Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

A Review on ZnO-based Targeted Drug Delivery System

Author(s): Urvashi Chawla, David Dahiya, Yogesh Kumar, Anu Bala, Mahaveer Genwa, Nityananda Agasti, Sanjay Tandon, Surinder P. Singh and P. L. Meena*

Volume 21, Issue 3, 2024

Published on: 21 March, 2023

Page: [397 - 420] Pages: 24

DOI: 10.2174/1570180820666230222092950

Price: $65

Abstract

Cancer is the most malignant chronic disease worldwide, with a high mortality rate. It can be treated with conventional therapies such as chemotherapy and immunotherapy, but these techniques have several side effects, limiting their therapeutic outcome and reducing application. Recently, a promising method of drug delivery has been devised to minimize side effects and induce potential benefits during treatment. The targeted drug delivery system (TDDS) is one of the established drug delivery methods using nanoparticles, crossing different biological barriers, targeting a specific diseased site, and resulting in sustained drug release. The current research introduces a plethora of nanoparticles that can be implemented to deliver or target drugs to a particular site, such as polymeric nanoparticles (PLGA, PLA, chitosan), metal-based nanoparticles (gold, iron oxide), carbon-based nanoparticles (CNTs, graphene), bio nanoparticles (liposomes, micelles) and ceramic nanoparticles (mesoporous-based silica, calcium phosphate). Most of them are proven to be very efficient in targeting the desired site and causing fatal damage to the tumor cells. Zinc oxide (ZnO) is a nano compound, that shows a wide range of favorable properties, making it widely acceptable for biomedical applications. This review focuses on TDDS using ZnO as a drug carrier, followed by factors affecting TDDS such as drug loading, encapsulation efficiency, cell viability, and zeta potential. The target mechanism of TDDS for cancer therapy has also been discussed, indicating a better alternative for clinical treatment. This approach also presents certain challenges besides the potential for oncology.

Graphical Abstract

[1]
Ma, X.; Yu, H. Global burden of cancer. Yale J. Biol. Med., 2006, 79(3-4), 85-94. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994799/
[PMID: 17940618]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Hameed, S.; Iqbal, J.; Ali, M.; Khalil, A.T.; Abbasi, B.A.; Numan, M.; Shinwari, Z.K. Green synthesis of zinc nanoparticles through plant extracts: Establishing a novel era in cancer theranostics. Mater. Res. Express, 2019, 6(10), 102005.
[http://dx.doi.org/10.1088/2053-1591/ab40df]
[4]
Sudhakar, A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther., 2009, 01(02), 01-04.
[http://dx.doi.org/10.4172/1948-5956.100000e2]
[5]
Skrajnowska, D.; Korczak, B.B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients, 2019, 11(10), 2273(01-28).
[http://dx.doi.org/10.3390/nu11102273]
[6]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[7]
Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers., 2021, 13(4570), 01-30.
[http://dx.doi.org/10.3390/cancers13184570]
[8]
Yuan, J.; Hegde, P.S.; Clynes, R.; Foukas, P.G.; Harari, A.; Kleen, T.O.; Kvistborg, P.; Maccalli, C.; Maecker, H.T.; Page, D.B.; Robins, H.; Song, W.; Stack, E.C.; Wang, E.; Whiteside, T.L.; Zhao, Y.; Zwierzina, H.; Butterfield, L.H.; Fox, B.A. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J. Immunother. Cancer, 2016, 4(3), 1-25.
[http://dx.doi.org/10.1186/s40425-016-0107-3]
[9]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, Á. Assessment of the evolution of cancer treatment therapies. Cancers, 2011, 3(3), 3279-3330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[10]
Hazra, B.; Ghosh, S.; Kumar, A.; Pandey, B.N. The prospective role of plant products in radiotherapy of cancer: A current overview. Front. Pharmacol., 2012, 2, 1-13.
[http://dx.doi.org/10.3389/fphar.2011.00094]
[11]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[12]
Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci., 2020, 7(193), 01-14.
[http://dx.doi.org/10.3389/fmolb.2020.00193]
[13]
Patra, P.; Mitra, S.; Das Gupta, A.; Pradhan, S.; Bhattacharya, S.; Ahir, M.; Mukherjee, S.; Sarkar, S.; Roy, S.; Chattopadhyay, S.; Adhikary, A.; Goswami, A.; Chattopadhyay, D. Simple synthesis of biocompatible biotinylated porous hexagonal ZnO nanodisc for targeted doxorubicin delivery against breast cancer cell: In vitro and in vivo cytotoxic potential. Colloids Surf. B Biointerfaces, 2015, 133, 88-98.
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.052] [PMID: 26093304]
[14]
Liu, Y.L.; Chen, D.; Shang, P.; Yin, D.C. A review of magnet systems for targeted drug delivery. J. Control. Release, 2019, 302, 90-104.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.031] [PMID: 30946854]
[15]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[16]
Labhasetwar, V.; Song, C.; Humphrey, W.; Shebuski, R.; Levy, R.J. Arterial uptake of biodegradable nanoparticles: Effect of surface modifications. J. Pharm. Sci., 1998, 87(10), 1229-1234.
[http://dx.doi.org/10.1021/js980021f] [PMID: 9758682]
[17]
Singh, R.; Lillard, J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[18]
Zweers, M.L.T. Biodegradable nanoparticles for intravascular drug delivery. 2004. Available from: https://ris.utwente.nl/ws/portalfiles/portal/6071973/t000004a.pdf
[19]
Wahab, R.; Saquib, Q.; Faisal, M. Zinc oxide nanostructures: A motivated dynamism against cancer cells. Process Biochem., 2020, 98(July), 83-92.
[http://dx.doi.org/10.1016/j.procbio.2020.07.026]
[20]
Singh, S.; Pandey, V.K.; Tewari, R.P.; Agarwal, V. Nanoparticle based drug delivery system: Advantages and applications. Indian J. Sci. Technol., 2011, 4(3), 177-180.
[http://dx.doi.org/10.17485/ijst/2011/v4i3.16]
[21]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[22]
Lu, H.; Wang, J.; Wang, T.; Zhong, J.; Bao, Y.; Hao, H. Recent progress on nanostructures for drug delivery applications. J. Nanomater., 2016, 2016, 5762431(01-12).
[http://dx.doi.org/10.1155/2016/5762431]
[23]
Dadwal, A.; Baldi, A.; Narang, R.K. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039] [PMID: 30043651]
[24]
Subramani, K.; Hosseinkhani, H.; Khraisat, A.; Hosseinkhani, M.; Pathak, Y. Targeting nanoparticles as drug delivery systems for cancer treatment. Curr. Nanosci., 2009, 5(2), 135-140.
[http://dx.doi.org/10.2174/157341309788185406]
[25]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[26]
Vaseem, M.; Umar, A.; Hahn, Y. ZnO nanoparticles: Growth, properties, and applications. In: Metal Oxide Nanostructures and Their Applications; Umar, A.; Hahn, Y.B., Eds.; American Scientific Publishers, 2010. Vol. 5, pp. 1-36. Available from: https://scholar.smu.edu/centers_maguireethics_research/2/
[27]
Yin, H.; Casey, P.S.; McCall, M.J.; Fenech, M. Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir, 2010, 26(19), 15399-15408.
[http://dx.doi.org/10.1021/la101033n] [PMID: 20809599]
[28]
Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7(9), 1063-1077.
[http://dx.doi.org/10.1517/17425247.2010.502560] [PMID: 20716019]
[29]
Sharma, M.; Sharma, R.; Jain, D.K. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica, 2016, 2016, 8525679(01-11).
[http://dx.doi.org/10.1155/2016/8525679]
[30]
Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—from synthesis to application: A review. Materials, 2014, 7(4), 2833-2881.
[http://dx.doi.org/10.3390/ma7042833] [PMID: 28788596]
[31]
Martínez-Carmona, M.; Gun’ko, Y.; Vallet-Regí, M. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 2018, 8(4), 268.
[http://dx.doi.org/10.3390/nano8040268] [PMID: 29690644]
[32]
Wang, J.; Lee, J.S.; Kim, D.; Zhu, L. Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl. Mater. Interfaces, 2017, 9(46), 39971-39984.
[http://dx.doi.org/10.1021/acsami.7b11219] [PMID: 29076344]
[33]
Carrasco-Esteban, E.; Domínguez-Rullán, J.A.; Barrionuevo-Castillo, P.; Pelari-Mici, L.; Leaman, O.; Sastre-Gallego, S.; López-Campos, F. Current role of nanoparticles in the treatment of lung cancer. J. Clin. Transl. Res., 2021, 7(2), 140-155.
[http://dx.doi.org/10.18053/jctres.07.202102.005] [PMID: 34104817]
[34]
Jawahar, N.; Meyyanathan, S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci., 2012, 1(4), 217.
[http://dx.doi.org/10.4103/2278-344X.107832]
[35]
Torchilin, V.P. Drug targeting. Eur. J. Pharm. Sci., 2000, 11(S2), S81-S91.
[http://dx.doi.org/10.1016/S0928-0987(00)00166-4] [PMID: 11033430]
[36]
Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Siraj, E.A. Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc., 2021, 14, 1711-1724.
[http://dx.doi.org/10.2147/JMDH.S313968] [PMID: 34267523]
[37]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[38]
Mishra, N.; Pant, P.; Porwal, A.; Jaiswal, J.; Aquib, M. Targeted drug delivery: A review. Am. J. Pharmtech. Res., 2016, 6(1), 01-24. Available from: https://www.researchgate.net/publication/297283078_Targeted_Drug_Delivery_A_Review
[39]
Yokoyama, M. Drug targeting with nano-sized carrier systems. J. Artif. Organs, 2005, 8(2), 77-84.
[http://dx.doi.org/10.1007/s10047-005-0285-0] [PMID: 16094510]
[40]
Vishwanath, B.; Kim, S.; Lee, K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int. J. Nanomedicine, 2016, 11, 2491.
[http://dx.doi.org/10.2147/IJN.S108715]
[41]
Mills, J.K.; Needham, D. Targeted drug delivery. Expert Opin. Ther. Pat., 1999, 9(11), 1499-1513.
[http://dx.doi.org/10.1517/13543776.9.11.1499]
[42]
Goyal, A.K.; Rath, G.; Faujdar, C.; Malik, B. Application and perspective of pH-responsive nano drug delivery systems. In: Applications of Targeted Nano Drugs and Delivery Systems; Elsevier, 2019; pp. 15-33.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00002-8]
[43]
Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol., 2021, 69, 166-177.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002] [PMID: 31715247]
[44]
Xin, Y.; Yin, M.; Zhao, L.; Meng, F.; Luo, L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol. Med., 2017, 14(3), 228-241.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0052] [PMID: 28884040]
[45]
Banerjee, A.; Pathak, S.; Subramanium, V.D.; Vasan, D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov. Today, 2017, 22(8), 1224-1232.
[http://dx.doi.org/10.1016/j.drudis.2017.05.006] [PMID: 28545838]
[46]
Rani, K.; Paliwal, S. A review on targeted drug delivery: Its entire focus on advanced therapeutics and diagnostics. Sch. J. Appl. Med. Sci., 2014, 2(1), 328-331. Available from: https://www.saspublishers.com/media/articles/SJAMS_21C328-331.pdf
[47]
Parisi, O.I.; Morelli, C.; Puoci, F.; Saturnino, C.; Caruso, A.; Sisci, D.; Trombino, G.E.; Picci, N.; Sinicropi, M.S. Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy. J. Mater. Chem. B, 2014, 2(38), 6619-6625.
[http://dx.doi.org/10.1039/C4TB00607K] [PMID: 32261822]
[48]
Sanadgol, N.; Wackerlig, J. Developments of smart drug-delivery systems based on magnetic molecularly imprinted polymers for targeted cancer therapy: A short review. Pharmaceutics, 2020, 12(9), 831.
[http://dx.doi.org/10.3390/pharmaceutics12090831] [PMID: 32878127]
[49]
Kumar, A.; Nautiyal, U.; Kaur, C.; Goel, V.; Piarchand, N. Targeted drug delivery system: Current and novel approach. Int. J. Pharm. Med. Res. J., 2017, 5(2), 448-454.
[50]
Öztürk-Atar, K.H.; Çalış, S. Novel advances in targeted drug delivery. J. Drug Target., 2017, 26(8), 633-642.
[http://dx.doi.org/10.1080/1061186X.2017.1401076] [PMID: 29096554]
[51]
Scott, R.C.; Crabbe, D.; Krynska, B.; Ansari, R.; Kiani, M.F. Aiming for the heart: Targeted delivery of drugs to diseased cardiac tissue. Expert Opin. Drug Deliv., 2008, 5(4), 459-470.
[http://dx.doi.org/10.1517/17425247.5.4.459] [PMID: 18426386]
[52]
Gu, J.; Al-Bayati, K.; Ho, E.A. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv. Transl. Res., 2017, 7(4), 497-506.
[http://dx.doi.org/10.1007/s13346-017-0368-5] [PMID: 28315051]
[53]
Wen, M.M.; El-Salamouni, N.S.; El-Refaie, W.M.; Hazzah, H.A.; Ali, M.M.; Tosi, G.; Farid, R.M.; Blanco-Prieto, M.J.; Billa, N.; Hanafy, A.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J. Control. Release, 2017, 245, 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[54]
Barcia, E.; Boeva, L.; García-García, L.; Slowing, K.; Fernández-Carballido, A.; Casanova, Y.; Negro, S. Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv., 2017, 24(1), 1112-1123.
[http://dx.doi.org/10.1080/10717544.2017.1359862] [PMID: 28782388]
[55]
Patel, M.M. Micro/nano-particulate drug delivery systems: A boon for the treatment of inflammatory bowel disease. Expert Opin. Drug Deliv., 2016, 13(6), 771-775.
[http://dx.doi.org/10.1517/17425247.2016.1166203] [PMID: 26971916]
[56]
Sriram, G.; Teja, K.V.; Vasundhara, K.A. Targeted local drug delivery – a possible approach in dentistry. Indian J. Public Health Res. Dev., 2020, 11(6), 339-343.
[http://dx.doi.org/10.37506/ijphrd.v11i6.10591]
[57]
Vásquez, P.V.; Mosier, N.S.; Irudayaraj, J. Nanoscale drug delivery systems: From medicine to agriculture. Front. Bioeng. Biotechnol., 2020, 8(79), 01-16.
[http://dx.doi.org/10.3389/fbioe.2020.00079]
[58]
Pattni, B.S.; Torchilin, V.P. Targeted drug delivery systems: Strategies and challenges. In: Targeted Drug Delivery: Concepts and Design; Devarajan, P.; Jain, S; Springer: Cham, 2015; pp. 3-38.
[http://dx.doi.org/10.1007/978-3-319-11355-5_1]
[59]
Khan, F.A. Biotechnology in Medical Sciences, 1st ed; CRC Press: Boca Raton, 2014.
[http://dx.doi.org/10.1201/b16905]
[60]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[61]
Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an example. In: Handbook of Experimental Pharmacology; Schäfer-Korting, M., Ed.; Springer, Berlin, Heidelberg, 2010; Vol. 197, pp. 3-53.
[http://dx.doi.org/10.1007/978-3-642-00477-3_1]
[62]
Panchagnula, R.; Dey, C.S. Monoclonal antibodies in drug targeting. J. Clin. Pharm. Ther., 1997, 22(1), 7-19.
[http://dx.doi.org/10.1046/j.1365-2710.1997.96475964.x] [PMID: 9292397]
[63]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[64]
Agnihotri, J.; Saraf, S.; Khale, A. Targeting: New potential carriers for targeted drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2011, 8(2), 117-123.
[65]
Kleinstreuer, C.; Feng, Y.; Childress, E. Drug-targeting methodologies with applications: A review. World J. Clin. Cases, 2014, 2(12), 742-756.
[http://dx.doi.org/10.12998/wjcc.v2.i12.742] [PMID: 25516850]
[66]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[67]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[68]
Patel, J.K.; Patel, A.P. Passive targeting of nanoparticles to cancer. In: Surface Modification of Nanoparticles for Targeted Drug Delivery; Pathak, Y.V., Ed.; Springer International Publishing: Cham, 2019; pp. 125-143.
[http://dx.doi.org/10.1007/978-3-030-06115-9_6]
[69]
Ghosh, D.; Upmanyu, N.; Shukla, T.; Shrivastava, T.P. Cell and organ drug targeting. In: Nanomaterials for Drug Delivery and Therapy; William Andrew Publishing; Elsevier, 2019; p. 1-31.
[http://dx.doi.org/10.1016/B978-0-12-816505-8.00015-1]
[70]
Dunuweera, S.P.; Rajapakse, R.M.S.I.; Rajapakshe, R.B.S.D.; Wijekoon, S.H.D.P.; Nirodha Thilakarathna, M.G.G.S.; Rajapakse, R.M.G. Rajapakse, Shashanka Thilakarathna, M. G. G. S. N.; Rajapakse, R. M. G. Review on targeted drug delivery carriers used in nanobiomedical applications. Curr. Nanosci., 2019, 15(4), 382-397.
[http://dx.doi.org/10.2174/1573413714666181106114247]
[71]
Park, H.; Otte, A.; Park, K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J. Control. Release, 2022, 342, 53-65.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.030] [PMID: 34971694]
[72]
Kim, K.K.; Pack, D.W. Microspheres for drug delivery. In: BioMEMS and Biomedical Nanotechnology; Ferrari, M.; Lee, A.P.; Lee, L.J., Eds.; Springer US: Boston, MA, 2006; Vol. 7, pp. 19-50.
[http://dx.doi.org/10.1007/978-0-387-25842-3_2]
[73]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[74]
Hoffman, A.S. The origins and evolution of “controlled” drug delivery systems. J. Control. Release, 2008, 132(3), 153-163.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.012] [PMID: 18817820]
[75]
Palanikumar, L.; Ramasamy, S.; Hariharan, G.; Balachandran, C. Influence of particle size of nano zinc oxide on the controlled delivery of Amoxicillin. Appl. Nanosci., 2013, 3(5), 441-451.
[http://dx.doi.org/10.1007/s13204-012-0141-5]
[76]
Sousa, D.; Ferreira, D.; Rodrigues, J.L.; Rodrigues, L.R. Nanotechnology in targeted drug delivery and therapeutics. In: Applications of Targeted Nano Drugs and Delivery Systems; Elsevier, 2019; pp. 357-409.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00014-4]
[77]
Boyd, B.J.; Bergström, C.A.S.; Vinarov, Z.; Kuentz, M.; Brouwers, J.; Augustijns, P.; Brandl, M.; Schnürch, A.B.; Shrestha, N.; Préat, V.; Müllertz, A.; Brandl, A.B.; Jannin, V. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur. J. Pharm. Sci., 2019, 137, 104967(1-27).
[http://dx.doi.org/10.1016/j.ejps.2019.104967]
[78]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(71), 1-33.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[79]
Galvin, P.; Thompson, D.; Ryan, K.B.; McCarthy, A.; Moore, A.C.; Burke, C.S.; Dyson, M.; MacCraith, B.D.; Gun’ko, Y.K.; Byrne, M.T.; Volkov, Y.; Keely, C.; Keehan, E.; Howe, M.; Duffy, C.; MacLoughlin, R. Nanoparticle-based drug delivery: Case studies for cancer and cardiovascular applications. Cell. Mol. Life Sci., 2012, 69(3), 389-404.
[http://dx.doi.org/10.1007/s00018-011-0856-6] [PMID: 22015612]
[80]
Ghaffari, S.B.; Sarrafzadeh, M.H.; Salami, M.; Khorramizadeh, M.R. A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin. Int. J. Biol. Macromol., 2020, 151, 428-440.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.141] [PMID: 32068061]
[81]
Hu, M.; Ge, X.; Chen, X.; Mao, W.; Qian, X.; Yuan, W.E. Micro/nanorobot: A promising targeted drug delivery system. Pharmaceutics, 2020, 12(7), 665.
[http://dx.doi.org/10.3390/pharmaceutics12070665] [PMID: 32679772]
[82]
Shafiee, A.; Ghadiri, E.; Kassis, J.; Atala, A. Nanosensors for therapeutic drug monitoring: Implications for transplantation. Nanomedicine, 2019, 14(20), 2735-2747.
[http://dx.doi.org/10.2217/nnm-2019-0150] [PMID: 31617787]
[83]
Sahana, D.K.; Mittal, G.; Bhardwaj, V.; Kumar, M.N.V.R. PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J. Pharm. Sci., 2008, 97(4), 1530-1542.
[http://dx.doi.org/10.1002/jps.21158] [PMID: 17722098]
[84]
Bragagni, M.; Gil-Alegre, M.E.; Mura, P.; Cirri, M.; Ghelardini, C.; Mannelli, L.D.C. Improving the therapeutic efficacy of prilocaine by PLGA microparticles: Preparation, characterization and in vivo evaluation. Int. J. Pharm., 2018, 547(1-2), 24-30.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.054] [PMID: 29800738]
[85]
Betancourt, T.; Brown, B.; Brannon-Peppas, L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: Preparation, characterization and in vitro evaluation. Nanomedicine, 2007, 2(2), 219-232.
[http://dx.doi.org/10.2217/17435889.2.2.219] [PMID: 17716122]
[86]
Rachmawati, H.; Yanda, Y.L.; Rahma, A.; Mase, N. Curcumin-loaded PLA nanoparticles: Formulation and physical evaluation. Sci. Pharm., 2016, 84(1), 191-202.
[http://dx.doi.org/10.3797/scipharm.ISP.2015.10] [PMID: 27110509]
[87]
Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm., 1989, 55(1), R1-R4.
[http://dx.doi.org/10.1016/0378-5173(89)90281-0]
[88]
Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F.; Nanoencapsulation, I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. Nanotechnol. Biol. Med., 2006, 2(1), 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003]
[89]
Shenoy, D.B.; Amiji, M.M. Poly(ethylene oxide)-modified poly(ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm., 2005, 293(1-2), 261-270.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.010] [PMID: 15778064]
[90]
Zhu, Z.; Li, Y.; Li, X.; Li, R.; Jia, Z.; Liu, B.; Guo, W.; Wu, W.; Jiang, X. Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) nanoparticles: Preparation and antitumor activity in vivo. J. Control. Release, 2010, 142(3), 438-446.
[http://dx.doi.org/10.1016/j.jconrel.2009.11.002] [PMID: 19896997]
[91]
Tiyaboonchai, W. Chitosan nanoparticles: A promising system for drug delivery. Naresuan Univ. J., 2003, 11(3), 51-66.
[92]
Ghaz-Jahanian, M.A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol., 2015, 57(3), 201-218.
[http://dx.doi.org/10.1007/s12033-014-9816-3] [PMID: 25385004]
[93]
Yasmin, R.; Shah, M.; Khan, S.A.; Ali, R. Gelatin nanoparticles: A potential candidate for medical applications. Nanotechnol. Rev., 2017, 6(2), 191-207.
[http://dx.doi.org/10.1515/ntrev-2016-0009]
[94]
Azimi, B.; Nourpanah, P.; Rabiee, M.; Arbab, S. Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iran. Biomed. J., 2014, 18(1), 34-40.
[PMID: 24375161]
[95]
Vauthier, C.; Dubernet, C.; Fattal, E.; Pinto-Alphandary, H.; Couvreur, P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev., 2003, 55(4), 519-548.
[http://dx.doi.org/10.1016/S0169-409X(03)00041-3] [PMID: 12706049]
[96]
Ertas, Y.N.; Abedi Dorcheh, K.; Akbari, A.; Jabbari, E. Nanoparticles for targeted drug delivery to cancer stem cells: A review of recent advances. Nanomaterials, 2021, 11(7), 1755.
[http://dx.doi.org/10.3390/nano11071755] [PMID: 34361141]
[97]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11(3), 169-183.
[http://dx.doi.org/10.1080/10717540490433895] [PMID: 15204636]
[98]
Rai, A.; Ferreira, L. Biomedical applications of the peptide decorated gold nanoparticles. Crit. Rev. Biotechnol., 2021, 41(2), 186-215.
[http://dx.doi.org/10.1080/07388551.2020.1853031] [PMID: 33525956]
[99]
Dobson, J. Magnetic nanoparticles for drug delivery. Drug Dev. Res., 2006, 67(1), 55-60.
[http://dx.doi.org/10.1002/ddr.20067]
[100]
Zhang, A.; Li, A.; Tian, W.; Li, Z.; Wei, C.; Sun, Y.; Zhao, W.; Liu, M.; Liu, J. A target-directed chemo-photothermal system based on transferrin and copolymer-modified mos 2 nanoplates with pH-activated drug release. Chem. Eur. J., 2017, 23(47), 11346-11356.
[http://dx.doi.org/10.1002/chem.201701916] [PMID: 28653773]
[101]
Yu, Z.; Gao, L.; Chen, K.; Zhang, W.; Zhang, Q.; Li, Q.; Hu, K. Nanoparticles: A new approach to upgrade cancer diagnosis and treatment. Nanoscale Res. Lett., 2021, 16(1), 88.
[http://dx.doi.org/10.1186/s11671-021-03489-z] [PMID: 34014432]
[102]
Zheng, X.T.; Ma, X.Q.; Li, C.M. Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide. J. Colloid Interface Sci., 2016, 467, 35-42.
[http://dx.doi.org/10.1016/j.jcis.2015.12.052] [PMID: 26773607]
[103]
Panchuk, R.R.; Prylutska, S.V.; Chumak, V.V.; Skorokhyd, N.R.; Lehka, L.V.; Evstigneev, M.P.; Prylutskyy, Y.I.; Berger, W.; Heffeter, P.; Scharff, P.; Ritter, U.; Stoika, R.S. Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J. Biomed. Nanotechnol., 2015, 11(7), 1139-1152.
[http://dx.doi.org/10.1166/jbn.2015.2058] [PMID: 26307837]
[104]
Prylutskyy, Y.I.; Petrenko, V.I.; Ivankov, O.I.; Kyzyma, O.A.; Bulavin, L.A.; Litsis, O.O.; Evstigneev, M.P.; Cherepanov, V.V.; Naumovets, A.G.; Ritter, U. On the origin of C60 fullerene solubility in aqueous solution. Langmuir, 2014, 30(14), 3967-3970.
[http://dx.doi.org/10.1021/la404976k] [PMID: 24660846]
[105]
Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol., 2021, 14(1), 85.
[http://dx.doi.org/10.1186/s13045-021-01096-0] [PMID: 34059100]
[106]
Chung, Y.H.; Cai, H.; Steinmetz, N.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv. Drug Deliv. Rev., 2020, 156, 214-235.
[http://dx.doi.org/10.1016/j.addr.2020.06.024] [PMID: 32603813]
[107]
Alvandi, N.; Rajabnejad, M.; Taghvaei, Z.; Esfandiari, N. New generation of viral nanoparticles for targeted drug delivery in cancer therapy. J. Drug Target., 2021, 30(2), 1-15.
[http://dx.doi.org/10.1080/1061186X.2021.1949600]
[108]
Liu, M.; Fréchet, J.M.J. Designing dendrimers for drug delivery. Pharm. Sci. Technol. Today, 1999, 2(10), 393-401.
[http://dx.doi.org/10.1016/S1461-5347(99)00203-5] [PMID: 10498919]
[109]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139.
[http://dx.doi.org/10.4103/0975-7406.130965]
[110]
de Vries, J.W.; Zhang, F.; Herrmann, A. Drug delivery systems based on nucleic acid nanostructures. J. Control. Release, 2013, 172(2), 467-483.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.022] [PMID: 23742878]
[111]
Hoeprich, S.; Zhou, Q.; Guo, S.; Shu, D.; Qi, G.; Wang, Y.; Guo, P. Bacterial virus phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther., 2003, 10(15), 1258-1267.
[http://dx.doi.org/10.1038/sj.gt.3302002] [PMID: 12858191]
[112]
Wang, J.; Li, Y.; Nie, G. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater., 2021, 6(9), 766-783.
[http://dx.doi.org/10.1038/s41578-021-00315-x] [PMID: 34026278]
[113]
Luo, Z.; Cai, K.; Hu, Y.; Zhang, B.; Xu, D. Cell-specific intracellular anticancer drug delivery from mesoporous silica nanoparticles with pH sensitivity. Adv. Healthc. Mater., 2012, 1(3), 321-325.
[http://dx.doi.org/10.1002/adhm.201100030] [PMID: 23184747]
[114]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine Nanotechnology. Biol. Med., 2015, 11(2), 313-327.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[115]
Jia, L.; Zhang, P.; Sun, H.; Dai, Y.; Liang, S.; Bai, X.; Feng, L. Optimization of nanoparticles for smart drug delivery: A review. Nanomaterials, 2021, 11(11), 2790.
[http://dx.doi.org/10.3390/nano11112790] [PMID: 34835553]
[116]
Cheng, X.; Kuhn, L. Chemotherapy drug delivery from calcium phosphate nanoparticles. Int. J. Nanomed, 2007, 2(4), 667-674.
[PMID: 18203433]
[117]
Gao, Y.; Hu, L.; Liu, Y.; Xu, X.; Wu, C. Targeted delivery of paclitaxel in liver cancer using hyaluronic acid functionalized mesoporous hollow alumina nanoparticles. Biomed. Res. Int., 2019, 2019, 2928507(1-10).
[http://dx.doi.org/10.1155/2019/2928507]
[118]
Thomas, S.C. Harshita; Mishra, P. K.; Talegaonkar, S. Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr. Pharm. Des., 2015, 21(42), 6165-6188.
[http://dx.doi.org/10.2174/1381612821666151027153246]
[119]
Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl., 2018, 2018(Article ID 1062562), 1-18.
[http://dx.doi.org/10.1155/2018/1062562] [PMID: 30073019]
[120]
Bhat, S.S.; Qurashi, A.; Khanday, F.A. ZnO nanostructures based biosensors for cancer and infectious disease applications: Perspectives, prospects and promises. Trends Anal. Chem., 2017, 86, 01-13.
[http://dx.doi.org/10.1016/j.trac.2016.10.001]
[121]
Xiong, H.M. ZnO nanoparticles applied to bioimaging and drug delivery. Adv. Mater., 2013, 25(37), 5329-5335.
[http://dx.doi.org/10.1002/adma.201301732] [PMID: 24089351]
[122]
Bhowmik, D.; Kumar, K.P.S. A potential medicinal importance of zinc in human health and chronic disease. Pharma. Inter. Sci., 2010, 1(1), 5-11.
[123]
Singh, T.A.; Das, J.; Sil, P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci., 2020, 286, 102317(1-61).
[http://dx.doi.org/10.1016/j.cis.2020.102317]
[124]
Bisht, G.; Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine, 2016, 3, 9.
[http://dx.doi.org/10.5772/63437] [PMID: 29942384]
[125]
Dhivya, R.; Ranjani, J.; Rajendhran, J.; Rajasekaran, M.; Annaraj, J. pH responsive curcumin/ZnO nanocomposite for drug delivery. Adv. Mater. Lett., 2015, 6(6), 505-512.
[http://dx.doi.org/10.5185/amlett.2015.5766]
[126]
Chen, T.; Zhao, T.; Wei, D.; Wei, Y.; Li, Y.; Zhang, H. Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr. Polym., 2013, 92(2), 1124-1132.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.022] [PMID: 23399137]
[127]
Mitra, S. B, S.; Patra, P.; Chandra, S.; Debnath, N.; Das, S.; Banerjee, R.; Kundu, S.C.; Pramanik, P.; Goswami, A. Porous ZnO nanorod for targeted delivery of doxorubicin: In vitro and in vivo response for therapeutic applications. J. Mater. Chem., 2012, 22(45), 24145.
[http://dx.doi.org/10.1039/c2jm35013k]
[128]
Yuan, Q.; Hein, S.; Misra, R.D.K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater., 2010, 6(7), 2732-2739.
[http://dx.doi.org/10.1016/j.actbio.2010.01.025] [PMID: 20100604]
[129]
Muhammad, F.; Guo, M.; Guo, Y.; Qi, W.; Qu, F.; Sun, F.; Zhao, H.; Zhu, G. Acid degradable ZnO quantum dots as a platform for targeted delivery of an anticancer drug. J. Mater. Chem., 2011, 21(35), 13406-13412.
[http://dx.doi.org/10.1039/c1jm12119g]
[130]
Cai, X.; Luo, Y.; Zhang, W.; Du, D.; Lin, Y. pH-sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(34), 22442-22450.
[http://dx.doi.org/10.1021/acsami.6b04933] [PMID: 27463610]
[131]
Xie, C.; Zhan, Y.; Wang, P.; Zhang, B.; Zhang, Y. Novel surface modification of ZnO QDs for paclitaxel-targeted drug delivery for lung cancer treatment. Dose Response, 2020, 18(2), 1-7.
[http://dx.doi.org/10.1177/1559325820926739] [PMID: 32499674]
[132]
Wang, Y.; He, L.; Yu, B.; Chen, Y.; Shen, Y.; Cong, H. ZnO quantum dots modified by pH-activated charge-reversal polymer for tumor targeted drug delivery. Polymers, 2018, 10(11), 1272.
[http://dx.doi.org/10.3390/polym10111272] [PMID: 30961197]
[133]
Zhang, Z.Y.; Xu, Y.D.; Ma, Y.Y.; Qiu, L.L.; Wang, Y.; Kong, J.L.; Xiong, H.M. Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro. Angew. Chemie., 2013, 125(15), 4221-4225.
[http://dx.doi.org/10.1002/anie.201300431] [PMID: 23463695]
[134]
Barick, K.C.; Nigam, S.; Bahadur, D. Nanoscale assembly of mesoporous ZnO: A potential drug carrier. J. Mater. Chem., 2010, 20(31), 6446-6452.
[http://dx.doi.org/10.1039/c0jm00022a]
[135]
Cai, X.; Luo, Y.; Yan, H.; Du, D.; Lin, Y. pH-responsive ZnO nanocluster for lung cancer chemotherapy. ACS Appl. Mater. Interfaces, 2017, 9(7), 5739-5747.
[http://dx.doi.org/10.1021/acsami.6b13776] [PMID: 28150936]
[136]
Zhang, H.; Chen, B.; Jiang, H.; Wang, C.; Wang, H.; Wang, X. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials, 2011, 32(7), 1906-1914.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.027] [PMID: 21145104]
[137]
Hariharan, R.; Senthilkumar, S.; Suganthi, A.; Rajarajan, M. Synthesis and characterization of daunorubicin modified ZnO/PVP nanorods and its photodynamic action. J. Photochem. Photobiol. Chem., 2013, 252, 107-115.
[http://dx.doi.org/10.1016/j.jphotochem.2012.11.017]
[138]
Hariharan, R.; Senthilkumar, S.; Suganthi, A.; Rajarajan, M. Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action. J. Photochem. Photobiol. B Biol., 2012, 116, 56-65.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.08.008] [PMID: 22982207]
[139]
Kumar, V.B.; Kumar, K.; Gedanken, A.; Paik, P. Facile synthesis of self-assembled spherical and mesoporous dandelion capsules of ZnO: Efficient carrier for DNA and anti-cancer drugs. J. Mater. Chem. B, 2014, 2(25), 3956-3964.
[http://dx.doi.org/10.1039/C4TB00416G] [PMID: 32261647]
[140]
Zeng, Y.; Xiao, J.; Cong, Y.; Liu, J.; He, Y.; Ross, B.D.; Xu, H.; Yin, Y.; Hong, H.; Xu, W. PEGylated nanoscale metal–organic frameworks for targeted cancer imaging and drug delivery. Bioconjug. Chem., 2021, 32(10), 2195-2204.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00368] [PMID: 34591471]
[141]
Zhao, Q.; Wang, J.; Zhang, Y.; Zhang, J.; Tang, A.; Kong, D. A ZnO-gated porphyrinic metal–organic framework-based drug delivery system for targeted bimodal cancer therapy. J. Mater. Chem. B., 2018, 6(47), 7898-7907.
[http://dx.doi.org/10.1039/C8TB02663G] [PMID: 32255035]
[142]
Xiao, X.; Liang, S.; Zhao, Y.; Huang, D.; Xing, B.; Cheng, Z.; Lin, J. Core–shell structured 5-FU@ZIF-90@ZnO as a biodegradable nanoplatform for synergistic cancer therapy. Nanoscale, 2020, 12(6), 3846-3854.
[http://dx.doi.org/10.1039/C9NR09869K] [PMID: 31995084]
[143]
Maiti, D.; Mukhopadhyay, S.; Chandra Mohanta, S.; Saha, A.; Sujatha Devi, P. A multifunctional nanocomposite of magnetic γ-Fe2O3 and mesoporous fluorescent ZnO. J. Alloys Compd., 2015, 653, 187-194.
[http://dx.doi.org/10.1016/j.jallcom.2015.08.230]
[144]
Upadhyaya, L.; Singh, J.; Agarwal, V.; Pandey, A.C.; Verma, S.P.; Das, P.; Tewari, R.P. In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer. J. Polym. Res., 2014, 21(9), 550.
[http://dx.doi.org/10.1007/s10965-014-0550-0]
[145]
Ortiz-Casas, B.; Galdámez-Martínez, A.; Gutiérrez-Flores, J.; Ibañez, A.B.; Panda, P.K.; Santana, G.; de la Vega, H.A.; Suar, M.; Rodelo, C.G.; Kaushik, A.; Mishra, Y.K.; Dutt, A. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Mater. Today, 2021, 50, 533-569.
[http://dx.doi.org/10.1016/j.mattod.2021.07.025]
[146]
Dhivya, R.; Ranjani, J.; Bowen, P.K.; Rajendhran, J.; Mayandi, J.; Annaraj, J. Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Mater. Sci. Eng. C, 2017, 80, 59-68.
[http://dx.doi.org/10.1016/j.msec.2017.05.128] [PMID: 28866205]
[147]
Vimala, K.; Shanthi, K.; Sundarraj, S.; Kannan, S. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. J. Colloid Interface Sci., 2017, 488, 92-108.
[http://dx.doi.org/10.1016/j.jcis.2016.10.067] [PMID: 27821343]
[148]
Ghaffari, S.B.; Sarrafzadeh, M.H.; Fakhroueian, Z.; Shahriari, S.; Khorramizadeh, M.R. Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: Synthesis, characterization, and anticancer assessment. Mater. Sci. Eng. C, 2017, 79, 465-472.
[http://dx.doi.org/10.1016/j.msec.2017.05.065] [PMID: 28629042]
[149]
Zamani, M.; Rostami, M. Aghajanzadeh, Manjili, H.K.; Rostamizadeh, K.; Danafar, H. Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J. Mater. Sci., 2018, 53(3), 1634-1645.
[http://dx.doi.org/10.1007/s10853-017-1673-6]
[150]
Qiu, H.; Cui, B.; Li, G.; Yang, J.; Peng, H.; Wang, Y.; Li, N.; Gao, R.; Chang, Z.; Wang, Y. Novel Fe3O4 @ZnO@mSiO2 nanocarrier for targeted drug delivery and controllable release with microwave irradiation. J. Phys. Chem. C, 2014, 118(27), 14929-14937.
[http://dx.doi.org/10.1021/jp502820r]
[151]
Yang, Z.; Wang, L.; Liu, Y.; Liu, S.; Tang, D.; Meng, L.; Cui, B. ZnO capped flower-like porous carbon-Fe3O4 composite as carrier for bi-triggered drug delivery. Mater. Sci. Eng. C, 2020, 107, 110256.
[http://dx.doi.org/10.1016/j.msec.2019.110256] [PMID: 31761234]
[152]
Wang, W.; Wang, Y.; Wang, Y.; Gong, H.; Zhu, H.; Liu, M. Redox/pH dual stimuli‐responsive ZnO QDs‐gated mesoporous silica nanoparticles as carriers in cancer therapy. IET Nanobiotechnol., 2019, 13(6), 640-649.
[http://dx.doi.org/10.1049/iet-nbt.2019.0031] [PMID: 31432799]
[153]
Prasanna, A.P.S.; Venkataprasanna, K.S.; Pannerselvam, B.; Asokan, V.; Jeniffer, R.S.; Venkatasubbu, G.D. Multifunctional ZnO/SiO2 core/shell nanoparticles for bioimaging and drug delivery application. J. Fluoresc., 2020, 30(5), 1075-1083.
[http://dx.doi.org/10.1007/s10895-020-02578-z] [PMID: 32621092]
[154]
Abayarathne, H.M.I.; Dunuweera, S.P.; Rajapakse, R.M.G. Synthesis of cisplatin encapsulated zinc oxide nanoparticles and their application as a carrier in targeted drug delivery. Ceylon J. Sci., 2020, 49(1), 71-79.
[http://dx.doi.org/10.4038/cjs.v49i1.7707]
[155]
Kundu, M.; Sadhukhan, P.; Ghosh, N.; Chatterjee, S.; Manna, P.; Das, J.; Sil, P.C. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J. Adv. Res., 2019, 18, 161-172.
[http://dx.doi.org/10.1016/j.jare.2019.02.036] [PMID: 31032117]
[156]
Tan, L.; He, C.; Chu, X.; Chu, Y.; Ding, Y. Charge-reversal ZnO-based nanospheres for stimuli-responsive release of multiple agents towards synergistic cancer therapy. Chem. Eng. J., 2020, 395, 125177(1-11).
[http://dx.doi.org/10.1016/j.cej.2020.125177]
[157]
Naderi, E.; Naseri, M.; Rad, H.T.; Emameh, R.Z.; Farnoosh, G.; Taheri, R.A. In vivo and in vitro biocompatibility study of Fe3O4@ZnO and Fe3O4@SiO2 as photosensitizer for targeted breast cancer drug delivery. J. Sci. Islam. Repub. Iran, 2020, 31(4), 357-368.
[158]
Li, C.; Zhang, H.; Gong, X.; Li, Q.; Zhao, X. Synthesis, characterization, and cytotoxicity assessment of N-acetyl-l-cysteine capped ZnO nanoparticles as camptothecin delivery system. Colloids Surf. B Biointerfaces, 2019, 174, 476-482.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.043] [PMID: 30497009]
[159]
Stoddart, M.J. Mammalian cell viability: Methods and protocols - cell viability assays. Methods Mol. Biol., 2011, 740, 1-06.
[http://dx.doi.org/10.1007/978-1-61779-108-6] [PMID: 21468961]
[160]
Zheng, C.; Wang, Y.; Phua, S.Z.F.; Lim, W.Q.; Zhao, Y. ZnO-DOX@ZIF-8 core-shell nanoparticles for ph-responsive drug delivery. ACS Biomater. Sci. Eng., 2017, 3(10), 2223-2229.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00435] [PMID: 33445281]
[161]
Tan, L.; Liu, J.; Zhou, W.; Wei, J.; Peng, Z. A novel thermal and pH responsive drug delivery system based on ZnO@PNIPAM hybrid nanoparticles. Mater. Sci. Eng. C, 2014, 45, 524-529.
[http://dx.doi.org/10.1016/j.msec.2014.09.031] [PMID: 25491860]
[162]
Zeng, K.; Li, J.; Zhang, Z.; Yan, M.; Liao, Y.; Zhang, X.; Zhao, C. Lipid-coated ZnO nanoparticles as lymphatic-targeted drug carriers: Study on cell-specific toxicity in vitro and lymphatic targeting in vivo. J. Mater. Chem. B., 2015, 3(26), 5249-5260.
[http://dx.doi.org/10.1039/C5TB00486A] [PMID: 32262600]
[163]
Chen, M.; Hu, J.; Bian, C.; Zhu, C.; Chen, C.; Guo, Z.; Zhang, Z.; Agyekum, G.A.; Zhang, Z.; Cao, X. pH-responsive and biodegradable ZnO-capped mesoporous silica composite nanoparticles for drug delivery. Materials, 2020, 13(18), 3950(1-16).
[http://dx.doi.org/10.3390/ma13183950]
[164]
Prashanth, K.; Baskar, V.; Madhan, R. Green synthesis of zinc oxide nanoparticles and their application in controlled drug release. J. Biol. Inf. Sci., 2014, 3(3), 1-3.
[165]
Vimala, K.; Sundarraj, S.; Paulpandi, M.; Vengatesan, S.; Kannan, S. Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem., 2014, 49(1), 160-172.
[http://dx.doi.org/10.1016/j.procbio.2013.10.007]
[166]
Nagajyothi, P.C.; Pandurangan, M.; Veerappan, M.; Kim, D.H.; Sreekanth, T.V.M.; Shim, J. Green synthesis, characterization and anticancer activity of yttrium oxide nanoparticles. Mater. Lett., 2018, 216, 58-62.
[http://dx.doi.org/10.1016/j.matlet.2017.12.081]
[167]
George, D.; Maheswari, P.U.; Begum, K.M.M.S. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int. J. Biol. Macromol., 2019, 132, 784-794.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.008] [PMID: 30951778]
[168]
Sharmila, G.; Thirumarimurugan, M.; Muthukumaran, C. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J., 2019, 145, 578-587.
[http://dx.doi.org/10.1016/j.microc.2018.11.022]
[169]
Akintelu, S.A.; Folorunso, A.S. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. Bionanoscience, 2020, 10(4), 848-863.
[http://dx.doi.org/10.1007/s12668-020-00774-6]
[170]
Batool, M.; Khurshid, S.; Daoush, W.M.; Siddique, S.A.; Nadeem, T. Green synthesis and biomedical applications of ZnO nanoparticles: Role of PEGylated-ZnO nanoparticles as doxorubicin drug carrier against MDA-MB-231(TNBC) cells line. Crystals (Basel), 2021, 11(4), 344.
[http://dx.doi.org/10.3390/cryst11040344]
[171]
Meng, L.; Zhang, X.; Lu, Q.; Fei, Z.; Dyson, P.J. Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials, 2012, 33(6), 1689-1698.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.004] [PMID: 22137127]
[172]
Jagadeesan, S.; Roshini, A.; Hwan, K.K.; Doh, Y.H.; Lim, Y.K.; Choi, K.H. Synthesis and evaluation of the cytotoxic and anti-proliferative properties of dox-ZnO quantum dots loaded chitosan nanoparticles against MCF-7 and SKBR-3 human breast cancer cells. Int. J. Agric. Environ. Biotechnol., 2017, 2(3), 1084-1097.
[http://dx.doi.org/10.22161/ijeab/2.3.10] [PMID: 28888009]
[173]
Liu, J.; Ma, X.; Jin, S.; Xue, X.; Zhang, C.; Wei, T.; Guo, W.; Liang, X.J. Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol. Pharm., 2016, 13(5), 1723-1730.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00311] [PMID: 27070828]
[174]
Dhar, S.; Reddy, E.M.; Shiras, A.; Pokharkar, V.; Prasad, B.L.V. Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem. Eur. J., 2008, 14(33), 10244-10250.
[http://dx.doi.org/10.1002/chem.200801093] [PMID: 18850613]
[175]
Roshini, A.; Jagadeesan, S.; Arivazhagan, L.; Cho, Y.J.; Lim, J.H.; Doh, Y.H.; Kim, S.J.; Na, J.; Choi, K.H. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line. Mater. Sci. Eng. C, 2018, 92, 477-488.
[http://dx.doi.org/10.1016/j.msec.2018.06.073] [PMID: 30184773]
[176]
Dhivya, R.; Ranjani, J.; Rajendhran, J.; Mayandi, J.; Annaraj, J. Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater. Sci. Eng. C, 2018, 82, 182-189.
[http://dx.doi.org/10.1016/j.msec.2017.08.058] [PMID: 29025645]
[177]
George, D.; Maheswari, P.U.; Begum, K.M.M.S. Chitosancellulose hydrogel conjugated with l-histidine and zinc oxide nanoparticles for sustained drug delivery: Kinetics and in-vitro biological studies. Carbohydr. Polym., 2020, 236, 116101(1-11).
[http://dx.doi.org/10.1016/j.carbpol.2020.116101]
[178]
Zhao, W.; Wei, J.S.; Zhang, P.; Chen, J.; Kong, J.L.; Sun, L.H.; Xiong, H.M.; Möhwald, H. Self-assembled ZnO nanoparticle capsules for carrying and delivering isotretinoin to cancer cells. ACS Appl. Mater. Interfaces, 2017, 9(22), 18474-18481.
[http://dx.doi.org/10.1021/acsami.7b02542] [PMID: 28541041]
[179]
Guo, Y.; Sun, Z. Investigating folate-conjugated combinatorial drug loaded ZnO nanoparticles for improved efficacy on nasopharyngeal carcinoma cell lines. J. Exp. Nanosci., 2020, 15(1), 390-405.
[http://dx.doi.org/10.1080/17458080.2020.1785621]
[180]
Sathishkumar, P.; Li, Z.; Govindan, R.; Jayakumar, R.; Wang, C.; Long , Gu F. Zinc oxide-quercetin nanocomposite as a smart nanodrug delivery system: Molecular-level interaction studies. Appl. Surf. Sci., 2021, 536(1-14), 147741.
[http://dx.doi.org/10.1016/j.apsusc.2020.147741]
[181]
Al-Ajmi, M.F.; Hussain, A.; Ahmed, F. Novel synthesis of ZnO nanoparticles and their enhanced anticancer activity: Role of ZnO as a drug carrier. Ceram. Int., 2016, 42(3), 4462-4469.
[http://dx.doi.org/10.1016/j.ceramint.2015.11.133]
[182]
Alavi, A.S.; Meshkini, A. Fabrication of poly(ethylene glycol)-coated mesoporous nanocomposite ZnO@Fe2O3 for methotrexate delivery: An integrated nanoplatform for dual-mode cancer therapy. Eur. J. Pharm. Sci., 2018, 115, 144-157.
[http://dx.doi.org/10.1016/j.ejps.2018.01.027] [PMID: 29353012]
[183]
Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C, 2019, 100, 129-140.
[http://dx.doi.org/10.1016/j.msec.2019.02.096] [PMID: 30948047]
[184]
Sutradhar, K.B.; Amin, Md. L. Nanotechnology in Cancer Drug Delivery and Selective Targeting. ISRN Nanotechnol., 2014, 2014(Article ID 939378), 1-12.
[http://dx.doi.org/10.1155/2014/939378]
[185]
Ravi, M.; Ramesh, A.; Pattabhi, A. Contributions of 3D cell cultures for cancer research. J. Cell. Physiol., 2017, 232(10), 2679-2697.
[http://dx.doi.org/10.1002/jcp.25664] [PMID: 27791270]
[186]
Joseph, J.S.; Malindisa, S.T.; Ntwasa, M. Two-dimensional (2D) and three-dimensional (3D) cell culturing in drug discovery. In: Cell Culture; Mehama, R.A., Ed.; IntechOpen: London, 2018; Vol. 2, pp. 1-22.
[http://dx.doi.org/10.5772/intechopen.81552]
[187]
Bordanaba-Florit, G.; Madarieta, I.; Olalde, B.; Falcón-Pérez, J.M.; Royo, F. 3D cell cultures as prospective models to study extracellular vesicles in cancer. Cancers, 2021, 13(2), 307.
[http://dx.doi.org/10.3390/cancers13020307] [PMID: 33467651]
[188]
Niraj; Srivastava, V. K.; Singh, N.; Gupta, T.; Mishra, U. Sustained and controlled drug delivery system - as a part of modified release dosage form. Int. J. Pharma Sci., 2015, 4(5), 347-364. Available from: http://www.ijrpns.com/archives1.php?start=&p_f=&q=Sustained+and+controlled+drug+delivery+system+-+As+a+part+of+modified+release+dosage+form
[189]
Sharma, H.; Kumar, K.; Choudhary, C.; Mishra, P.K.; Vaidya, B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 672-679.
[http://dx.doi.org/10.3109/21691401.2014.978980] [PMID: 25406734]
[190]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[191]
Harrington, B.S.; He, Y.; Davies, C.M.; Wallace, S.J.; Adams, M.N.; Beaven, E.A.; Roche, D.K.; Kennedy, C.; Chetty, N.P.; Crandon, A.J.; Flatley, C.; Oliveira, N.B.; Shannon, C.M.; deFazio, A.; Tinker, A.V.; Gilks, C.B.; Gabrielli, B.; Brennan, D.J.; Coward, J.I.; Armes, J.E.; Perrin, L.C.; Hooper, J.D. Cell line and patient-derived xenograft models reveal elevated CDCP1 as a target in high-grade serous ovarian cancer. Br. J. Cancer, 2016, 114(4), 417-426.
[http://dx.doi.org/10.1038/bjc.2015.471] [PMID: 26882065]
[192]
Owonikoko, T.K.; Zhang, G.; Kim, H.S.; Stinson, R.M.; Bechara, R.; Zhang, C.; Chen, Z.; Saba, N.F.; Pakkala, S.; Pillai, R.; Deng, X.; Sun, S.Y.; Rossi, M.R.; Sica, G.L.; Ramalingam, S.S.; Khuri, F.R. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J. Transl. Med., 2016, 14(1), 111.
[http://dx.doi.org/10.1186/s12967-016-0861-5] [PMID: 27142472]
[193]
Liu, D.S.H.; Read, M.; Cullinane, C.; Azar, W.J.; Fennell, C.M.; Montgomery, K.G.; Haupt, S.; Haupt, Y.; Wiman, K.G.; Duong, C.P.; Clemons, N.J.; Phillips, W.A. APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma. Gut, 2015, 64(10), 1506-1516.
[http://dx.doi.org/10.1136/gutjnl-2015-309770] [PMID: 26187504]
[194]
Li, Z.; Zheng, W.; Wang, H.; Cheng, Y.; Fang, Y.; Wu, F.; Sun, G.; Sun, G.; Lv, C.; Hui, B. Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag. Res., 2021, 13, 2455-2475.
[http://dx.doi.org/10.2147/CMAR.S302565] [PMID: 33758544]
[195]
Hong, H.; Wang, F.; Zhang, Y.; Graves, S.A.; Eddine, S.B.Z.; Yang, Y.; Theuer, C.P.; Nickles, R.J.; Wang, X.; Cai, W. Red fluorescent zinc oxide nanoparticle: A novel platform for cancer targeting. ACS Appl. Mater. Interfaces, 2015, 7(5), 3373-3381.
[http://dx.doi.org/10.1021/am508440j] [PMID: 25607242]
[196]
Yang, J.; Gao, F.; Han, D.; Yang, L.; Kong, X.; Wei, M.; Cao, J.; Liu, H.; Wu, Z.; Pan, G. Multifunctional zinc-based hollow nanoplatforms as a smart pH-responsive drug delivery system to enhance in vivo tumor-inhibition efficacy. Mater. Des., 2018, 139, 172-180.
[http://dx.doi.org/10.1016/j.matdes.2017.11.004]
[197]
Kumar, L.; Baldi, A.; Verma, S.; Utreja, P. Exploring therapeutic potential of nanocarrier systems against breast cancer. Pharm. Nanotechnol., 2018, 6(2), 94-110.
[http://dx.doi.org/10.2174/2211738506666180604101920] [PMID: 29866028]
[198]
Grillone, A.; Ciofani, G. Magnetic nanotransducers in biomedicine. Chem. Eur. J., 2017, 23(64), 16109-16114.
[http://dx.doi.org/10.1002/chem.201703660] [PMID: 28922494]
[199]
Mufamadi, M.S.; Pillay, V.; Choonara, Y.E.; Toit, L.C. Du; Modi, G.; Naidoo, D.; Ndesendo, V. M. K. A review on composite liposomal technologies for specialized drug delivery. J. Drug Deliv., 2011, 2011(1-19), 939851.
[http://dx.doi.org/10.1155/2011/939851]
[200]
Alemzadeh, E.; Dehshahri, A.; Izadpanah, K.; Ahmadi, F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf. B Biointerfaces, 2018, 167, 20-27.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.026] [PMID: 29625419]
[201]
Caminade, A.M.; Turrin, C.O. Dendrimers for drug delivery. J. Mater. Chem. B., 2014, 2(26), 4055-4066.
[http://dx.doi.org/10.1039/C4TB00171K] [PMID: 32261736]
[202]
Dand, N.M.; Patel, P.B.; Ayre, A.P.; Vilasrau, J.K. Polymeric micelles as a drug carrier for tumor targeting. Chronic. Young Scient., 2013, 4(2), 94-102.
[http://dx.doi.org/10.4103/2229-5186.115544]
[203]
Ganesan, K.; Kovtun, A.; Neumann, S.; Heumann, R.; Epple, M. Calcium phosphate nanoparticles: Colloidally stabilized and made fluorescent by a phosphate-functionalized porphyrin. J. Mater. Chem., 2008, 18(31), 3655-3661.
[http://dx.doi.org/10.1039/b805366a]
[204]
Hema, M.; Arasi, A.Y.; Tamilselvi, P.; Anbarasan, R. Titania nanoparticles synthesized by sol-gel technique. Chem. Sci. Trans., 2012, 2(1), 239-245.
[http://dx.doi.org/10.7598/cst2013.344]
[205]
Slowing, I.I.; Vivero-Escoto, J.L.; Trewyn, B.G.; Lin, V.S.Y. Mesoporous silica nanoparticles: Structural design and applications. J. Mater. Chem., 2010, 20(37), 7924-7937.
[http://dx.doi.org/10.1039/c0jm00554a]
[206]
Hrkach, J.; Langer, R. From micro to nano: Evolution and impact of drug delivery in treating disease. Drug Deliv. Transl. Res., 2020, 57, 101682(1-22).
[http://dx.doi.org/10.1007/s13346-020-00769-6] [PMID: 32385828]
[207]
Kurmi, B.D.; Patel, P.; Paliwal, R.; Paliwal, S.R. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J. Drug Deliv. Sci. Technol., 2020, 57, 101682(1-22).
[http://dx.doi.org/10.1016/j.jddst.2020.101682]
[208]
Afzal, H.; Ikram, M.; Ali, S.; Shahzadi, A.; Aqeel, M.; Haider, A.; Imran, M.; Ali, S. Enhanced drug efficiency of doped ZnO–GO (graphene oxide) nanocomposites, a new gateway in drug delivery systems (DDSs). Mater. Res. Express, 2020, 7(1), 15405.
[http://dx.doi.org/10.1088/2053-1591/ab61ae]
[209]
Kuang, Y.; Chen, H.; Chen, Z.; Wan, L.; Liu, J.; Xu, Z.; Chen, X.; Jiang, B.; Li, C. Poly(amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy. Colloids Surf. B Biointerfaces, 2019, 181, 461-469.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.078] [PMID: 31176118]
[210]
Yang, X.; Zhang, C.; Li, A.; Wang, J.; Cai, X. Red fluorescent ZnO nanoparticle grafted with polyglycerol and conjugated RGD peptide as drug delivery vehicles for efficient target cancer therapy. Mater. Sci. Eng. C, 2019, 95, 104-113.
[http://dx.doi.org/10.1016/j.msec.2018.10.066] [PMID: 30573230]
[211]
Kim, S.; Lee, S.Y.; Cho, H.J. Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma. Nanomaterials, 2017, 7(11), 354.
[http://dx.doi.org/10.3390/nano7110354]
[212]
Dhivya, R.; Ranjani, J.; Rajendhran, J.; Mayandi, J.; Annaraj, J. pH triggered curcumin release from PMMA-AA coated ZnO nanoparticles for excellent anti-gastric cancer therapy. J. Mater. Sci. Eng., 2018, 07(01), 1000414.
[http://dx.doi.org/10.4172/2169-0022.1000414]
[213]
Upadhyaya, L.; Singh, J.; Agarwal, V.; Pandey, A.C.; Verma, S.P.; Das, P.; Tewari, R.P. Efficient water soluble nanostructured ZnO grafted O-carboxymethyl chitosan/curcumin-nanocomposite for cancer therapy. Process Biochem., 2015, 50(4), 678-688.
[http://dx.doi.org/10.1016/j.procbio.2014.12.029]
[214]
Huang, X.; Zheng, X.; Yi, C.; Yin, S.P.P. (BA-Co-HBA) coated Fe3O4@ZnO nanoparticles as photo-responsive multifunctional drug delivery systems for safer cancer therapy. Nano, 2016, 11(05), 1650057.
[http://dx.doi.org/10.1142/S1793292016500570]
[215]
Sun, X.; Liu, C.; Omer, A.M.; Lu, W.; Zhang, S.; Jiang, X.; Wu, H.; Yu, D.; Ouyang, X. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int. J. Biol. Macromol., 2019, 128, 468-479.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.140] [PMID: 30695723]
[216]
Akbarian, M.; Mahjoub, S.; Elahi, S.M.; Zabihi, E.; Tashakkorian, H. Green synthesis, formulation and biological evaluation of a novel ZnO nanocarrier loaded with paclitaxel as drug delivery system on MCF-7 cell line. Colloids. Surf. B. Biointerfaces, 2020, 186, 110686(2-19).
[http://dx.doi.org/10.1016/j.colsurfb.2019.110686]
[217]
Ghaffari, S.B.; Sarrafzadeh, M.H.; Fakhroueian, Z.; Khorramizadeh, M.R. Flower-like curcumin-loaded folic acid-conjugated ZnO-MPA- βcyclodextrin nanostructures enhanced anticancer activity and cellular uptake of curcumin in breast cancer cells. Mater. Sci. Eng. C, 2019, 103, 109827(3-43).
[http://dx.doi.org/10.1016/j.msec.2019.109827]
[218]
Sadhukhan, P.; Kundu, M.; Rana, S.; Kumar, R.; Das, J.; Sil, P.C. Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties. Toxicol. Rep., 2019, 6, 176-185.
[http://dx.doi.org/10.1016/j.toxrep.2019.01.006] [PMID: 30809470]
[219]
Pairoj, S.; Damrongsak, P.; Damrongsak, B.; Jinawath, N.; Kaewkhaw, R.; Ruttanasirawit, C.; Leelawattananon, T.; Locharoenrat, K. Antitumor activities of carboplatin–doxorubicin–ZnO complexes in different human cancer cell lines (breast, cervix uteri, colon, liver and oral) under UV exposition. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 120-135.
[http://dx.doi.org/10.1080/21691401.2021.1876718] [PMID: 33491496]
[220]
George, D.; Maheswari, P.U.; Sheriffa Begum, K.M.M.; Arthanareeswaran, G. Biomass-derived dialdehyde cellulose cross-linked chitosan-based nanocomposite hydrogel with phytosynthesized zinc oxide nanoparticles for enhanced curcumin delivery and bioactivity. J. Agric. Food Chem., 2019, 67(39), 10880-10890.
[http://dx.doi.org/10.1021/acs.jafc.9b01933] [PMID: 31508956]
[221]
Arakelova, E.R.; Grigoryan, S.G.; Arsenyan, F.G.; Babayan, N.S.; Grigoryan, R.M.; Sarkisyan, N.K. In vitro and in vivo anticancer activity of nanosize zinc oxide composites of doxorubicin. Int. J. Medical. Heal. Biomed. Bioeng. Pharm. Eng., 2014, 8(1), 33-38.
[http://dx.doi.org/10.5281/zenodo.1336921]
[222]
Somu, P.; Paul, S. A biomolecule-assisted one-pot synthesis of zinc oxide nanoparticles and its bioconjugate with curcumin for potential multifaceted therapeutic applications. New J. Chem., 2019, 43(30), 11934-11948.
[http://dx.doi.org/10.1039/C9NJ02501D]

© 2024 Bentham Science Publishers | Privacy Policy