E. Tricyclic antidepressants modulate stressed mito-chondria in glioblastoma multiforme cells. Cancer Contr., 2018, 25(1), 1-9.
[http://dx.doi.org/10.1177/1073274818798594] [PMID: 30213208]
[112]
de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[113]
Haas, R.; Smith, J.; Rocher-Ros, V.; Nadkarni, S.; Montero-Melendez, T.; D’Acquisto, F.; Bland, E.J.; Bombardieri, M.; Pitzalis, C.; Perret-ti, M.; Marelli-Berg, F.M.; Mauro, C. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol., 2015, 13(7), e1002202.
[http://dx.doi.org/10.1371/journal.pbio.1002202] [PMID: 26181372]
[114]
Czarnecka, A.M.; Czarnecki, J.S.; Kukwa, W.; Cappello, F.; Ścińska, A.; Kukwa, A. Molecular oncology focus. Is carcinogenesis a ‘mito-chondriopathy’? J. Biomed. Sci., 2010, 17(1), 31.
[http://dx.doi.org/10.1186/1423-0127-17-31] [PMID: 20055990]
[115]
Sarosiek, K.A.; Ni Chonghaile, T.; Letai, A. Mitochondria: Gatekeepers of response to chemotherapy. Trends Cell Biol., 2013, 23(12), 612-619.
[http://dx.doi.org/10.1016/j.tcb.2013.08.003] [PMID: 24060597]
[116]
Vaupel, P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol., 2004, 14(3), 198-206.
[http://dx.doi.org/10.1016/j.semradonc.2004.04.008] [PMID: 15254862]
[117]
Cruz, A.L.S.; Barreto, E.A.; Fazolini, N.P.B.; Viola, J.P.B.; Bozza, P.T. Lipid droplets: Platforms with multiple functions in cancer hall-marks. Cell Death Dis., 2020, 11(2), 105.
[http://dx.doi.org/10.1038/s41419-020-2297-3] [PMID: 32029741]
[118]
Arismendi-Morillo, G. Electron microscopy morphology of the mitochondrial network in human cancer. Int. J. Biochem. Cell Biol., 2009, 41(10), 2062-2068.
[http://dx.doi.org/10.1016/j.biocel.2009.02.002] [PMID: 19703662]
[119]
Hwang, J.; Zheng, L.T.; Ock, J.; Lee, M.G.; Kim, S.H.; Lee, H.W.; Lee, W.H.; Park, H.C.; Suk, K. Inhibition of glial inflammatory activa-tion and neurotoxicity by tricyclic antidepressants. Neuropharmacology, 2008, 55(5), 826-834.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.045] [PMID: 18639562]
[120]
Pottegård, A.; García Rodríguez, L.A.; Rasmussen, L.; Damkier, P.; Friis, S.; Gaist, D. Use of tricyclic antidepressants and risk of glioma: A nationwide case-control study. Br. J. Cancer, 2016, 114(11), 1265-1268.
[http://dx.doi.org/10.1038/bjc.2016.109] [PMID: 27115466]
[121]
Zhang, Z.; Du, X.; Zhao, C.; Cao, B.; Zhao, Y.; Mao, X. The antidepressant amitriptyline shows potent therapeutic activity against multiple myeloma. Anticancer Drugs, 2013, 24(8), 792-798.
[http://dx.doi.org/10.1097/CAD.0b013e3283628c21] [PMID: 23708819]
[122]
Ban, T.A.; Wilson, W.H.; McEvoy, J.P. Amoxapine: A review of literature. Int. Pharmacopsychiatry, 1980, 15(3), 166-170.
[http://dx.doi.org/10.1159/000468433] [PMID: 7016801]
[123]
Palmeira, A.; Rodrigues, F.; Sousa, E.; Pinto, M.; Vasconcelos, M.H.; Fernandes, M.X. New uses for old drugs: Pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chem. Biol. Drug Des., 2011, 78(1), 57-72.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01089.x] [PMID: 21235729]
[124]
Jansen, W.J.M.; Hulscher, T.M.; van Ark-Otte, J.; Giaccone, G.; Pinedo, H.M.; Boven, E. CPT-11 sensitivity in relation to the expression of P170-glycoprotein and multidrug resistance-associated protein. Br. J. Cancer, 1998, 77(3), 359-365.
[http://dx.doi.org/10.1038/bjc.1998.58] [PMID: 9472629]
[125]
Xu, Y.; Villalona-Calero, M.A. Irinotecan: Mechanisms of tumor resistance and novel strategies for modulating its activity. Ann. Oncol., 2002, 13(12), 1841-1851.
[http://dx.doi.org/10.1093/annonc/mdf337] [PMID: 12453851]
[126]
Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J., 2008, 22(3), 659-661.
[http://dx.doi.org/10.1096/fj.07-9574LSF] [PMID: 17942826]
[127]
Abigerges, D.; Armand, J.P.; Chabot, G.G.; Costa, L.D.; Fadel, E.; Cote, C.; Hérait, P.; Gandia, D. Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J. Natl. Cancer Inst., 1994, 86(6), 446-449.
[http://dx.doi.org/10.1093/jnci/86.6.446] [PMID: 8120919]
[128]
Tang, L.; Li, X.; Wan, L.; Xiao, Y.; Zeng, X.; Ding, H. Herbal medicines for irinotecan-induced diarrhea. Front. Pharmacol., 2019, 10, 182.
[http://dx.doi.org/10.3389/fphar.2019.00182] [PMID: 30983992]
[129]
Wallace, B.D.; Wang, H.; Lane, K.T.; Scott, J.E.; Orans, J.; Koo, J.S.; Venkatesh, M.; Jobin, C.; Yeh, L.A.; Mani, S.; Redinbo, M.R. Allevi-ating cancer drug toxicity by inhibiting a bacterial enzyme. Science, 2010, 330(6005), 831-835.
[http://dx.doi.org/10.1126/science.1191175] [PMID: 21051639]
[130]
Takasuna, K.; Hagiwara, T.; Hirohashi, M.; Kato, M.; Nomura, M.; Nagai, E.; Yokoi, T.; Kamataki, T. Involvement of β-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res., 1996, 56(16), 3752-3757.
[PMID: 8706020]
[131]
Ahmad, S.; Hughes, M.A.; Yeh, L.A.; Scott, J.E. Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors. SLAS Discov., 2012, 17(7), 957-965.
[http://dx.doi.org/10.1177/1087057112444927] [PMID: 22535688]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy