Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Antioxidant Effects of Methanolic Extract of Quercus infectoria as a Supplement against Oxidative Stress Induced by Sub-acute Exposure to Arsenic; An in vivo Study

Author(s): Fariba Sharififar, Mokarame Pudineh Morref and Somayyeh Karami-Mohajeri*

Volume 13, Issue 7, 2023

Published on: 22 March, 2023

Article ID: e200223213828 Pages: 7

DOI: 10.2174/2210315513666230220145335

Price: $65

Abstract

Background: Exposure to arsenic through drinking water is a global health problem that causes multisystem toxicity, mainly by inducing oxidative stress and impairing cellular energy.

Objective: We aimed to evaluate the effect of Quercus infectoria gall extract (Qi) against oxidative stress induced by sub acute exposure to arsenic.

Methods: The plant galls were extracted with methanol and were used for the determination of total phenolic content using Folin-Cio calteu reagent. Male Wistar rats were randomly divided into 8 groups of 6 animals and treated for 30 days. Negative and positive control groups received, respectively, normal saline and sodium arsenite (5.5 mg/kg) by gavage. Treatment groups received three doses of Qi (200, 400, and 600 mg/kg/day) by intraperitoneal injection 2 h. after oral administration of normal saline or sodium arsenite (5.5 mg/kg) (As-Qi). After 30 days, all animals were anesthetized with ketamine/xylasine and 2 mL of blood was taken for measurement of total antioxidant capacity (TAC) using ferric reducing antioxidant power (FRAP), lipid peroxidation (measurement of malondialdehyde (MDA)) and protein carbonylation of plasma.

Results: Total phenolic content of the plant was determined to be 5.78 ± 0.23 mg gallic acid equivalent/g dried extract. The results of pharmacological studies indicated that in arsenic treated animals, a significant decrease in TAC, increase in lipid peroxidation and protein carbonylation happens compared to control group. Co-administration of Qi (600 mg/kg) with arsenic significantly increased TAC compared with arsenic group (0.245 ± 0.007 versus 0.183 ± 0.027 for arsenic) (p < 0.05), while the serum MDA level (1.880 ± 0.499 versus 2.795 ± 0.112 for arsenic) and protein carbonylation were decreased in this group compared with arsenic treated animals (0.128 ± 0.007 versus 0.159 ± 0.009 for arsenic) (p < 0.01). In non-treated arsenic animals (NTAS), all three doses of Qi improved oxidative stress markers.

Conclusion: Arsenic disrupt cellular antioxidant defense through overproduction of reactive oxygen species (ROS) and the Qi galls are able to revert some of these oxidant activities of arsenic. Previous studies have reported antioxidants in the plant and the present work can conclude that antioxidant effect of Qi is useful against happened oxidative stress in arsenic treated animals.

