Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

An Innovative Metal Artifact Reduction Algorithm based on Res-U-Net GANs

Author(s): Ziheng Zhang, Minghan Yang, Lei Xu*, Jiazhao Yang, Hu Guo and Jianye Wang

Volume 19, Issue 13, 2023

Published on: 20 March, 2023

Article ID: e170223213750 Pages: 12

DOI: 10.2174/1573405619666230217102534

Price: $65

Abstract

Background: During X-ray computed tomography (CT) scans, the metal implants in the patient's body will produce severe artifacts, which reduce the image quality and interferes with the doctor's judgment. Therefore, it is necessary to develop an algorithm for removing metal artifacts in CT images and reconstructing high-quality images.

Objective: In this article, we proposed a generative adversarial networks (GANs)-based metal artifact reduction algorithm for the image domain, Res-U-Net GANs. This method can effectively suppress noise and remove metal artifacts in CT images.

Methods: Our new approach includes a generator and a discriminator. The generator contains several residual blocks, a U-Net structure and skip connections. And a weighted joint loss function is also used for training. These structures can reduce metal artifacts in images, improve image quality, and restore implant details.

Results: We use SSIM, PSNR and RMSE to evaluate the performance of the proposed method. The mean SSIM, PSNR and RMSE of the testing set images are 0.977, 39.044 and 0.011, respectively. And the trained model which is compiled and encapsulated, also show excellent performance in processing clinical data sets, which can remove metal artifacts in clinical CT images.

Conclusion: We consider that the proposed algorithm can remove metal artifacts in CT images and restore image details, which is very helpful for radiologists.

Graphical Abstract

[1]
Brooks RA, Chiro GD. Beam hardening in X-ray reconstructive tomography. Phys Med Biol 1976; 21(3): 390-8.
[http://dx.doi.org/10.1088/0031-9155/21/3/004] [PMID: 778862]
[2]
Kijewski PK, Bjärngard BE. Correction for beam hardening in computed tomography. Med Phys 1978; 5(3): 209-14.
[http://dx.doi.org/10.1118/1.594429] [PMID: 672814]
[3]
Kalender WA, Hebel R, Ebersberger J. Reduction of CT artifacts caused by metallic implants. Radiology 1987; 164(2): 576-7.
[http://dx.doi.org/10.1148/radiology.164.2.3602406] [PMID: 3602406]
[4]
Abdoli M, Ay MR, Ahmadian A, Dierckx RAJO, Zaidi H. Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms optimized by a genetic algorithm. Med Phys 2010; 37(12): 6166-77.
[http://dx.doi.org/10.1118/1.3511507] [PMID: 21302773]
[5]
Bazalova M, Beaulieu L, Palefsky S, Verhaegen F. Correction of CT artifacts and its influence on Monte Carlo dose calculations. Med Phys 2007; 34(6Part1): 2119-32.
[http://dx.doi.org/10.1118/1.2736777] [PMID: 17654915]
[6]
Zhao S, Robeltson DD, Wang G, Whiting B, Bae KT. X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses. IEEE Trans Med Imaging 2000; 19(12): 1238-47.
[http://dx.doi.org/10.1109/42.897816] [PMID: 11212372]
[7]
Zhang Y, Pu YF, Hu JR, Liu Y, Zhou JL. A new CT metal artifacts reduction algorithm based on fractional-order sinogram inpainting. J XRay Sci Technol 2011; 19(3): 373-84.
[http://dx.doi.org/10.3233/XST-2011-0300] [PMID: 21876286]
[8]
Duan X, Zhang L, Xiao Y, et al. Metal artifact reduction in CT images by sinogram TV inpainting[C]//2008 IEEE Nuclear Science Symposium Conference Record. IEEE 2008: 4175-7.
[http://dx.doi.org/10.1109/NSSMIC.2008.4774201]
[9]
Peng C, Qiu B, Li M, et al. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction. Biomed Eng Online 2017; 16(1): 1-17.
[http://dx.doi.org/10.1186/s12938-016-0292-9] [PMID: 28086973]
[10]
Meyer E, Raupach R, Lell M, Schmidt B, Kachelrieß M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 2010; 37(10): 5482-93.
[http://dx.doi.org/10.1118/1.3484090] [PMID: 21089784]
[11]
Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw 2015; 61: 85-117.
[http://dx.doi.org/10.1016/j.neunet.2014.09.003] [PMID: 25462637]
[12]
Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 2017; 39(6): 1137-49.
[http://dx.doi.org/10.1109/TPAMI.2016.2577031] [PMID: 27295650]
[13]
Bochkovskiy A, Wang C-Y, Liao H-YM. Yolov4: Optimal speed and accuracy of object detection. arXiv 2004; 1093441.
[14]
Zia T, Zahid U. Long short-term memory recurrent neural network architectures for Urdu acoustic modeling. Int J Speech Technol 2019; 22(1): 21-30.
[http://dx.doi.org/10.1007/s10772-018-09573-7]
[15]
Chen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 2017; 36(12): 2524-35.
[http://dx.doi.org/10.1109/TMI.2017.2715284] [PMID: 28622671]
[16]
Liu Z, Bicer T, Kettimuthu R, Gursoy D, De Carlo F, Foster I. Tomogan: low-dose synchrotron X-ray tomography with generative adversarial networks. J Opt Soc Am A Opt Image Sci Vis 2020; 37(3): 422-34.
[http://dx.doi.org/10.1364/JOSAA.375595] [PMID: 32118926]
[17]
Goceri E. Image augmentation for deep learning based lesion classification from skin images 2020 IEEE 4th International Conference on Image Processing Applications and Systems (IPAS IEEE) 2020; 144-8.
[http://dx.doi.org/10.1109/IPAS50080.2020.9334937]
[18]
Gjesteby L, Yang Q, Xi Y, et al. Deep learning methods to guide CT image reconstruction and reduce metal artifacts. Med Imag 2017; 2017: 10132.
[http://dx.doi.org/10.1117/12.2254091]
[19]
Gjesteby L, Yang Q, Xi Y, et al. Reducing metal streak artifacts in CT images via deep learning: Pilot results. The 14th international meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine 2017; 14(6): 611-4.
[http://dx.doi.org/10.12059/Fully3D.2017-11-3202009]
[20]
Tang C, Zhang W, Wang L, et al. Generative adversarial network-based sinogram super-resolution for computed tomography imaging. Phys Med Biol 2020; 65(23)235006
[http://dx.doi.org/10.1088/1361-6560/abc12f] [PMID: 33053522]
[21]
You C, Li G, Zhang Y, et al. CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble. Trans Med Imag 2019; 39(1): 188-203.
[http://dx.doi.org/10.1109/TMI.2019.2922960]
[22]
Park HS, Lee SM, Kim HP, Seo JK, Chung YE. CT sinogram‐consistency learning for metal‐induced beam hardening correction. Med Phys 2018; 45(12): 5376-84.
[http://dx.doi.org/10.1002/mp.13199] [PMID: 30238586]
[23]
Park HS, Lee SM, Kim HP, Seo JK. Machine-learning-based nonlinear decomposition of ct images for metal artifact reduction. arXiv 2017; 2017170800244;
[24]
Liao H, Lin WA, Zhou SK, Luo J. Adn: artifact disentanglement network for unsupervised metal artifact reduction. IEEE Trans Med Imaging 2020; 39(3): 634-43.
[http://dx.doi.org/10.1109/TMI.2019.2933425] [PMID: 31395543]
[25]
Peng C, Li B, Liang P, et al. Chen. A cross-domain metal trace restoring network for reducing X-ray ct metal artifacts. IEEE Trans Med Imaging 2020; 39(12): 3831-42.
[http://dx.doi.org/10.1109/TMI.2020.3005432] [PMID: 32746126]
[26]
Zhang Y, Yu H. Convolutional neural network based metal artifact reduction in x-ray computed tomography. IEEE Trans Med Imaging 2018; 37(6): 1370-81.
[http://dx.doi.org/10.1109/TMI.2018.2823083] [PMID: 29870366]
[27]
Yu L, Zhang Z, Li X, Xing L. Deep sinogram completion with image prior for metal artifact reduction in CT images. IEEE Trans Med Imaging 2021; 40(1): 228-38.
[http://dx.doi.org/10.1109/TMI.2020.3025064] [PMID: 32956044]
[28]
Wang H, Li Y, Zhang H, et al. InDuDoNet: an interpretable dual domain network for CT metal artifact reduction. Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part VI 24. Springer International Publishing 2021; pp. 107-18.
[http://dx.doi.org/10.1007/978-3-030-87231-1_11]
[29]
Zhou B, Chen X, Zhou SK, Duncan JS, Liu C. DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography. Med Image Anal 2022; 202275102289
[http://dx.doi.org/10.1016/j.media.2021.102289] [PMID: 34758443]
[30]
Lee J, Gu J, Ye JC, Unsupervised CT. Unsupervised CT metal artifact learning using attention-guided β-CycleGAN. IEEE Trans Med Imaging 2021; 40(12): 3932-44.
[http://dx.doi.org/10.1109/TMI.2021.3101363] [PMID: 34329157]
[31]
Lyu Y, Lin W A, Liao H, et al. Encoding metal mask projection for metal artifact reduction in computed tomography [C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part II 23. Springer International Publishing,. 2020: 147-57.
[http://dx.doi.org/10.1007/978-3-030-59713-9_15]
[32]
Wang T, Xia W, Huang Y, et al. Dual-domain adaptive-scaling nonlocal network for CT metal artifact reduction [C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI 24. Springer International Publishing,. 2021: pp. 243-253.
[http://dx.doi.org/10.1007/978-3-030-87231-1_24]
[33]
Peng C, Li B, Li M, et al. An irregular metal trace inpainting network for x‐ray CT metal artifact reduction. Med Phys 2020; 47(9): 4087-100.
[http://dx.doi.org/10.1002/mp.14295] [PMID: 32463485]
[34]
Yan K, Wang X. Le Lu, and Ronald M Summers. Deeplesion: automated mining of large-scale lesion annotations anction with deep learning. J Med Imaging (Bellingham) 2018; 5(3)036501
[http://dx.doi.org/10.1117/1.JMI.5.3.036501] [PMID: 30035154]
[35]
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing 2015; pp. 234-41.
[http://dx.doi.org/10.1007/978-3-319-24574-4_28]
[36]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. arXiv 2016; 770-8.
[http://dx.doi.org/10.1109/CVPR.2016.90]
[37]
Shang W, Sohn K, Almeida D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units international conference on machine learning. PMLR 2016; pp. 2217-25. https://proceedings.mlr.press/v48/shang16.html
[38]
Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of the IEEE conference on computer vision and pattern recognition. 4681-90. https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html
[39]
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440 https://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
[40]
Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer International Publishing, 2014; 818-33.
[http://dx.doi.org/10.1007/978-3-319-10590-1_53]
[41]
Ulyanov D, Vedaldi A, Lempitsky V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016; 2016: 160708022.
[42]
Andrew L. Rectifier nonlinearities improve neural network acoustic models. Proc ICML 2013. 30: 3.
[43]
Mıstık S, Ferahbaş A. Approach to treatment of acne vulgaris in family medicine. Turkish J Family Practice 2005; 9(2): 71-8.
[44]
Goceri E. An application for automated diagnosis of facial dermatological diseases. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 2021; 6(3): 91-.
[45]
Goceri E. Diagnosis of skin diseases in the era of deep learning and mobile technology. Comput Biol Med 2021; 134134104458
[http://dx.doi.org/10.1016/j.compbiomed.2021.104458] [PMID: 34000524]
[46]
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004; 13(4): 600-12.
[http://dx.doi.org/10.1109/TIP.2003.819861] [PMID: 15376593]
[47]
Kawahara D, Ozawa S, Kimura T, Nagata Y. Image synthesis of monoenergetic CT image in dual‐energy CT using kilovoltage CT with deep convolutional generative adversarial networks. J Appl Clin Med Phys 2021; 22(4): 184-92.
[http://dx.doi.org/10.1002/acm2.13190] [PMID: 33599386]
[48]
Hore A, Ziou D. Image quality metrics: PSNR vs. SSIM. 2010 20th international conference on pattern recognition. IEEE 2010. 2366-9.
[http://dx.doi.org/10.1109/ICPR.2010.579]
[49]
Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior. Proceedings of the IEEE conference on computer vision and pattern recognition 2018. 9446-54. https://openaccess.thecvf.com/content_cvpr_2018/html/Ulyanov_Deep_Image_Prior_CVPR_2018_paper.html

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy