Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Potential of Surface Functionalized Nanomaterials in Innovative Drug Development: A Mini-review

Author(s): Sarwar Allah Ditta*, Atif Yaqub and Fouzia Tanvir

Volume 21, Issue 3, 2024

Published on: 19 December, 2022

Page: [381 - 396] Pages: 16

DOI: 10.2174/1570180820666221124164005

Price: $65

Abstract

The unique properties of nanomaterials (NMs) make them special entities for biomedical innovation and research. Early diagnosis and follow-up of diseases are easily possible with the help of nanotechnology and nanomedicine, which can help combat any medical condition. Surface functionalization with specific molecules might impart marked properties to NMs, leading to the modification of cellspecific interactions within the biological systems. This modification may provide excellent phenomena for innovative drug development. Modified NMs might play essential roles in various applications, i.e., in vivo diagnostics, magnetic resonance imaging (MRI), positron emission tomography (PET), etc. Functionalization of NMs with appropriate ligands, small molecules, or polymers assigned them enhanced stability, biocompatibility, and functionality for their novel and improved biological applications. Surface functionalized NMs might display enhanced antimicrobial, antidiabetic, and drug delivery potential for various applications. Different studies reported the potential of functionalized metallic nanoparticles in regenerative medicines. Conjugation of NMs with various molecules such as peptides, small ligands, polysaccharides, proteins, saturated and polyunsaturated fatty acids, siRNA, plasmids, and DNA, might be achieved by various reactions. Biomolecule-conjugated nanoparticles result in the production of hybrid NMs with specific and novel biological interactions in biological systems. Chemical treatment methods are considered among the most trusted and efficient functionalization methods. Some commonly used techniques and strategies of functionalization involve grafting to and grafting from methods, ligand exchange technique, covalent bonding, chemisorption, non-covalent interactions, electrostatic adsorption, etc. This brief review is dedicated to the surface functionalization of NMs with the latest development.

Next »
Graphical Abstract

[1]
Feynman, R.P. There’s plenty of room at the bottom. California Institute of Technology, Engineering and Science magazine; , 1960, 23, pp. (5)22-36.
[2]
Vert, M.; Doi, Y.; Hellwich, K.H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem., 2012, 84(2), 377-410.
[http://dx.doi.org/10.1351/PAC-REC-10-12-04]
[3]
Thorn, A.S.M. The impact of nanoparticle surface chemistry on biological systems; The University of Iowa: The United States, 2017.
[http://dx.doi.org/10.17077/etd.0z8obns8]
[4]
Bayford, R.; Rademacher, T.; Roitt, I.; Wang, S.X. Emerging applications of nanotechnology for diagnosis and therapy of disease: A review. Physiol. Meas., 2017, 38(8), R183-R203.
[http://dx.doi.org/10.1088/1361-6579/aa7182] [PMID: 28480874]
[5]
Saxena, S.K.; Nyodu, R.; Kumar, S.; Maurya, V.K. Current advances in nanotechnology and medicine. In: Nano Bio Medicine; Springer: Singapore, 2020; pp. 3-16.
[6]
Archakov, A. Nanobiotechnologies in medicine: nanodiagnostics and nanodrugs. Biochemistry (Biokhimiya). Supplemental Series B. Biomed. Chem., 2010, 4(1), 2.
[7]
Zitka, O.; Ryvolova, M.; Hubalek, J.; Eckschlager, T.; Adam, V.; Kizek, R. From amino acids to proteins as targets for metal-based drugs. Curr. Drug Metab., 2012, 13(3), 306-320.
[http://dx.doi.org/10.2174/138920012799320437] [PMID: 22455554]
[8]
Zhang, W.; Wang, W.; Yu, D.X.; Xiao, Z.; He, Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine (Lond.), 2018, 13(18), 2341-2371.
[http://dx.doi.org/10.2217/nnm-2018-0163] [PMID: 30088440]
[9]
Crist, R.M.; Dasa, S.S.K.; Liu, C.H.; Clogston, J.D.; Dobrovolskaia, M.A.; Stern, S.T. Challenges in the development of nanoparticle‐based imaging agents: Characterization and biology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(1), e1665.
[http://dx.doi.org/10.1002/wnan.1665] [PMID: 32830448]
[10]
Chen, C.; Liu, W.; Tian, S.; Hong, T. Novel surface-enhanced Raman spectroscopy techniques for DNA, protein and drug detection. Sensors (Basel), 2019, 19(7), 1712.
[http://dx.doi.org/10.3390/s19071712] [PMID: 30974797]
[11]
Baptista, P.V. Nanodiagnostics: leaving the research lab to enter the clinics? Diagnosis (Berl.), 2014, 1(4), 305-309.
[http://dx.doi.org/10.1515/dx-2014-0055] [PMID: 29540007]
[12]
Miller, A.D. Nanomedicine therapeutics and diagnostics are the goal. Ther. Deliv., 2016, 7(7), 431-456.
[http://dx.doi.org/10.4155/tde-2016-0020] [PMID: 27403629]
[13]
Emeto, T.I.; Alele, F.O.; Smith, A.M.; Smith, F.M.; Dougan, T.; Golledge, J. Use of nanoparticles as contrast agents for the functional and molecular imaging of abdominal aortic aneurysm. Front. Cardiovasc. Med., 2017, 4, 16.
[http://dx.doi.org/10.3389/fcvm.2017.00016] [PMID: 28386544]
[14]
Naseri, N.; Ajorlou, E.; Asghari, F.; Pilehvar-Soltanahmadi, Y. An update on nanoparticle-based contrast agents in medical imaging. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1111-1121.
[http://dx.doi.org/10.1080/21691401.2017.1379014] [PMID: 28933183]
[15]
Tang, L.; Li, J.; Zhao, Q.; Pan, T.; Zhong, H.; Wang, W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics, 2021, 13(8), 1151.
[http://dx.doi.org/10.3390/pharmaceutics13081151] [PMID: 34452113]
[16]
Sharma, S.; Lamichhane, N. Parul; Sen, T.; Roy, I. Iron oxide nanoparticles conjugated with organic optical probes for in vivo diagnostic and therapeutic applications. Nanomedicine (Lond.), 2021, 16(11), 943-962.
[http://dx.doi.org/10.2217/nnm-2020-0442] [PMID: 33913338]
[17]
Tognarelli, J.M.; Dawood, M.; Shariff, M.I.F.; Grover, V.P.B.; Crossey, M.M.E.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J.W. Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol., 2015, 5(4), 320-328.
[http://dx.doi.org/10.1016/j.jceh.2015.10.006] [PMID: 26900274]
[18]
Kim, D.; Kim, J.; Park, Y.I.; Lee, N.; Hyeon, T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci., 2018, 4(3), 324-336.
[http://dx.doi.org/10.1021/acscentsci.7b00574] [PMID: 29632878]
[19]
Hahn, M.A.; Singh, A.K.; Sharma, P.; Brown, S.C.; Moudgil, B.M. Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Anal. Bioanal. Chem., 2011, 399(1), 3-27.
[http://dx.doi.org/10.1007/s00216-010-4207-5] [PMID: 20924568]
[20]
Silindir, M.; Özer, A.Y.; Erdoğan, S. The use and importance of liposomes in positron emission tomography. Drug Deliv., 2012, 19(1), 68-80.
[http://dx.doi.org/10.3109/10717544.2011.635721] [PMID: 22211758]
[21]
Jones, T.; Townsend, D. History and future technical innovation in positron emission tomography. J. Med. Imaging (Bellingham), 2017, 4(1), 011013.
[http://dx.doi.org/10.1117/1.JMI.4.1.011013] [PMID: 28401173]
[22]
Chilug, L.E.; Leonte, R-A.; Ciuca, M.D.; Lavric, V. Gold nanoparticles-based radiopharmaceuticals for nuclear molecular imaging and therapy applications. UPB Sci. Bull. Series B., 2021, 83(1), 1-7.
[23]
Zhang, X.; Detering, L.; Sultan, D.; Luehmann, H.; Li, L.; Heo, G.S.; Zhang, X.; Lou, L.; Grierson, P.M.; Greco, S.; Ruzinova, M.; Laforest, R.; Dehdashti, F.; Lim, K.H.; Liu, Y. CC chemokine receptor 2-targeting copper nanoparticles for positron emission tomography-guided delivery of gemcitabine for pancreatic ductal adenocarcinoma. ACS Nano, 2021, 15(1), 1186-1198.
[http://dx.doi.org/10.1021/acsnano.0c08185] [PMID: 33406361]
[24]
Ghosalkar, S.; Singh, P.; Ravikumar, P. Emerging topical drug delivery approaches for the treatment of Atopic dermatitis. J. Cosmet. Dermatol., 2022, 21(2), 536-549.
[http://dx.doi.org/10.1111/jocd.14685] [PMID: 34935274]
[25]
Omar, M.M.; Laprise-Pelletier, M.; Chevallier, P.; Tuduri, L.; Fortin, M.A. High-sensitivity permeation analysis of ultrasmall nanoparticles across the skin by positron emission tomography. Bioconjug. Chem., 2021, 32(4), 729-745.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00017] [PMID: 33689293]
[26]
Goldman, L.W. Principles of CT and CT technology. J. Nucl. Med. Technol., 2007, 35(3), 115-128.
[http://dx.doi.org/10.2967/jnmt.107.042978] [PMID: 17823453]
[27]
Cole, L.E.; Ross, R.D.; Tilley, J.M.R.; Vargo-Gogola, T.; Roeder, R.K. Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine (Lond.), 2015, 10(2), 321-341.
[http://dx.doi.org/10.2217/nnm.14.171] [PMID: 25600973]
[28]
Idé, J.M.; Lancelot, E.; Pines, E.; Corot, C. Prophylaxis of iodinated contrast media-induced nephropathy: A pharmacological point of view. Invest. Radiol., 2004, 39(3), 155-170.
[http://dx.doi.org/10.1097/01.rli.0000101483.60710.2c] [PMID: 15076008]
[29]
Aslan, N.; Ceylan, B.; Koç, M.M.; Findik, F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J. Mol. Struct., 2020, 1219, 128599.
[http://dx.doi.org/10.1016/j.molstruc.2020.128599]
[30]
Honmane, S.M.; Charde, M.S.; Salunkhe, S.S.; Choudhari, P.B.; Nangare, S.N. Polydopamine surface-modified nanocarriers for improved anticancer activity: Current progress and future prospects; OpenNano, 2022, p. 100059.
[31]
Fumakia, M.; Ho, E.A. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol. Pharm., 2016, 13(7), 2318-2331.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00099] [PMID: 27182713]
[32]
Biswaro, L.S.; da Costa Sousa, M.G.; Rezende, T.M.B.; Dias, S.C.; Franco, O.L. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front. Microbiol., 2018, 9, 855.
[http://dx.doi.org/10.3389/fmicb.2018.00855] [PMID: 29867793]
[33]
Yaqub, A.; Malkani, N.; Shabbir, A.; Ditta, S.A.; Tanvir, F.; Ali, S.; Naz, M.; Kazmi, S.A.R.; Ullah, R. Novel biosynthesis of copper nanoparticles using Zingiber and Allium sp. with synergic effect of doxycycline for anticancer and bactericidal activity. Curr. Microbiol., 2020, 77(9), 2287-2299.
[http://dx.doi.org/10.1007/s00284-020-02058-4] [PMID: 32535649]
[34]
Yaqub, A.; Ali, S.; Ditta, S.A.; Tanvir, F.; Ali, S.; Naz, M. Enhanced bactericidal activity of azithromycin‐coated silver nanoprisms in comparison to their spherical‐shaped counterparts. Micro & Nano Lett., 2020, 15(12), 834-839.
[http://dx.doi.org/10.1049/mnl.2019.0704]
[35]
Khan, M.; Shaik, M.R.; Khan, S.T.; Adil, S.F.; Kuniyil, M.; Khan, M.; Al-Warthan, A.A.; Siddiqui, M.R.H.; Nawaz Tahir, M. Enhanced antimicrobial activity of biofunctionalized zirconia nanoparticles. ACS Omega, 2020, 5(4), 1987-1996.
[http://dx.doi.org/10.1021/acsomega.9b03840] [PMID: 32039336]
[36]
Niza, E.; Božik, M.; Bravo, I.; Clemente-Casares, P.; Lara-Sanchez, A.; Juan, A.; Klouček, P.; Alonso-Moreno, C. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chem., 2020, 328, 127131.
[http://dx.doi.org/10.1016/j.foodchem.2020.127131] [PMID: 32485586]
[37]
Gudimalla, A.; Jose, J.; Varghese, R.J.; Thomas, S. Green synthesis of silver nanoparticles using Nymphae odorata extract incorporated films and antimicrobial activity. J. Polym. Environ., 2021, 29(5), 1412-1423.
[http://dx.doi.org/10.1007/s10924-020-01959-6]
[38]
Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today, 2010, 15(19-20), 842-850.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[39]
Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev., 2013, 113(3), 1904-2074.
[http://dx.doi.org/10.1021/cr300143v] [PMID: 23432378]
[40]
Ocampo‐García, B.; Lara, L.A.; Ferro‐Flores, G.; Morales‐Avila, E.; Isaac‐Olivé, K. Role of nanotechnology in biological therapies. In: Visakh, P.M. Nanomaterials and Nanotechnology in Medicine; Wiley & Sons: Ltd. New York, 2022; p. 115-151.
[41]
Mukherjee, B.; Paul, B.; Al Hoque, A.; Sen, R.; Chakraborty, S.; Chakraborty, A. Polymeric nanoparticles as tumor-targeting theranostic platform. In: Design and Applications of Theranostic Nanomedicines; , 2023; p. 217.
[42]
Sutradhar, K.B.; Amin, M. Nanotechnology in cancer drug delivery and selective targeting. Inter. Schol. Res. Not., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/939378]
[43]
Zhao, C.Y.; Cheng, R.; Yang, Z.; Tian, Z.M. Nanotechnology for cancer therapy based on chemotherapy. Molecules, 2018, 23(4), 826.
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[44]
Zhang, H.; Liu, X.L.; Zhang, Y.F.; Gao, F.; Li, G.L.; He, Y.; Peng, M.L.; Fan, H.M. Magnetic nanoparticles based cancer therapy: Current status and applications. Sci. China Life Sci., 2018, 61(4), 400-414.
[http://dx.doi.org/10.1007/s11427-017-9271-1] [PMID: 29675551]
[45]
Chakrabortty, S.; Vimal, S.K.; Bhattacharya, S. Synthesis of Some Bioactive Nanomaterials and Applications of Various Nanoconjugates for Targeted Therapeutic Applications. Nanopharmaceuticals: Principles and Applications; Springer: Cham, 2021, Vol. 1, pp. 347-376.
[46]
Wang, Z.; Yang, B. General Strategies for Rational Design and Discovery of Multitarget Drugs. Polypharmacology; Springer: Cham, 2022, pp. 677-736.
[47]
Woldu, M.; Lenjisa, J. Nanoparticles and the new era in diabetes management. Int. J. Basic Clin. Pharmacol., 2014, 3(2), 277-284.
[http://dx.doi.org/10.5455/2319-2003.ijbcp20140405]
[48]
DiSanto, R.M.; Subramanian, V.; Gu, Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 548-564.
[http://dx.doi.org/10.1002/wnan.1329] [PMID: 25641955]
[49]
Malapermal, V.; Botha, I.; Krishna, S.B.N.; Mbatha, J.N. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J. Biol. Sci., 2017, 24(6), 1294-1305.
[http://dx.doi.org/10.1016/j.sjbs.2015.06.026] [PMID: 28855825]
[50]
Xie, F.; Xie, L. Serum zinc level is associated with liver dysfunction caused by white smoke inhalation. Gastroenterol. Rep. (Oxf.), 2018, 6(4), 304-307.
[http://dx.doi.org/10.1093/gastro/goy008] [PMID: 30430020]
[51]
Al-hashimi, N.; Babenko, M.; Saaed, M.; Kargar, N.; ElShaer, A. The impact of natural and synthetic polymers in formulating micro and nanoparticles for anti-diabetic drugs. Curr. Drug Deliv., 2021, 18(3), 271-288.
[http://dx.doi.org/10.2174/1567201817666200810111726] [PMID: 32778027]
[52]
Jain, K.K. Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract., 2008, 17(2), 89-101.
[http://dx.doi.org/10.1159/000112961] [PMID: 18287791]
[53]
Zhang, D.; Liu, D.; Zhang, J.; Fong, C.; Yang, M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater. Sci. Eng. C, 2014, 42, 70-77.
[http://dx.doi.org/10.1016/j.msec.2014.04.042] [PMID: 25063094]
[54]
Ko, W.K.; Heo, D.N.; Moon, H.J.; Lee, S.J.; Bae, M.S.; Lee, J.B.; Sun, I.C.; Jeon, H.B.; Park, H.K.; Kwon, I.K. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J. Colloid Interface Sci., 2015, 438, 68-76.
[http://dx.doi.org/10.1016/j.jcis.2014.08.058] [PMID: 25454427]
[55]
van Rijt, S.; Habibovic, P. Enhancing regenerative approaches with nanoparticles. J. R. Soc. Interface, 2017, 14(129), 20170093.
[http://dx.doi.org/10.1098/rsif.2017.0093] [PMID: 28404870]
[56]
Pan, S.; Yu, H.; Yang, X.; Yang, X.; Wang, Y.; Liu, Q.; Jin, L.; Yang, Y. Application of nanomaterials in stem cell regenerative medicine of orthopedic surgery. J. Nanomater., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/1985942]
[57]
Vieira, S.; Vial, S.; Reis, R.L.; Oliveira, J.M. Nanoparticles for bone tissue engineering. Biotechnol. Prog., 2017, 33(3), 590-611.
[http://dx.doi.org/10.1002/btpr.2469] [PMID: 28371447]
[58]
Huang, X.; Das, R.; Patel, A.; Duc Nguyen, T. Physical stimulations for bone and cartilage regeneration. Regen. Eng. Transl. Med., 2018, 4(4), 216-237.
[http://dx.doi.org/10.1007/s40883-018-0064-0] [PMID: 30740512]
[59]
Pöttler, M.; Cicha, I.; Unterweger, H.; Janko, C.; Friedrich, R.P.; Alexiou, C. Nanoparticles for regenerative medicine. Nanomedicine (Lond.), 2019, 14(15), 1929-1933.
[http://dx.doi.org/10.2217/nnm-2019-0162] [PMID: 31370757]
[60]
Piñeiro, Y.; González Gómez, M.; de Castro Alves, L.; Arnosa Prieto, A.; García Acevedo, P.; Seco Gudiña, R.; Puig, J.; Teijeiro, C.; Yáñez Vilar, S.; Rivas, J. Hybrid nanostructured magnetite nanoparticles: from bio-detection and theragnostics to regenerative medicine. Magnetochemistry, 2020, 6(1), 4.
[http://dx.doi.org/10.3390/magnetochemistry6010004]
[61]
Stine, S.J.; Popowski, K.D.; Su, T.; Cheng, K. Exosome and biomimetic nanoparticle therapies for cardiac regenerative medicine. Curr. Stem Cell Res. Ther., 2020, 15(8), 674-684.
[http://dx.doi.org/10.2174/1574888X15666200309143924] [PMID: 32148200]
[62]
Gupta, A.; Singh, S. Multimodal potentials of gold nanoparticles for bone tissue engineering and regenerative medicine: avenues and prospects. Small, 2022, 18(29), 2201462.
[http://dx.doi.org/10.1002/smll.202201462] [PMID: 35758545]
[63]
Zhang, Y.; Wang, P.; Mao, H.; Zhang, Y.; Zheng, L.; Yu, P.; Guo, Z.; Li, L.; Jiang, Q. PEGylated gold nanoparticles promote osteogenic differentiation in in vitro and in vivo systems. Mater. Des., 2021, 197, 109231.
[http://dx.doi.org/10.1016/j.matdes.2020.109231]
[64]
Castro, E.; Kumar, A. Nanoparticles in drug delivery systems. Nanomedicine in drug delivery; CRC Press: USA, 2013, pp. 1-22.
[http://dx.doi.org/10.1201/b14802-2]
[65]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[66]
Kumar, S.; Maurya, V.K.; Dandu, H.R.; Bhatt, M.L.B.; Saxena, S.K. Global perspective of novel therapeutic strategies for the management of NeuroAIDS. Biomol. Concepts, 2018, 9(1), 33-42.
[http://dx.doi.org/10.1515/bmc-2018-0005] [PMID: 29742062]
[67]
Batra, S.; Sharma, S.; Mehra, N.K. Carbon Nanotubes for Drug Delivery Applications. In: Handbook of Carbon Nanotubes; Abraham, J.; Thomas, S.; Kalarikkal, N., Eds.; Springer: Cham, 2022; pp. 1-14.
[68]
Mirza, Z.; Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol., 2021, 69, 226-237.
[69]
Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol., 2021, 12, 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[70]
Han, Y.J.; Stucky, G.D.; Butler, A. Mesoporous silicate sequestration and release of proteins. J. Am. Chem. Soc., 1999, 121(42), 9897-9898.
[http://dx.doi.org/10.1021/ja992138r]
[71]
Roy, I.; Ohulchanskyy, T.Y.; Bharali, D.J.; Pudavar, H.E.; Mistretta, R.A.; Kaur, N.; Prasad, P.N. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 279-284.
[http://dx.doi.org/10.1073/pnas.0408039101] [PMID: 15630089]
[72]
Bharali, D.J.; Klejbor, I.; Stachowiak, E.K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E.J.; Prasad, P.N.; Stachowiak, M.K. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11539-11544.
[http://dx.doi.org/10.1073/pnas.0504926102] [PMID: 16051701]
[73]
Radu, D.R.; Lai, C.Y.; Jeftinija, K.; Rowe, E.W.; Jeftinija, S.; Lin, V.S.Y. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc., 2004, 126(41), 13216-13217.
[http://dx.doi.org/10.1021/ja046275m] [PMID: 15479063]
[74]
Torney, F.; Trewyn, B.G.; Lin, V.S.Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2007, 2(5), 295-300.
[http://dx.doi.org/10.1038/nnano.2007.108] [PMID: 18654287]
[75]
You, C.C.; Miranda, O.R.; Gider, B.; Ghosh, P.S.; Kim, I.B.; Erdogan, B.; Krovi, S.A.; Bunz, U.H.F.; Rotello, V.M. Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol., 2007, 2(5), 318-323.
[http://dx.doi.org/10.1038/nnano.2007.99] [PMID: 18654291]
[76]
Martin, A.L.; Bernas, L.M.; Rutt, B.K.; Foster, P.J.; Gillies, E.R. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjug. Chem., 2008, 19(12), 2375-2384.
[http://dx.doi.org/10.1021/bc800209u] [PMID: 19053308]
[77]
Shi, X.; Thomas, T.P.; Myc, L.A.; Kotlyar, A.; Baker, J.R. Jr Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys., 2007, 9(42), 5712-5720.
[http://dx.doi.org/10.1039/b709147h] [PMID: 17960261]
[78]
Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.S.; Watson, N.; Chen, S.; Irvine, D.J.; Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater., 2008, 7(7), 588-595.
[http://dx.doi.org/10.1038/nmat2202] [PMID: 18500347]
[79]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[80]
Cho, E.C.; Xie, J.; Wurm, P.A.; Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett., 2009, 9(3), 1080-1084.
[http://dx.doi.org/10.1021/nl803487r] [PMID: 19199477]
[81]
Kim, B.; Han, G.; Toley, B.J.; Kim, C.; Rotello, V.M.; Forbes, N.S. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat. Nanotechnol., 2010, 5(6), 465-472.
[http://dx.doi.org/10.1038/nnano.2010.58] [PMID: 20383126]
[82]
Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small, 2010, 6(1), 12-21.
[83]
Kang, B.; Mackey, M.A.; El-Sayed, M.A. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc., 2010, 132(5), 1517-1519.
[http://dx.doi.org/10.1021/ja9102698] [PMID: 20085324]
[84]
Bajaj, A.; Rana, S.; Miranda, O.R.; Yawe, J.C.; Jerry, D.J.; Bunz, U.H.F.; Rotello, V.M. Cell surface-based differentiation of cell types and cancer states using a gold nanoparticle-GFP based sensing array. Chem. Sci. (Camb.), 2010, 1(1), 134-138.
[http://dx.doi.org/10.1039/c0sc00165a]
[85]
Saha, K.; Bajaj, A.; Duncan, B.; Rotello, V.M. Beauty is skin deep: A surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small, 2011, 7(14), 1903-1918.
[http://dx.doi.org/10.1002/smll.201100478] [PMID: 21671432]
[86]
Jiang, Y.; Zhao, H.; Lin, Y.; Zhu, N.; Ma, Y.; Mao, L. Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew. Chem. Int. Ed., 2010, 49(28), 4800-4804.
[http://dx.doi.org/10.1002/anie.201001057] [PMID: 20533481]
[87]
Dreaden, E.C.; Mackey, M.A.; Huang, X.; Kang, B.; El-Sayed, M.A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev., 2011, 40(7), 3391-3404.
[http://dx.doi.org/10.1039/c0cs00180e] [PMID: 21629885]
[88]
Moyano, D.F.; Rana, S.; Bunz, U.H.F.; Rotello, V.M. Gold nanoparticle-polymer/biopolymer complexes for protein sensing. Faraday Discuss., 2011, 152, 33-42.
[http://dx.doi.org/10.1039/c1fd00024a] [PMID: 22455037]
[89]
Nicol, J.R.; Dixon, D.; Coulter, J.A. Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics. Nanomedicine (Lond.), 2015, 10(8), 1315-1326.
[http://dx.doi.org/10.2217/nnm.14.219] [PMID: 25955125]
[90]
Cho, W.S.; Cho, M.; Jeong, J.; Choi, M.; Han, B.S.; Shin, H.S.; Hong, J.; Chung, B.H.; Jeong, J.; Cho, M.H. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol., 2010, 245(1), 116-123.
[http://dx.doi.org/10.1016/j.taap.2010.02.013] [PMID: 20193702]
[91]
Kumar, D.; Meenan, B.J.; Dixon, D. Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles. Int. J. Nanomedicine, 2012, 7, 4007-4022.
[http://dx.doi.org/10.2147/IJN.S33726] [PMID: 22915847]
[92]
Krpetić, Ž.; Nativo, P.; Porta, F.; Brust, M. A multidentate peptide for stabilization and facile bioconjugation of gold nanoparticles. Bioconjug. Chem., 2009, 20(3), 619-624.
[http://dx.doi.org/10.1021/bc8003028] [PMID: 19220052]
[93]
Slocik, J.M.; Govorov, A.O.; Naik, R.R. Plasmonic circular dichroism of Peptide-functionalized gold nanoparticles. Nano Lett., 2011, 11(2), 701-705.
[http://dx.doi.org/10.1021/nl1038242] [PMID: 21207969]
[94]
Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci., 2020, 7, 587012.
[http://dx.doi.org/10.3389/fmolb.2020.587012] [PMID: 33324678]
[95]
Navarro-Tovar, G.; Salado-Leza, D.; Carreón-Álvarez, C.; Acosta-Ruelas, B.J.; Rodríguez-López, J.L. Surface functionalization of nanoparticles: Structure determines function. In: Antimicrobial Activity of Nanoparticles, Gregory, G; Elsevier: Amsterdam, 2023; pp. 203-248.
[http://dx.doi.org/10.1016/B978-0-12-821637-8.00004-3]
[96]
Brambilla, D.; Mussida, A.; Ferretti, A.M.; Sola, L.; Damin, F.; Chiari, M. Polymeric coating of silica microspheres for biological applications: suppression of non-specific binding and functionalization with biomolecules. Polymers (Basel), 2022, 14(4), 730.
[http://dx.doi.org/10.3390/polym14040730] [PMID: 35215642]
[97]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[98]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[99]
Peer, D.; Karp, J.; Hong, S.; Farokhzad, O. Margalit and R. Langer. Nat. Nanotechnol., 2007, 2, 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[100]
Yavuz, M.S.; Cheng, Y.; Chen, J.; Cobley, C.M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K.H.; Schwartz, A.G.; Wang, L.V.; Xia, Y. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater., 2009, 8(12), 935-939.
[http://dx.doi.org/10.1038/nmat2564] [PMID: 19881498]
[101]
Park, J.H.; von Maltzahn, G.; Xu, M.J.; Fogal, V.; Kotamraju, V.R.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 981-986.
[http://dx.doi.org/10.1073/pnas.0909565107] [PMID: 20080556]
[102]
Zhao, W.; Karp, J.M. Nanoantennas heat up. Nat. Mater., 2009, 8(6), 453-454.
[http://dx.doi.org/10.1038/nmat2463] [PMID: 19458645]
[103]
Wang, Y.; Brown, P.; Xia, Y. Swarming towards the target. Nat. Mater., 2011, 10(7), 482-483.
[http://dx.doi.org/10.1038/nmat3060] [PMID: 21685899]
[104]
Choi, C.H.J.; Zuckerman, J.E.; Webster, P.; Davis, M.E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl. Acad. Sci. USA, 2011, 108(16), 6656-6661.
[http://dx.doi.org/10.1073/pnas.1103573108] [PMID: 21464325]
[105]
von Maltzahn, G.; Park, J.H.; Lin, K.Y.; Singh, N.; Schwöppe, C.; Mesters, R.; Berdel, W.E.; Ruoslahti, E.; Sailor, M.J.; Bhatia, S.N. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater., 2011, 10(7), 545-552.
[http://dx.doi.org/10.1038/nmat3049] [PMID: 21685903]
[106]
Pinelli, F.; Perale, G.; Rossi, F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 2020, 6(1), 6.
[http://dx.doi.org/10.3390/gels6010006] [PMID: 32033057]
[107]
Bhatia, S. Natural polymers vs synthetic polymer. In: Natural Polymer Drug Delivery Systems; Springer, 2016; pp. 95-118.
[http://dx.doi.org/10.1007/978-3-319-41129-3_3]
[108]
Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592), 607-609.
[http://dx.doi.org/10.1038/382607a0] [PMID: 8757129]
[109]
Alivisatos, A.P.; Johnsson, K.P.; Peng, X.; Wilson, T.E.; Loweth, C.J.; Bruchez, M.P., Jr; Schultz, P.G. Organization of ‘nanocrystal molecules’ using DNA. Nature, 1996, 382(6592), 609-611.
[http://dx.doi.org/10.1038/382609a0] [PMID: 8757130]
[110]
Link, S.; El-Sayed, M.A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 2003, 54(1), 331-366.
[http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759] [PMID: 12626731]
[111]
Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.R.; Han, M.S.; Mirkin, C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006, 312(5776), 1027-1030.
[http://dx.doi.org/10.1126/science.1125559] [PMID: 16709779]
[112]
Seferos, D.S.; Giljohann, D.A.; Hill, H.D.; Prigodich, A.E.; Mirkin, C.A. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc., 2007, 129(50), 15477-15479.
[http://dx.doi.org/10.1021/ja0776529] [PMID: 18034495]
[113]
Zheng, D.; Seferos, D.S.; Giljohann, D.A.; Patel, P.C.; Mirkin, C.A. Aptamer nano-flares for molecular detection in living cells. Nano Lett., 2009, 9(9), 3258-3261.
[http://dx.doi.org/10.1021/nl901517b] [PMID: 19645478]
[114]
Jiang, W.; Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol., 2008, 3(3), 145-150.
[http://dx.doi.org/10.1038/nnano.2008.30] [PMID: 18654486]
[115]
El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett., 2005, 5(5), 829-834.
[http://dx.doi.org/10.1021/nl050074e] [PMID: 15884879]
[116]
Giljohann, D.A.; Seferos, D.S.; Prigodich, A.E.; Patel, P.C.; Mirkin, C.A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc., 2009, 131(6), 2072-2073.
[http://dx.doi.org/10.1021/ja808719p] [PMID: 19170493]
[117]
Massich, M.D.; Giljohann, D.A.; Seferos, D.S.; Ludlow, L.E.; Horvath, C.M.; Mirkin, C.A. Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol. Pharm., 2009, 6(6), 1934-1940.
[http://dx.doi.org/10.1021/mp900172m] [PMID: 19810673]
[118]
Patel, P.C.; Giljohann, D.A.; Daniel, W.L.; Zheng, D.; Prigodich, A.E.; Mirkin, C.A. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug. Chem., 2010, 21(12), 2250-2256.
[http://dx.doi.org/10.1021/bc1002423] [PMID: 21070003]
[119]
Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater., 2010, 22(25), 2729-2742.
[http://dx.doi.org/10.1002/adma.201000260] [PMID: 20473985]
[120]
Larson, T.A.; Bankson, J.; Aaron, J.; Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology, 2007, 18(32), 325101.
[http://dx.doi.org/10.1088/0957-4484/18/32/325101]
[121]
Huh, Y.M.; Jun, Y.; Song, H.T.; Kim, S.; Choi, J.; Lee, J.H.; Yoon, S.; Kim, K.S.; Shin, J.S.; Suh, J.S.; Cheon, J. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc., 2005, 127(35), 12387-12391.
[http://dx.doi.org/10.1021/ja052337c] [PMID: 16131220]
[122]
Hu, F.Q.; Wei, L.; Zhou, Z.; Ran, Y.L.; Li, Z.; Gao, M.Y. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv. Mater., 2006, 18(19), 2553-2556.
[http://dx.doi.org/10.1002/adma.200600385]
[123]
Lytton-Jean, A.K.R.; Langer, R.; Anderson, D.G. Five years of siRNA delivery: spotlight on gold nanoparticles. Small, 2011, 7(14), 1932-1937.
[http://dx.doi.org/10.1002/smll.201100761] [PMID: 21681985]
[124]
Rosi, N.; Mirkin, C. Asymmetric functionalization of gold nanoparticles with oligonucleotides. Chem. Rev., 2005, 105, 1547.
[http://dx.doi.org/10.1021/cr030067f] [PMID: 15826019]
[125]
Mout, R.; Moyano, D.F.; Rana, S.; Rotello, V.M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev., 2012, 41(7), 2539-2544.
[http://dx.doi.org/10.1039/c2cs15294k] [PMID: 22310807]
[126]
Andrade, R.G.D.; Reis, B.; Costas, B.; Lima, S.A.C.; Reis, S. Modulation of macrophages M1/M2 polarization using carbohydrate-functionalized polymeric nanoparticles. Polymers (Basel), 2020, 13(1), 88.
[http://dx.doi.org/10.3390/polym13010088] [PMID: 33379389]
[127]
DeLong, R.; Schaeffer, A.; Malcolm, Y.; Schaeffer, A.; Severs, T.; Wanekaya, A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol. Sci. Appl., 2010, 3, 53-63.
[http://dx.doi.org/10.2147/NSA.S8984] [PMID: 24198471]
[128]
Jazayeri, M.H.; Amani, H.; Pourfatollah, A.A.; Avan, A.; Ferns, G.A.; Pazoki-Toroudi, H. Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies. Cancer Gene Ther., 2016, 23(10), 365-369.
[http://dx.doi.org/10.1038/cgt.2016.42] [PMID: 27740614]
[129]
Mu, Q.; Kievit, F.M.; Kant, R.J.; Lin, G.; Jeon, M.; Zhang, M. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Nanoscale, 2015, 7(43), 18010-18014.
[http://dx.doi.org/10.1039/C5NR04867B] [PMID: 26469772]
[130]
Song, C.; Zhong, Y.; Jiang, X.; Peng, F.; Lu, Y.; Ji, X.; Su, Y.; He, Y. Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem., 2015, 87(13), 6718-6723.
[http://dx.doi.org/10.1021/acs.analchem.5b00853] [PMID: 26021403]
[131]
Chen, J.; Corbin, I.R.; Li, H.; Cao, W.; Glickson, J.D.; Zheng, G. Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo. J. Am. Chem. Soc., 2007, 129(18), 5798-5799.
[http://dx.doi.org/10.1021/ja069336k] [PMID: 17428054]
[132]
Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm., 2004, 58(2), 327-341.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.016] [PMID: 15296959]
[133]
Meziani, M.J.; Sun, Y.P. Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution. J. Am. Chem. Soc., 2003, 125(26), 8015-8018.
[http://dx.doi.org/10.1021/ja030104k] [PMID: 12823024]
[134]
Fahmy, T.M.; Samstein, R.M.; Harness, C.C.; Mark Saltzman, W. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials, 2005, 26(28), 5727-5736.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.025] [PMID: 15878378]
[135]
Dunn, S.S.; Tian, S.; Blake, S.; Wang, J.; Galloway, A.L.; Murphy, A.; Pohlhaus, P.D.; Rolland, J.P.; Napier, M.E.; DeSimone, J.M. Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. J. Am. Chem. Soc., 2012, 134(17), 7423-7430.
[http://dx.doi.org/10.1021/ja300174v] [PMID: 22475061]
[136]
Arruebo, M.; Valladares, M.; González-Fernández, Á. Antibody-conjugated nanoparticles for biomedical applications. J. Nanomater., 2009, 2009, 1-24.
[http://dx.doi.org/10.1155/2009/439389]
[137]
Arosio, D.; Manzoni, L.; Araldi, E.M.V.; Scolastico, C. Cyclic RGD functionalized gold nanoparticles for tumor targeting. Bioconjug. Chem., 2011, 22(4), 664-672.
[http://dx.doi.org/10.1021/bc100448r] [PMID: 21434651]
[138]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2010, 368(1915), 1333-1383.
[http://dx.doi.org/10.1098/rsta.2009.0273] [PMID: 20156828]
[139]
Csáki, A.; Kaplanek, P.; Möller, R.; Fritzsche, W. The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement. Nanotechnology, 2003, 14(12), 1262-1268.
[http://dx.doi.org/10.1088/0957-4484/14/12/006] [PMID: 21444979]
[140]
Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[141]
Plueddemann, E.; Clark, H.; Nelson, L.; Hoffmann, K. Silane coupling agents for reinforced plastics. Mod Plast., 1962, 39(12), 135.
[142]
Owen, M.J. Coupling agents: Chemical bonding at interfaces. Adhes. Sci. Technol., 2002, 403-431.
[143]
Plueddemann, E.P. Adhesion through silane coupling agents. J. Adhes., 1970, 2(3), 184-201.
[http://dx.doi.org/10.1080/0021846708544592]
[144]
Kim, K.J.; White, J.L. Silica surface modification using different aliphatic chain length silane coupling agents and their effects on silica agglomerate size and processability. Compos. Interfaces, 2002, 9(6), 541-556.
[http://dx.doi.org/10.1163/15685540260494119]
[145]
Guo, Z.; Pereira, T.; Choi, O.; Wang, Y.; Hahn, H.T. Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J. Mater. Chem., 2006, 16(27), 2800-2808.
[http://dx.doi.org/10.1039/b603020c]
[146]
Lin, F. Preparation and characterization of polymer TiO2 nanocomposites via in-situ polymerization; (Master’s Thesis University of Waterloo), 2006.
[147]
Ukaji, E.; Furusawa, T.; Sato, M.; Suzuki, N. The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl. Surf. Sci., 2007, 254(2), 563-569.
[http://dx.doi.org/10.1016/j.apsusc.2007.06.061]
[148]
Tang, E.; Liu, H.; Sun, L.; Zheng, E.; Cheng, G. Fabrication of zinc oxide/poly(styrene) grafted nanocomposite latex and its dispersion. Eur. Polym. J., 2007, 43(10), 4210-4218.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.05.015]
[149]
Guo, Y.; Wang, M.; Zhang, H.; Liu, G.; Zhang, L.; Qu, X. The surface modification of nanosilica, preparation of nanosilica/acrylic core-shell composite latex, and its application in toughening PVC matrix. J. Appl. Polym. Sci., 2008, 107(4), 2671-2680.
[http://dx.doi.org/10.1002/app.27310]
[150]
Ma, S.; Shi, L.; Feng, X.; Yu, W.; Lu, B. Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent. J. Shanghai Univ., 2008, 12(3), 278-282.
[http://dx.doi.org/10.1007/s11741-008-0316-1]
[151]
Gui, S.; Shen, X.; Lin, B. Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents. Rare Met., 2006, 25(6), 426-430.
[http://dx.doi.org/10.1016/S1001-0521(07)60118-1]
[152]
Sabzi, M.; Mirabedini, S.M.; Zohuriaan-Mehr, J.; Atai, M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog. Org. Coat., 2009, 65(2), 222-228.
[http://dx.doi.org/10.1016/j.porgcoat.2008.11.006]
[153]
Truong, L.T.; Larsen, Å.; Holme, B.; Diplas, S.; Hansen, F.K.; Roots, J.; Jørgensen, S. Dispersibility of silane-functionalized alumina nanoparticles in syndiotactic polypropylene. Surf. Interface Anal., 2010, 42(6-7), 1046-1049.
[http://dx.doi.org/10.1002/sia.3166]
[154]
Wang, C.; Mao, H.; Wang, C.; Fu, S. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent. Ind. Eng. Chem. Res., 2011, 50(21), 11930-11934.
[http://dx.doi.org/10.1021/ie200887x]
[155]
Zhao, J.; Milanova, M.; Warmoeskerken, M.M.C.G.; Dutschk, V. Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf. A Physicochem. Eng. Asp., 2012, 413, 273-279.
[http://dx.doi.org/10.1016/j.colsurfa.2011.11.033]
[156]
Yao, H.; Jin, L.; Sue, H.J.; Sumi, Y.; Nishimura, R. Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(36), 10783-10789.
[http://dx.doi.org/10.1039/c3ta11901g]
[157]
Perovic, M.; Qin, Q.; Oschatz, M. From molecular precursors to nanoparticles—tailoring the adsorption properties of porous carbon materials by controlled chemical functionalization. Adv. Funct. Mater., 2020, 30(41), 1908371.
[http://dx.doi.org/10.1002/adfm.201908371]
[158]
Kim, C.R.; Uemura, T.; Kitagawa, S. Inorganic nanoparticles in porous coordination polymers. Chem. Soc. Rev., 2016, 45(14), 3828-3845.
[http://dx.doi.org/10.1039/C5CS00940E] [PMID: 27051891]
[159]
Silvestre-Albero, A.; Grau-Atienza, A.; Serrano, E.; García-Martínez, J.; Silvestre-Albero, J. Desilication of TS-1 zeolite for the oxidation of bulky molecules. Catal. Commun., 2014, 44, 35-39.
[http://dx.doi.org/10.1016/j.catcom.2013.08.004]
[160]
Weber, J.; Thomas, A. Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J. Am. Chem. Soc., 2008, 130(20), 6334-6335.
[http://dx.doi.org/10.1021/ja801691x] [PMID: 18433126]
[161]
Tsubokawa, N.; Kogure, A.; Sone, Y. Grafting of polyesters from ultrafine inorganic particles: Copolymerization of epoxides with cyclic acid anhydrides initiated by COOK groups introduced onto the surface. J. Polym. Sci. A Polym. Chem., 1990, 28(7), 1923-1933.
[http://dx.doi.org/10.1002/pola.1990.080280723]
[162]
von Werne, T.; Patten, T.E. Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces. J. Am. Chem. Soc., 2001, 123(31), 7497-7505.
[http://dx.doi.org/10.1021/ja010235q] [PMID: 11480969]
[163]
Shirai, Y.; Tsubokawa, N. Grafting of polymers onto ultrafine inorganic particle surface: graft polymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface and molybdenum hexacarbonyl. React. Funct. Polym., 1997, 32(2), 153-160.
[http://dx.doi.org/10.1016/S1381-5148(96)00078-8]
[164]
Sidorenko, A.; Minko, S.; Gafijchuk, G.; Voronov, S. Radical polymerization initiated from a solid substrate. 3. grafting from the surface of an ultrafine powder. Macromolecules, 1999, 32(14), 4539-4543.
[http://dx.doi.org/10.1021/ma981355u]
[165]
Wang, X.; Song, X.; Lin, M.; Wang, H.; Zhao, Y.; Zhong, W.; Du, Q. Surface initiated graft polymerization from carbon-doped TiO2 nanoparticles under sunlight illumination. Polymer (Guildf.), 2007, 48(20), 5834-5838.
[http://dx.doi.org/10.1016/j.polymer.2007.08.017]
[166]
Fan, X.; Lin, L.; Messersmith, P.B. Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer–matrix nanocomposites. Compos. Sci. Technol., 2006, 66(9), 1198-1204.
[http://dx.doi.org/10.1016/j.compscitech.2005.10.001]
[167]
Rong, M.Z.; Zhang, M.Q.; Zheng, Y.X.; Zeng, H.M.; Walter, R.; Friedrich, K. Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer (Guildf.), 2001, 42(1), 167-183.
[http://dx.doi.org/10.1016/S0032-3861(00)00325-6]
[168]
Rong, M.Z.; Ji, Q.L.; Zhang, M.Q.; Friedrich, K. Graft polymerization of vinyl monomers onto nanosized alumina particles. Eur. Polym. J., 2002, 38(8), 1573-1582.
[http://dx.doi.org/10.1016/S0014-3057(02)00037-X]
[169]
Tsubokawa, N.; Hayashi, S.; Nishimura, J. Grafting of hyperbranched polymers onto ultrafine silica: postgraft polymerization of vinyl monomers initiated by pendant azo groups of grafted polymer chains on the surface. Prog. Org. Coat., 2002, 44(1), 69-74.
[http://dx.doi.org/10.1016/S0300-9440(01)00252-1]
[170]
Francis, R.; Joy, N.; Aparna, E.P.; Vijayan, R. Polymer grafted inorganic nanoparticles, preparation, properties, and applications: a review. Polym. Rev. (Phila. Pa.), 2014, 54(2), 268-347.
[http://dx.doi.org/10.1080/15583724.2013.870573]
[171]
Tran, Y.; Auroy, P. Synthesis of Poly(styrene sulfonate). Brushes. J. Am. Chem. Soc., 2001, 123(16), 3644-3654.
[http://dx.doi.org/10.1021/ja992562s] [PMID: 11457096]
[172]
Mansky, P.; Liu, Y.; Huang, E.; Russell, T.P.; Hawker, C. Controlling polymer-surface interactions with random copolymer brushes. Science, 1997, 275(5305), 1458-1460.
[http://dx.doi.org/10.1126/science.275.5305.1458]
[173]
Prucker, O.; Rühe, J. Synthesis of poly (styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules, 1998, 31(3), 592-601.
[http://dx.doi.org/10.1021/ma970660x]
[174]
Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci., 2003, 28(1), 83-114.
[http://dx.doi.org/10.1016/S0079-6700(02)00019-9]
[175]
Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci., 2006, 252(14), 5227-5232.
[http://dx.doi.org/10.1016/j.apsusc.2005.08.004]
[176]
Hong, R.Y.; Qian, J.Z.; Cao, J.X. Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technol., 2006, 163(3), 160-168.
[http://dx.doi.org/10.1016/j.powtec.2006.01.015]
[177]
Liu, P.; Wang, T. Poly(hydroethyl acrylate) grafted from ZnO nanoparticles via surface-initiated atom transfer radical polymerization. Curr. Appl. Phys., 2008, 8(1), 66-70.
[http://dx.doi.org/10.1016/j.cap.2007.05.001]
[178]
Bach, L.G.; Islam, M.R.; Kim, J.T.; Seo, S.; Lim, K.T. Encapsulation of Fe3O4 magnetic nanoparticles with poly(methyl methacrylate) via surface functionalized thiol-lactam initiated radical polymerization. Appl. Surf. Sci., 2012, 258(7), 2959-2966.
[http://dx.doi.org/10.1016/j.apsusc.2011.11.016]
[179]
Shin, Y.; Lee, D.; Lee, K.; Ahn, K.H.; Kim, B. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications. J. Ind. Eng. Chem., 2008, 14(4), 515-519.
[http://dx.doi.org/10.1016/j.jiec.2008.02.002]
[180]
Díez-Pascual, A.M. Chemical functionalization of carbon nanotubes with polymers: A brief overview. Macromol, 2021, 1(2), 64-83.
[http://dx.doi.org/10.3390/macromol1020006]
[181]
Basheer, B.V.; George, J.J.; Siengchin, S.; Parameswaranpillai, J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. Nano-Structures & Nano-Objects, 2020, 22, 100429.
[http://dx.doi.org/10.1016/j.nanoso.2020.100429]
[182]
Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc., 1993, 115(19), 8706-8715.
[http://dx.doi.org/10.1021/ja00072a025]
[183]
Greenham, N.C.; Peng, X.; Alivisatos, A.P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B Condens. Matter, 1996, 54(24), 17628-17637.
[http://dx.doi.org/10.1103/PhysRevB.54.17628] [PMID: 9985889]
[184]
Huynh, W.U.; Dittmer, J.J.; Libby, W.C.; Whiting, G.L.; Alivisatos, A.P. Controlling the morphology of nanocrystal–polymer composites for solar cells. Adv. Funct. Mater., 2003, 13(1), 73-79.
[http://dx.doi.org/10.1002/adfm.200390009]
[185]
Stobiecka, M.; Hepel, M. Rapid functionalization of metal nanoparticles by moderator-tunable ligand-exchange process for biosensor designs. Sens. Actuators B Chem., 2010, 149(2), 373-380.
[http://dx.doi.org/10.1016/j.snb.2010.06.049]
[186]
Kluenker, M.; Mondeshki, M.; Nawaz Tahir, M.; Tremel, W. Monitoring thiol–ligand exchange on au nanoparticle surfaces. Langmuir, 2018, 34(4), 1700-1710.
[http://dx.doi.org/10.1021/acs.langmuir.7b04015] [PMID: 29307189]
[187]
Rodríguez, B.; Ramírez, S.; Gutiérrez, P.; Silva, N.; Díaz-Aburto, I.; García, A.; Martínez, I. Oxide copper nanoparticles stabilized by acrylonitrile and methyl methacrylate polar monomers through a ligand exchange reaction. Mater. Res. Express, 2021, 8(4), 045002.
[http://dx.doi.org/10.1088/2053-1591/abf0bb]
[188]
Sato, K.; Kondo, S.; Tsukada, M.; Ishigaki, T.; Kamiya, H. Influence of solid fraction on the optimum molecular weight of polymer dispersants in aqueous TiO2 nanoparticle suspensions. J. Am. Ceram. Soc., 2007, 90(11), 3401-3406.
[http://dx.doi.org/10.1111/j.1551-2916.2007.01906.x]
[189]
Palmqvist, L.; Holmberg, K. Dispersant adsorption and viscoelasticity of alumina suspensions measured by quartz crystal microbalance with dissipation monitoring and in situ dynamic rheology. Langmuir, 2008, 24(18), 9989-9996.
[http://dx.doi.org/10.1021/la800719u] [PMID: 18707142]
[190]
Nsib, F.; Ayed, N.; Chevalier, Y. Dispersion of hematite suspensions with sodium polymethacrylate dispersants in alkaline medium. Colloids Surf. A Physicochem. Eng. Asp., 2006, 286(1-3), 17-26.
[http://dx.doi.org/10.1016/j.colsurfa.2006.02.035]
[191]
Prasher, P.; Sharma, M.; Mudila, H.; Gupta, G.; Sharma, A.K.; Kumar, D.; Bakshi, H.A.; Negi, P.; Kapoor, D.N.; Chellappan, D.K.; Tambuwala, M.M.; Dua, K. Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid Interface Sci. Commun., 2020, 35, 100244.
[http://dx.doi.org/10.1016/j.colcom.2020.100244]
[192]
Pileni, M.P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater., 2003, 2(3), 145-150.
[http://dx.doi.org/10.1038/nmat817] [PMID: 12612669]
[193]
Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci., 2000, 30(1), 545-610.
[http://dx.doi.org/10.1146/annurev.matsci.30.1.545]
[194]
Feldmann, C. Polyol‐mediated synthesis of nanoscale functional materials. Adv. Funct. Mater., 2003, 13(2), 101-107.
[http://dx.doi.org/10.1002/adfm.200390014]
[195]
Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites-A review. Prog. Polym. Sci., 2013, 38(8), 1232-1261.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.02.003]
[196]
Schellenberger, E.A.; Reynolds, F.; Weissleder, R.; Josephson, L. Surface-functionalized nanoparticle library yields probes for apoptotic cells. ChemBioChem, 2004, 5(3), 275-279.
[http://dx.doi.org/10.1002/cbic.200300713] [PMID: 14997519]
[197]
Sun, E.Y.; Josephson, L.; Kelly, K.A.; Weissleder, R. Development of nanoparticle libraries for biosensing. Bioconjug. Chem., 2006, 17(1), 109-113.
[http://dx.doi.org/10.1021/bc050290e] [PMID: 16417258]
[198]
Kuhn, S.J.; Finch, S.K.; Hallahan, D.E.; Giorgio, T.D. Facile production of multivalent enzyme-nanoparticle conjugates. J. Magn. Magn. Mater., 2007, 311(1), 68-72.
[http://dx.doi.org/10.1016/j.jmmm.2006.10.1165]
[199]
Schiestel, T.; Brunner, H.; Tovar, G.E.M. Controlled surface functionalization of silica nanospheres by covalent conjugation reactions and preparation of high density streptavidin nanoparticles. J. Nanosci. Nanotechnol., 2004, 4(5), 504-511.
[http://dx.doi.org/10.1166/jnn.2004.079] [PMID: 15503436]
[200]
Hainfeld, J.F.; Liu, W.; Halsey, C.M.R.; Freimuth, P.; Powell, R.D. Ni-NTA-gold clusters target His-tagged proteins. J. Struct. Biol., 1999, 127(2), 185-198.
[http://dx.doi.org/10.1006/jsbi.1999.4149] [PMID: 10527908]
[201]
Gupta, M.; Caniard, A.; Touceda-Varela, Á.; Campopiano, D.J.; Mareque-Rivas, J.C. Nitrilotriacetic acid-derivatized quantum dots for simple purification and site-selective fluorescent labeling of active proteins in a single step. Bioconjug. Chem., 2008, 19(10), 1964-1967.
[http://dx.doi.org/10.1021/bc800273j] [PMID: 18800819]
[202]
Kim, J.; Park, H.Y.; Kim, J.; Ryu, J.; Kwon, D.Y.; Grailhe, R.; Song, R. Ni–nitrilotriacetic acid-modified quantum dots as a site-specific labeling agent of histidine-tagged proteins in live cells. Chem. Commun. (Camb.), 2008, (16), 1910-1912.
[http://dx.doi.org/10.1039/b719434j] [PMID: 18401515]
[203]
Briñas, R.P.; Hu, M.; Qian, L.; Lymar, E.S.; Hainfeld, J.F. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc., 2008, 130(3), 975-982.
[http://dx.doi.org/10.1021/ja076333e] [PMID: 18154334]
[204]
Li, Y.C.; Lin, Y.S.; Tsai, P.J.; Chen, C.T.; Chen, W.Y.; Chen, Y.C. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem., 2007, 79(19), 7519-7525.
[http://dx.doi.org/10.1021/ac0711440] [PMID: 17784733]
[205]
Mattoussi, H.; Mauro, J.M.; Goldman, E.R.; Anderson, G.P.; Sundar, V.C.; Mikulec, F.V.; Bawendi, M.G. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc., 2000, 122(49), 12142-12150.
[http://dx.doi.org/10.1021/ja002535y]
[206]
Sapsford, K.E.; Pons, T.; Medintz, I.L.; Higashiya, S.; Brunel, F.M.; Dawson, P.E.; Mattoussi, H. Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe− ZnS quantum dots. J. Phys. Chem. C, 2007, 111(31), 11528-11538.
[http://dx.doi.org/10.1021/jp073550t]
[207]
Pons, T.; Medintz, I.L.; Wang, X.; English, D.S.; Mattoussi, H. Solution-phase single quantum dot fluorescence resonance energy transfer. J. Am. Chem. Soc., 2006, 128(47), 15324-15331.
[http://dx.doi.org/10.1021/ja0657253] [PMID: 17117885]
[208]
Liu, W.; Howarth, M.; Greytak, A.B.; Zheng, Y.; Nocera, D.G.; Ting, A.Y.; Bawendi, M.G. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc., 2008, 130(4), 1274-1284.
[http://dx.doi.org/10.1021/ja076069p] [PMID: 18177042]
[209]
Tran, B.N.; Oh, E.; Susumu, K.; Wolak, M.; Gorshkov, K. High-throughput confocal imaging of quantum dot-conjugated SARS-CoV-2 spike trimers to track binding and endocytosis in HEK293T cells. J. Vis. Exp., 2022, (182), e63202.
[http://dx.doi.org/10.3791/63202] [PMID: 35532236]

© 2024 Bentham Science Publishers | Privacy Policy