Graphical Abstract

[1]
Astolfi, E.; Maccagno, A.; García, F.J.C.; Vaccaro, R.; Stímola, R. Relation between arsenic in drinking water and skin cancer. Biol. Trace Elem. Res., 1981, 3(2), 133-143.
[http://dx.doi.org/10.1007/BF02990453] [PMID: 24271642]
[2]
Bustos, O.E.; Hartley, B.R. Ecotoxicology and testicular damage (Environmental chemical pollution). Int. J. Morphol., 2008, 26(4), 833-840.
[http://dx.doi.org/10.4067/S0717-95022008000400009]
[3]
Duker, A.; Carranza, E.; Hale, M. Arsenic geochemistry and health. Environ. Int., 2005, 31(5), 631-641.
[http://dx.doi.org/10.1016/j.envint.2004.10.020] [PMID: 15910959]
[4]
Luu, T.T.G.; Sthiannopkao, S.; Kim, K.W. Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal province of Cambodia. Environ. Int., 2009, 35(3), 455-460.
[http://dx.doi.org/10.1016/j.envint.2008.07.013] [PMID: 18774174]
[5]
Bissen, M.; Frimmel, F.H. Arsenic-A review. Part I: Occurrence, toxicity, speciation, mobility. Acta. Hydrochim. Hydrobiol., 2003, 31(1), 9-18.
[http://dx.doi.org/10.1002/aheh.200390025]
[6]
Thompson, M.E.; Johnston, A.M. Total sulphydryl content of embryos of arsenic-resistant and sensitive strains of the blue tick, Boophilus decoloratus. Nature, 1958, 181(4609), 647-648.
[http://dx.doi.org/10.1038/181647a0] [PMID: 13517256]
[7]
Anke, M; Ihnat, M; Stoeppler, M. Elements and their compounds in the environment: Occurrence, analysis and biological relevance. WILEY-VCH Verlag GmbH & Co. KGaA 2004.
[http://dx.doi.org/10.1002/9783527619634]
[8]
Vahter, M. Mechanisms of arsenic biotransformation. Toxicology, 2002, 181-182, 211-217.
[http://dx.doi.org/10.1016/S0300-483X(02)00285-8] [PMID: 12505313]
[9]
Dangleben, N.L.; Skibola, C.F.; Smith, M.T. Arsenic immunotoxicity: A review. Environ. Health, 2013, 12(1), 73.
[http://dx.doi.org/10.1186/1476-069X-12-73] [PMID: 24004508]
[10]
Liu, S.X.; Athar, M.; Lippai, I.; Waldren, C.; Hei, T.K. Induction of oxyradicals by arsenic: Implication for mechanism of genotoxicity. Proc. Natl. Acad. Sci., 2001, 98(4), 1643-1648.
[http://dx.doi.org/10.1073/pnas.98.4.1643] [PMID: 11172004]
[11]
Qi, H.; Chen, B.; Le, X.C.; Rong, J. Concomitant induction of heme oxygenase-1 attenuates the cytotoxicity of arsenic species from lumbricus extract in human liver HepG2 cells. Chem. Biodivers., 2012, 9(4), 739-754.
[http://dx.doi.org/10.1002/cbdv.201100133] [PMID: 22492492]
[12]
Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol., 2011, 31(2), 95-107.
[http://dx.doi.org/10.1002/jat.1649] [PMID: 21321970]
[13]
Palma-Lara, I.; Martínez-Castillo, M.; Quintana-Pérez, J.C.; Arellano-Mendoza, M.G.; Tamay-Cach, F.; Valenzuela-Limón, O.L.; García-Montalvo, E.A.; Hernández-Zavala, A. Arsenic exposure: A public health problem leading to several cancers. Regul. Toxicol. Pharmacol., 2020, 110, 104539.
[http://dx.doi.org/10.1016/j.yrtph.2019.104539] [PMID: 31765675]
[14]
Pari, L.; Mohamed Jalaludeen, A. Protective role of sinapic acid against arsenic-induced toxicity in rats. Chem. Biol. Interact., 2011, 194(1), 40-47.
[http://dx.doi.org/10.1016/j.cbi.2011.08.004] [PMID: 21864513]
[15]
Muthumani, M.; Prabu, S.M. Silibinin potentially protects arsenic-induced oxidative hepatic dysfunction in rats. Toxicol. Mech. Methods, 2012, 22(4), 277-288.
[http://dx.doi.org/10.3109/15376516.2011.647113] [PMID: 22229868]
[16]
Kassab, RB; El-Hennamy, RE. The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt. J. Basic Appl. Sci., 2017, 4(3), 160-167.
[http://dx.doi.org/10.1016/j.ejbas.2017.07.002]
[17]
Jain, A.; Yadav, A.; Bozhkov, A.I.; Padalko, V.I.; Flora, S.J.S. Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol. Environ. Saf., 2011, 74(4), 607-614.
[http://dx.doi.org/10.1016/j.ecoenv.2010.08.002] [PMID: 20719385]
[18]
Manna, P.; Sinha, M.; Sil, P.C. Protection of arsenic-induced testicular oxidative stress by arjunolic acid. Redox Rep., 2008, 13(2), 67-77.
[http://dx.doi.org/10.1179/135100008X259169] [PMID: 18339249]
[19]
Peruru, R.; Usha Rani, R.; Thatiparthi, J.; Sampathi, S.; Dodoala, S.; Prasad, K.V.S.R.G. Devil’s claw (Harpagophytum procumbens) ameliorates the neurobehavioral changes and neurotoxicity in female rats exposed to arsenic. Heliyon, 2020, 6(5), e03921.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03921] [PMID: 32420487]
[20]
Baharuddin, N.; Abdullah, H.; Abdul Wahab, W.N.W. Anti-candida activity of Quercus infectoria gall extracts against Candida species. J. Pharm. Bioallied Sci., 2015, 7(1), 15-20.
[http://dx.doi.org/10.4103/0975-7406.148742] [PMID: 25709331]
[21]
Khazaeli, P.; Goldoozian, R.; Sharififar, F. An evaluation of extracts of five traditional medicinal plants from Iran on the inhibition of mushroom tyrosinase activity and scavenging of free radicals. Int. J. Cosmet. Sci., 2009, 31(5), 375-381.
[http://dx.doi.org/10.1111/j.1468-2494.2009.00503.x] [PMID: 19467035]
[22]
Kaur, G.; Athar, M.; Alam, M.S. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages. Chem. Biol. Interact., 2008, 171(3), 272-282.
[http://dx.doi.org/10.1016/j.cbi.2007.10.002] [PMID: 18076871]
[23]
Pithayanukul, P.; Nithitanakool, S.; Bavovada, R. Hepatoprotective potential of extracts from seeds of Areca catechu and nutgalls of Quercus infectoria. Molecules, 2009, 14(12), 4987-5000.
[http://dx.doi.org/10.3390/molecules14124987] [PMID: 20032872]
[24]
Umachigi, SP; Jayaveera, K; Ashok, K; Kumar, G Antioxidant potential of galls of Quercus infectoria. Int. J. Pharmacol., 2007, 5(2), 746-751.
[http://dx.doi.org/10.5580/cd7]
[25]
Umachigi, S.P.; Jayaveera, K.N.; Ashok Kumar, C.K.; Kumar, G.S.; Vrushabendra swamy, B.M.; Kishore Kumar, D.V. Studies on wound healing properties of Quercus infectoria. Trop. J. Pharm. Res., 2008, 7(1), 913-919.
[http://dx.doi.org/10.4314/tjpr.v7i1.14677]
[26]
Rameshk, M.; Sharififar, F.; Mehrabani, M.; Pardakhty, A.; Farsinejad, A.; Mehrabani, M. Proliferation and in vitro wound healing effects of the microniosomes containing Narcissus tazetta l. bulb extract on primary human fibroblasts (HDFs). Daru, 2018, 26(1), 31-42.
[http://dx.doi.org/10.1007/s40199-018-0211-7] [PMID: 30209758]
[27]
Samareh Fekri, M.; Mandegary, A.; Sharififar, F.; Poursalehi, H.R.; Nematollahi, M.H.; Izadi, A.; Mehdipour, M.; Asadi, A.; Samareh Fekri, M. Protective effect of standardized extract of Myrtus communis L. (myrtle) on experimentally bleomycin-induced pulmonary fibrosis: Biochemical and histopathological study. Drug Chem. Toxicol., 2018, 41(4), 408-414.
[http://dx.doi.org/10.1080/01480545.2018.1459670] [PMID: 29747538]
[28]
Messarah, M.; Klibet, F.; Boumendjel, A.; Abdennour, C.; Bouzerna, N.; Boulakoud, M.S.; El Feki, A. Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp. Toxicol. Pathol., 2012, 64(3), 167-174.
[http://dx.doi.org/10.1016/j.etp.2010.08.002] [PMID: 20851583]
[29]
Sharififar, F.; Yassa, N.; Mozaffarian, V. Bioactivity of major components from the seeds of Bunium persicum (Boiss.) Fedtch. Pak. J. Pharm. Sci., 2010, 23(3), 300-304.
[PMID: 20566444]
[30]
Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A-G. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol, 1990, 186, 464-478.
[http://dx.doi.org/10.1016/0076-6879(90)86141-h] [PMID: 1978225]
[31]
(a) Flora, S.J.S. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med., 2011, 51(2), 257-281.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.008] [PMID: 21554949];
(b) Yunus, MA.; - Hasnida, MN.; Salleh, Mn.; Syukriah, AR. Total Phenolic Content and Antioxidant Activity of Quercus infectoria Galls Using Supercritical CO2 Extraction Technique and Its Comparison with Soxhlet Extraction. Journal of Science & Technology., 2015, 23, 287-295.;
(c) Hasmida, MN.; Syukriah, AR.; Salleh, LM.; Azizi, CY. Effect of different extraction techniques on total phenolic content and antioxidant activity of quercus infectoria galls. Internation Food Research Journal, 2014, 21(3), 1039-1043.
[32]
Dua, T.K.; Dewanjee, S.; Khanra, R.; Joardar, S.; Barma, S.; Das, S.; Zia-Ul-Haq, M.; De Feo, V. Cytoprotective and antioxidant effects of an edible herb, Enhydra fluctuans Lour. (Asteraceae), against experimentally induced lead acetate intoxication. PLoS One, 2016, 11(2), e0148757.
[http://dx.doi.org/10.1371/journal.pone.0148757] [PMID: 26859407]
[33]
Das, A.K.; Sahu, R.; Dua, T.K.; Bag, S.; Gangopadhyay, M.; Sinha, M.K.; Dewanjee, S. Arsenic-induced myocardial injury: Protective role of Corchorus olitorius leaves. Food Chem. Toxicol., 2010, 48(5), 1210-1217.
[http://dx.doi.org/10.1016/j.fct.2010.02.012] [PMID: 20156518]
[34]
Sultan, M.T.; Butt, M.S.; Karim, R.; Ahmed, W.; Kaka, U.; Ahmad, S.; Dewanjee, S.; Jaafar, H.Z.E.; Zia-Ul-Haq, M. Nigella sativa fixed and essential oil modulates glutathione redox enzymes in potassium bromate induced oxidative stress. BMC Complement. Altern. Med., 2015, 15(1), 330.
[http://dx.doi.org/10.1186/s12906-015-0853-7] [PMID: 26385559]
[35]
Manna, P.; Sinha, M.; Sil, P.C. Protection of arsenic-induced hepatic disorder by arjunolic acid. Basic Clin. Pharmacol. Toxicol., 2007, 101(5), 333-338.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00132.x] [PMID: 17910617]
[36]
Sumedha, N.C.; Miltonprabu, S. Diallyl trisulfide ameliorates arsenic-induced hepatotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. Hum. Exp. Toxicol., 2015, 34(5), 506-525.
[http://dx.doi.org/10.1177/0960327114543933] [PMID: 25062976]
[37]
Rana, T.; Bera, A.K.; Das, S.; Bhattacharya, D.; Bandyopadhyay, S.; Pan, D.; Kumar Das, S. Effect of chronic intake of arseniccontaminated water on blood oxidative stress indices in cattle in an arsenic-affected zone. Ecotoxicol. Environ. Saf., 2010, 73(6), 1327-1332.
[http://dx.doi.org/10.1016/j.ecoenv.2010.06.002] [PMID: 20655591]
[38]
Flora, S.J.; Bhadauria, S.; Kannan, G.M.; Singh, N. Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: A review. J. Environ. Biol., 2007, 28(S2), 333-347.
[PMID: 17929749]
[39]
Hu, Y.; Li, J.; Lou, B.; Wu, R.; Wang, G.; Lu, C.; Wang, H.; Pi, J.; Xu, Y. The role of reactive oxygen species in arsenic toxicity. Biomolecules, 2020, 10(2), 240.
[http://dx.doi.org/10.3390/biom10020240] [PMID: 32033297]
[40]
Shila, S.; Kokilavani, V.; Subathra, M.; Panneerselvam, C. Brain regional responses in antioxidant system to α-lipoic acid in arsenic intoxicated rat. Toxicology, 2005, 210(1), 25-36.
[http://dx.doi.org/10.1016/j.tox.2005.01.003] [PMID: 15804455]
[41]
Sharififar, F.; Moshafi, M.H.; Shafazand, E.; Koohpayeh, A. Acetyl cholinesterase inhibitory, antioxidant and cytotoxic activity of three dietary medicinal plants. Food Chem., 2012, 130(1), 20-23.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.034]
[42]
Sharififar, F.; Derakhshanfar, A.; Dehghan-Nudeh, G.; Abbasi, N.; Abbasi, R.; Gharaei, R.R.; Koohpayeh, A.; Daneshpajouh, M. In vivo antioxidant activity of Zataria multiflora Boiss essential oil. Pak. J. Pharm. Sci., 2011, 24(2), 221-225.
[PMID: 21454174]
[43]
Dugaheh, M.A.; Meisami, F.; Torabian, Z.; Sharififar, F. Antioxidant effect and study of bioactive components of valeriana sisymbriifolia and Nardostachys jatamansii in comparison to Valeriana officinalis. Pak. J. Pharm. Sci., 2013, 26(1), 53-58.
[PMID: 23261727]
[44]
Choudhury, R.P.; Kumar, A.; Garg, A.N. Analysis of Indian mint (Mentha spicata) for essential, trace and toxic elements and its antioxidant behaviour. J. Pharm. Biomed. Anal., 2006, 41(3), 825-832.
[http://dx.doi.org/10.1016/j.jpba.2006.01.048] [PMID: 16504451]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy