Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Electrolyte Imbalance and Neurologic Injury

Author(s): Jordan Poe, Sai Sriram, Yusuf Mehkri and Brandon Lucke-Wold*

Volume 23, Issue 7, 2024

Published on: 09 March, 2023

Page: [841 - 851] Pages: 11

DOI: 10.2174/1871527322666230215144649

Price: $65

Abstract

Neurologic injury continues to be a debilitating worldwide disease with high morbidity and mortality. The systemic sequelae of a neural insult often lead to prolonged hospital stays and challenging nutritional demands that contribute to poorer prognoses. Clinical management of a given condition should prioritize preserving the homeostatic parameters disrupted by inflammatory response cascades following the primary insult. This focused review examines the reciprocal relationship between electrolyte disturbance and neurologic injury. A prolonged electrolyte imbalance can significantly impact morbidity and mortality in neurologic injuries. A detailed overview of the major electrolytes and their physiologic, iatrogenic, and therapeutic implications are included. The pathophysiology of how dysnatremias, dyskalemias, dyscalcemias, and dysmagnesemias occur and the symptoms they can induce are described. The manifestations in relation to traumatic brain injury, status epilepticus, and acute ischemic stroke are addressed. Each type of injury and the strength of its association with a disruption in either sodium, potassium, calcium, or magnesium is examined. The value of supplementation and replacement is highlighted with an emphasis on the importance of early recognition in this patient population. This review also looks at the current challenges associated with correcting imbalances in the setting of different injuries, including the relevant indications and precautions for some of the available therapeutic interventions. Based on the findings of this review, there may be a need for more distinct clinical guidelines on managing different electrolyte imbalances depending on the specified neurologic injury. Additional research and statistical data on individual associations between insult and imbalance are needed to support this potential future call for context-based protocols.

Graphical Abstract

[1]
Feigin VL, Abajobir AA, Abate KH, et al. Global, regional, and national burden of neurological disorders during 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 2017; 16(11): 877-97.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[2]
Lund SB, Gjeilo KH, Moen KG, Schirmer-Mikalsen K, Skandsen T, Vik A. Moderate traumatic brain injury, acute phase course and deviations in physiological variables: An observational study. Scand J Trauma Resusc Emerg Med 2016; 24(1): 77.
[http://dx.doi.org/10.1186/s13049-016-0269-5] [PMID: 27216804]
[3]
O’leary RA, Nichol AD. Pathophysiology of severe traumatic brain injury. J Neurosurg Sci 2018; 62(5): 542-8.
[http://dx.doi.org/10.23736/S0390-5616.18.04501-0] [PMID: 29790727]
[4]
Ryttlefors M, Howells T, Nilsson P, Ronne-Engström E, Enblad P. Secondary insults in subarachnoid hemorrhage: Occurrence and impact on outcome and clinical deterioration. Neurosurgery 2007; 61(4): 704-15.
[http://dx.doi.org/10.1227/01.NEU.0000298898.38979.E3] [PMID: 17986931]
[5]
Rink TJ. Aspects of the regulation of cell volume. J Physiol 1984; 79(6): 388-94.
[PMID: 6100307]
[6]
Riggs JE. Neurologic manifestations of electrolyte disturbances. Neurol Clin 2002; 20(1): 227-39.
[http://dx.doi.org/10.1016/S0733-8619(03)00060-4] [PMID: 11754308]
[7]
Diringer M. Neurologic manifestations of major electrolyte abnormalities. Handb Clin Neurol 2017; 141: 705-13.
[http://dx.doi.org/10.1016/B978-0-444-63599-0.00038-7] [PMID: 28190443]
[8]
Adler SM, Verbalis JG. Disorders of body water homeostasis in critical illness. Endocrinol Metab Clin North Am 2006; 35(4): 873-94.
[http://dx.doi.org/10.1016/j.ecl.2006.09.011] [PMID: 17127152]
[9]
Rhoney DH, Parker D Jr. Considerations in fluids and electrolytes after traumatic brain injury. Nutr Clin Pract 2006; 21(5): 462-78.
[http://dx.doi.org/10.1177/0115426506021005462] [PMID: 16998145]
[10]
Raj R, Bendel S, Reinikainen M, et al. Costs, outcome and cost-effectiveness of neurocritical care: A multi-center observational study. Crit Care 2018; 22(1): 225.
[http://dx.doi.org/10.1186/s13054-018-2151-5] [PMID: 30236140]
[11]
Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: A summary report and call to action. Ann Neurol 2017; 81(4): 479-84.
[http://dx.doi.org/10.1002/ana.24897] [PMID: 28198092]
[12]
Cnossen MC, Polinder S, Andriessen TM, et al. Causes and consequences of treatment variation in moderate and severe traumatic brain injury. Crit Care Med 2017; 45(4): 660-9.
[http://dx.doi.org/10.1097/CCM.0000000000002263] [PMID: 28169945]
[13]
Polderman KH, Bloemers FW, Peerdeman SM, Girbes ARJ. Hypomagnesemia and hypophosphatemia at admission in patients with severe head injury. Crit Care Med 2000; 28(6): 2022-5.
[http://dx.doi.org/10.1097/00003246-200006000-00057] [PMID: 10890658]
[14]
Hoorn EJ, Betjes MGH, Weigel J, Zietse R. Hypernatraemia in critically ill patients: Too little water and too much salt. Nephrol Dial Transplant 2008; 23(5): 1562-8.
[http://dx.doi.org/10.1093/ndt/gfm831] [PMID: 18065827]
[15]
Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol 2015; 10(5): 852-62.
[http://dx.doi.org/10.2215/CJN.10741013] [PMID: 25078421]
[16]
Chen J, Sabir S, Al Khalili Y. Physiology, osmoregulation and excretionStatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[PMID: 31082152]
[17]
Herman JP, McKlveen JM, Ghosal S, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 2016; 6(2): 603-21.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[18]
Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 2008; 9(7): 519-31.
[http://dx.doi.org/10.1038/nrn2400] [PMID: 18509340]
[19]
Itoi K, Helmreich DL, Lopez-Figueroa MO, Watson SJ. Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine. J Neurosci 1999; 19(13): 5464-72.
[http://dx.doi.org/10.1523/JNEUROSCI.19-13-05464.1999] [PMID: 10377355]
[20]
Wijayatilake DS, Sherren PB, Jigajinni SV. Systemic complications of traumatic brain injury. Curr Opin Anaesthesiol 2015; 28(5): 525-31.
[http://dx.doi.org/10.1097/ACO.0000000000000236] [PMID: 26280821]
[21]
Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J. Hyponatremia in patients with traumatic brain injury: Incidence, mechanism, and response to sodium supplementation or retention therapy with hydrocortisone. Surg Neurol 2007; 68(4): 387-93.
[http://dx.doi.org/10.1016/j.surneu.2006.11.052] [PMID: 17905062]
[22]
Téblick A, Peeters B, Langouche L, Van den Berghe G. Adrenal function and dysfunction in critically ill patients. Nat Rev Endocrinol 2019; 15(7): 417-27.
[http://dx.doi.org/10.1038/s41574-019-0185-7] [PMID: 30850749]
[23]
Aimaretti G, Ambrosio MR, Di Somma C, et al. Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: Screening study at 3 months after the brain injury. Clin Endocrinol 2004; 61(3): 320-6.
[http://dx.doi.org/10.1111/j.1365-2265.2004.02094.x] [PMID: 15355447]
[24]
Kgosidialwa O, Agha A. Hypopituitarism post traumatic brain injury (TBI): Review. Ir J Med Sci 2019; 188(4): 1201-6.
[http://dx.doi.org/10.1007/s11845-019-02007-6] [PMID: 30931510]
[25]
Krahulik D, Zapletalova J, Frysak Z, Vaverka M. Dysfunction of hypothalamic-hypophysial axis after traumatic brain injury in adults. J Neurosurg 2010; 113(3): 581-4.
[http://dx.doi.org/10.3171/2009.10.JNS09930] [PMID: 19929195]
[26]
Edelman IS, Leibman J, O’meara MP, Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest 1958; 37(9): 1236-56.
[http://dx.doi.org/10.1172/JCI103712] [PMID: 13575523]
[27]
Arampatzis S, Frauchiger B, Fiedler GM, et al. Characteristics, symptoms, and outcome of severe dysnatremias present on hospital admission. Am J Med 2012; 125(11): 1125.e1-7.
[http://dx.doi.org/10.1016/j.amjmed.2012.04.041] [PMID: 22939097]
[28]
Braun MM, Mahowald M. Electrolytes: Sodium disorders. FP Essent 2017; 459: 11-20.
[PMID: 28806046]
[29]
Allen NJ. Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol 2014; 30(1): 439-63.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013053] [PMID: 25288116]
[30]
Palmer BF, Clegg DJ. Physiology and pathophysiology of potassium homeostasis: Core curriculum 2019. Am J Kidney Dis 2019; 74(5): 682-95.
[http://dx.doi.org/10.1053/j.ajkd.2019.03.427] [PMID: 31227226]
[31]
Viera AJ, Wouk N. Potassium disorders: Hypokalemia and hyperkalemia. Am Fam Physician 2015; 92(6): 487-95.
[PMID: 26371733]
[32]
Mark MD, Schwitalla JC, Groemmke M, Herlitze S. Keeping our calcium in balance to maintain our balance. Biochem Biophys Res Commun 2017; 483(4): 1040-50.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.020] [PMID: 27392710]
[33]
Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-specific iPSCs-based models of neurodegenerative diseases: Focus on aberrant calcium signaling. Int J Mol Sci 2022; 23(2): 624.
[http://dx.doi.org/10.3390/ijms23020624] [PMID: 35054808]
[34]
Kirkland A, Sarlo G, Holton K. The role of magnesium in neurological disorders. Nutrients 2018; 10(6): 730.
[http://dx.doi.org/10.3390/nu10060730] [PMID: 29882776]
[35]
Yamamoto T, Mori K, Esaki T, Nakao Y, Tokugawa J, Watanabe M. Preventive effect of continuous cisternal irrigation with magnesium sulfate solution on angiographic cerebral vasospasms associated with aneurysmal subarachnoid hemorrhages: A randomized controlled trial. J Neurosurg 2016; 124(1): 18-26.
[http://dx.doi.org/10.3171/2015.1.JNS142757] [PMID: 26230471]
[36]
Noronha LJ, Matuschak GM. Magnesium in critical illness: Metabolism, assessment, and treatment. Intensive Care Med 2002; 28(6): 667-79.
[http://dx.doi.org/10.1007/s00134-002-1281-y] [PMID: 12107669]
[37]
Cascella M, Vaqar S. Hypermagnesemia StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[PMID: 31747218]
[38]
Norisue Y, Fujimoto Y, Nakagawa K. Preliminary guideline- and pathophysiology-based protocols for neurocritical care. J Intensive Care 2018; 6(1): 45.
[http://dx.doi.org/10.1186/s40560-018-0316-6] [PMID: 30094030]
[39]
Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 2014; 170(3): G1-G47.
[http://dx.doi.org/10.1530/EJE-13-1020] [PMID: 24569125]
[40]
Vassar MJ, Fischer RP, O’Brien PE, et al. A multicenter trial for resuscitation of injured patients with 7.5% sodium chloride. The effect of added dextran 70. Arch Surg 1993; 128(9): 1003-11.
[http://dx.doi.org/10.1001/archsurg.1993.01420210067009] [PMID: 7690225]
[41]
Decaux G, Andres C, Gankam Kengne F, Soupart A. Treatment of euvolemic hyponatremia in the intensive care unit by urea. Crit Care 2010; 14(5): R184.
[http://dx.doi.org/10.1186/cc9292] [PMID: 20946646]
[42]
Human T, Cook AM, Anger B, et al. Treatment of hyponatremia in patients with acute neurological injury. Neurocrit Care Treatment of Hyponatremia in Patients with Acute Neurological Injury 2017; 27(2): 242-8.
[http://dx.doi.org/10.1007/s12028-016-0343-x] [PMID: 28054290.0]
[43]
Hannon MJ, Sherlock M, Thompson CJ. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage – In “Endocrine Management in the Intensive Care Unit”. Best Pract Res Clin Endocrinol Metab 2011; 25(5): 783-98.
[http://dx.doi.org/10.1016/j.beem.2011.06.001] [PMID: 21925078]
[44]
Misra UK, Kalita J, Kumar M. Safety and efficacy of fludrocortisone in the treatment of cerebral salt wasting in patients with tuberculous meningitis. JAMA Neurol 2018; 75(11): 1383-91.
[http://dx.doi.org/10.1001/jamaneurol.2018.2178] [PMID: 30105362]
[45]
Rajagopal R, Swaminathan G, Nair S, Joseph M. Hyponatremia in traumatic brain injury: A practical management protocol. World Neurosurg 2017; 108: 529-33.
[http://dx.doi.org/10.1016/j.wneu.2017.09.013] [PMID: 28899834]
[46]
Kolmodin L, Sekhon MS, Henderson WR, Turgeon AF, Griesdale DEG. Hypernatremia in patients with severe traumatic brain injury: A systematic review. Ann Intensive Care 2013; 3(1): 35.
[http://dx.doi.org/10.1186/2110-5820-3-35] [PMID: 24196399]
[47]
Muhsin SA, Mount DB. Diagnosis and treatment of hypernatremia. Best Pract Res Clin Endocrinol Metab 2016; 30(2): 189-203.
[http://dx.doi.org/10.1016/j.beem.2016.02.014] [PMID: 27156758]
[48]
Beal AL, Scheltema KE, Beilman GJ, Deuser WE. Hypokalemia following trauma. Shock 2002; 18(2): 107-10.
[http://dx.doi.org/10.1097/00024382-200208000-00002] [PMID: 12166770]
[49]
Honarmand A, Safavi M, Mehrizi M, Dastjerdi M, Ardestani M. Hypokalemia at the time of admission to the intensive care unit (icu) increases the need for mechanical ventilation and time of ventilation in critically ill trauma patients. Adv Biomed Res 2017; 6(1): 50.
[http://dx.doi.org/10.4103/2277-9175.205189] [PMID: 28620594]
[50]
Ookuma T, Miyasho K, Kashitani N, et al. The clinical relevance of plasma potassium abnormalities on admission in trauma patients: A retrospective observational study. J Intensive Care 2015; 3(1): 37.
[http://dx.doi.org/10.1186/s40560-015-0103-6] [PMID: 26269745]
[51]
Reinert M, Khaldi A, Zauner A, Doppenberg E, Choi S, Bullock R. High level of extracellular potassium and its correlates after severe human head injury: Relationship to high intracranial pressure. J Neurosurg 2000; 93(5): 800-7.
[http://dx.doi.org/10.3171/jns.2000.93.5.0800] [PMID: 11059661]
[52]
Schaefer M, Link J, Hannemann L, Rudolph KH. Excessive hypokalemia and hyperkalemia following head injury. Intensive Care Med 1995; 21(3): 235-7.
[http://dx.doi.org/10.1007/BF01701479] [PMID: 7790611]
[53]
Cronin D, Kaliaperumal C, Kumar R, Kaar G. Dyskalaemia following diffuse axonal injury: Case report and review of the literature. BMJ Case Rep 2012; 2012(oct09 1): bcr0120125654.
[http://dx.doi.org/10.1136/bcr-01-2012-5654] [PMID: 23060370]
[54]
Wiesel O, Szold O, Bentov I, Sorkin P, Nimrod A, Biderman P. Dyskalemia following head trauma: Case report and review of the literature. J Trauma 2009; 67(5): E149-51.
[http://dx.doi.org/10.1097/TA.0b013e3181622597] [PMID: 19901640]
[55]
Polderman KH, Peerdeman SM, Girbes ARJ. Hypophosphatemia and hypomagnesemia induced by cooling in patients with severe head injury. J Neurosurg 2001; 94(5): 697-705.
[http://dx.doi.org/10.3171/jns.2001.94.5.0697] [PMID: 11354399]
[56]
Zydlewski AW, Hasbargen JA. Hypothermia-induced hypokalemia. Mil Med 1998; 163(10): 719-21.
[http://dx.doi.org/10.1093/milmed/163.10.719] [PMID: 9795553]
[57]
Yoshida H, Reeve W, Mansoor AM. Hypothermia-induced hypokalemia. Am J Med 2021; 134(5): e319-20.
[http://dx.doi.org/10.1016/j.amjmed.2020.09.054] [PMID: 33176124]
[58]
Hifumi T, Kuroda Y, Kawakita K, et al. Plasma potassium concentration on admission correlates with neurologic outcome in traumatic brain injury patients treated with targeted temperature management: A post hoc analysis of a multicenter randomized controlled trial. World Neurosurg 2016; 94: 437-41.
[http://dx.doi.org/10.1016/j.wneu.2016.07.040] [PMID: 27450973]
[59]
Weber J. Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res 2004; 1(2): 151-71.
[http://dx.doi.org/10.2174/1567202043480134] [PMID: 16185191]
[60]
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4(7): 517-29.
[http://dx.doi.org/10.1038/nrm1155] [PMID: 12838335]
[61]
Wang Y, Liu Y, Lopez D, et al. Protection against TBI-induced neuronal death with post-treatment with a selective calpain-2 inhibitor in mice. J Neurotrauma 2018; 35(1): 105-17.
[http://dx.doi.org/10.1089/neu.2017.5024] [PMID: 28594313]
[62]
Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals 2013; 6(7): 788-812.
[http://dx.doi.org/10.3390/ph6070788] [PMID: 24276315]
[63]
Nayak R, Attry S, Ghosh S. Serum magnesium as a marker of neurological outcome in severe traumatic brain injury patients. Asian J Neurosurg 2018; 13(3): 685-8.
[http://dx.doi.org/10.4103/ajns.AJNS_232_16] [PMID: 30283527]
[64]
Sen AP, Gulati A. Use of magnesium in traumatic brain injury. Neurotherapeutics 2010; 7(1): 91-9.
[http://dx.doi.org/10.1016/j.nurt.2009.10.014] [PMID: 20129501]
[65]
Sperl A, Heller RA, Biglari B, et al. The role of magnesium in the secondary phase after traumatic spinal cord injury. a prospective clinical observer study. Antioxidants 2019; 8(11): 509.
[http://dx.doi.org/10.3390/antiox8110509] [PMID: 31653023]
[66]
Abdoli A, Rahimi-Bashar F, Torabian S, Sohrabi S, Makarchian HR. Efficacy of simultaneous administration of nimodipine, progesterone, and magnesium sulfate in patients with severe traumatic brain injury: A randomized controlled trial. Bull Emerg Trauma 2019; 7(2): 124-9.
[http://dx.doi.org/10.29252/beat-070206] [PMID: 31198800]
[67]
Zhang C, Zhao S, Zang Y, et al. Magnesium sulfate in combination with nimodipine for the treatment of subarachnoid hemorrhage: A randomized controlled clinical study. Neurol Res 2018; 40(4): 283-91.
[http://dx.doi.org/10.1080/01616412.2018.1426207] [PMID: 29540123]
[68]
Stippler M, Fischer MR, Puccio AM, et al. Serum and cerebrospinal fluid magnesium in severe traumatic brain injury outcome. J Neurotrauma 2007; 24(8): 1347-54.
[http://dx.doi.org/10.1089/neu.2007.0277] [PMID: 17711396]
[69]
Brophy GM, Bell R, Claassen J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17(1): 3-23.
[http://dx.doi.org/10.1007/s12028-012-9695-z] [PMID: 22528274]
[70]
Sánchez S, Rincon F. Status epilepticus: Epidemiology and public health needs. J Clin Med 2016; 5(8): 71.
[http://dx.doi.org/10.3390/jcm5080071] [PMID: 27537921]
[71]
Hesdorffer DC, Logroscino G, Cascino GD, Hauser WA. Recurrence of afebrile status epilepticus in a population-based study in Rochester, Minnesota. Neurology 2007; 69(1): 73-8.
[http://dx.doi.org/10.1212/01.wnl.0000265056.31752.ff] [PMID: 17606884]
[72]
Betjemann JP, Lowenstein DH. Status epilepticus in adults. Lancet Neurol 2015; 14(6): 615-24.
[http://dx.doi.org/10.1016/S1474-4422(15)00042-3] [PMID: 25908090]
[73]
Chang AK, Shinnar S. Nonconvulsive status epilepticus. Emerg Med Clin North Am 2011; 29(1): 65-72.
[http://dx.doi.org/10.1016/j.emc.2010.08.006] [PMID: 21109103]
[74]
Fountain NB. Status epilepticus: Risk factors and complications. Epilepsia 2000; 41(S2): S23-30.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb01521.x] [PMID: 10885737]
[75]
Trinka E, Höfler J, Zerbs A. Causes of status epilepticus. Epilepsia 2012; 53(S4): 127-38.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03622.x] [PMID: 22946730]
[76]
Nagarkatti N, Deshpande LS, DeLorenzo RJ. Development of the calcium plateau following status epilepticus: Role of calcium in epileptogenesis. Expert Rev Neurother 2009; 9(6): 813-24.
[http://dx.doi.org/10.1586/ern.09.21] [PMID: 19496685]
[77]
Pellock JM, Marmarou A, DeLorenzo R. Time to treatment in prolonged seizure episodes. Epilepsy Behav 2004; 5(2): 192-6.
[http://dx.doi.org/10.1016/j.yebeh.2003.12.012] [PMID: 15123020]
[78]
Farrar HC, Chande VT, Fitzpatrick DF, Shema SJ. Hyponatremia as the cause of seizures in infants: A retrospective analysis of incidence, severity, and clinical predictors. Ann Emerg Med 1995; 26(1): 42-8.
[http://dx.doi.org/10.1016/S0196-0644(95)70236-9] [PMID: 7793719]
[79]
Chapman MG, Smith M, Hirsch NP. Status epilepticus. Anaesthesia 2001; 56(7): 648-59.
[http://dx.doi.org/10.1046/j.1365-2044.2001.02115.x] [PMID: 11437765]
[80]
Gankam Kengne F, Decaux G. Hyponatremia and the Brain. Kidney Int Rep 2018; 3(1): 24-35.
[http://dx.doi.org/10.1016/j.ekir.2017.08.015] [PMID: 29340311]
[81]
Sterns RH. Treatment of Severe Hyponatremia. Clin J Am Soc Nephrol 2018; 13(4): 641-9.
[http://dx.doi.org/10.2215/CJN.10440917] [PMID: 29295830]
[82]
Halawa I, Andersson T, Tomson T. Hyponatremia and risk of seizures: A retrospective cross-sectional study. Epilepsia 2011; 52(2): no..
[http://dx.doi.org/10.1111/j.1528-1167.2010.02939.x] [PMID: 21314679]
[83]
Zifman E, Alehan F, Menascu S, et al. Clinical characterization of gastroenteritis-related seizures in children: Impact of fever and serum sodium levels. J Child Neurol 2011; 26(11): 1397-400.
[http://dx.doi.org/10.1177/0883073811409222] [PMID: 21693651]
[84]
Nardone R, Brigo F, Trinka E. Acute symptomatic seizures caused by electrolyte disturbances. J Clin Neurol 2016; 12(1): 21-33.
[http://dx.doi.org/10.3988/jcn.2016.12.1.21] [PMID: 26754778]
[85]
Lien YH, Shapiro JI, Chan L. Effects of hypernatremia on organic brain osmoles. J Clin Invest 1990; 85(5): 1427-35.
[http://dx.doi.org/10.1172/JCI114587] [PMID: 2332498]
[86]
Kim SW. Hypernatemia: Successful treatment. Electrolyte Blood Press 2006; 4(2): 66-71.
[http://dx.doi.org/10.5049/EBP.2006.4.2.66] [PMID: 24459489]
[87]
Han P, Trinidad BJ, Shi J. Hypocalcemia-induced seizure. ASN Neuro 2015; 7(2)
[http://dx.doi.org/10.1177/1759091415578050] [PMID: 25810356]
[88]
Kamate M, Sharma K, Patil V. Prevalence of hypocalcemia in seizures in infancy. Indian J Pediatr 2018; 85(4): 307-8.
[http://dx.doi.org/10.1007/s12098-017-2546-3] [PMID: 29247429]
[89]
Jamil U, Badshah M, Nomani AZ, Irshad M, Janjua J. Serum calcium and magnesium abnormalities in patients with status epilepticus: A single centre tertiary care experience. Pak J Neurological Sci 2015; 10(3): 6. Available from: https://ecommons.aku.edu/pjns/vol10/iss3/6
[90]
Teagarden DL, Meador KJ, Loring DW. Low vitamin D levels are common in patients with epilepsy. Epilepsy Res 2014; 108(8): 1352-6.
[http://dx.doi.org/10.1016/j.eplepsyres.2014.06.008] [PMID: 25060996]
[91]
Rice AC, DeLorenzo RJ. NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res 1998; 782(1-2): 240-7.
[http://dx.doi.org/10.1016/S0006-8993(97)01285-7] [PMID: 9519269]
[92]
Prasad A, Williamson JM, Bertram EH. Phenobarbital and MK-801, but not phenytoin, improve the long-term outcome of status epilepticus. Ann Neurol 2002; 51(2): 175-81.
[http://dx.doi.org/10.1002/ana.10085] [PMID: 11835373]
[93]
Phillips KF, Deshpande LS, DeLorenzo RJ. Hypothermia reduces mortality, prevents the calcium plateau, and is neuroprotective following status epilepticus in rats. Front Neurol 2018; 9: 438.
[http://dx.doi.org/10.3389/fneur.2018.00438] [PMID: 29942282]
[94]
Deshpande LS, DeLorenzo RJ. Novel therapeutics for treating organophosphate-induced status epilepticus co-morbidities, based on changes in calcium homeostasis. Neurobiol Dis 2020; 133: 104418.
[http://dx.doi.org/10.1016/j.nbd.2019.03.006] [PMID: 30872159]
[95]
Baek SJ, Byeon JH, Eun SH, Eun BL, Kim GH. Risk of low serum levels of ionized magnesium in children with febrile seizure. BMC Pediatr 2018; 18(1): 297.
[http://dx.doi.org/10.1186/s12887-018-1271-z] [PMID: 30193581]
[96]
Euser AG, Cipolla MJ. Magnesium sulfate for the treatment of eclampsia: A brief review. Stroke 2009; 40(4): 1169-75.
[http://dx.doi.org/10.1161/STROKEAHA.108.527788] [PMID: 19211496]
[97]
Visser NA, Braun KPJ, Leijten FSS, Nieuwenhuizen O, Wokke JHJ, Bergh WM. Magnesium treatment for patients with refractory status epilepticus due to POLG1-mutations. J Neurol 2011; 258(2): 218-22.
[http://dx.doi.org/10.1007/s00415-010-5721-2] [PMID: 20803213]
[98]
Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics—2019 update: A report from the american heart association. Circulation 2019; 139(10): e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[99]
Johnston SC, Rothwell PM, Nguyen-Huynh MN, et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet 2007; 369(9558): 283-92.
[http://dx.doi.org/10.1016/S0140-6736(07)60150-0] [PMID: 17258668]
[100]
Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the american heart association/american stroke association. Stroke 2013; 44(7): 2064-89.
[http://dx.doi.org/10.1161/STR.0b013e318296aeca] [PMID: 23652265]
[101]
Hopyan J, Ciarallo A, Dowlatshahi D, et al. Certainty of stroke diagnosis: Incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology 2010; 255(1): 142-53.
[http://dx.doi.org/10.1148/radiol.09091021] [PMID: 20308452]
[102]
von Kummer R, Allen KL, Holle R, et al. Acute stroke: Usefulness of early CT findings before thrombolytic therapy. Radiology 1997; 205(2): 327-33.
[http://dx.doi.org/10.1148/radiology.205.2.9356611] [PMID: 9356611]
[103]
Wintermark M, Rowley HA, Lev MH. Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging: pro CT. Radiology 2009; 251(3): 619-26.
[http://dx.doi.org/10.1148/radiol.2513081073] [PMID: 19474369]
[104]
Rabinstein AA. Update on treatment of acute ischemic stroke. Continuum 2020; 26(2): 268-86.
[http://dx.doi.org/10.1212/CON.0000000000000840] [PMID: 32224752]
[105]
Campbell BCV, Ma H, Ringleb PA, et al. Extending thrombolysis to 4•5–9 h and wake-up stroke using perfusion imaging: A systematic review and meta-analysis of individual patient data. Lancet 2019; 394(10193): 139-47.
[http://dx.doi.org/10.1016/S0140-6736(19)31053-0] [PMID: 31128925]
[106]
Burgos AM, Saver JL. Evidence that tenecteplase is noninferior to alteplase for acute ischemic stroke. Stroke 2019; 50(8): 2156-62.
[http://dx.doi.org/10.1161/STROKEAHA.119.025080] [PMID: 31318627]
[107]
Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387(10029): 1723-31.
[http://dx.doi.org/10.1016/S0140-6736(16)00163-X] [PMID: 26898852]
[108]
Jiang CT, Wu WF, Deng YH, Ge JW. Modulators of microglia activation and polarization in ischemic stroke (Review). Mol Med Rep 2020; 21(5): 2006-18.
[http://dx.doi.org/10.3892/mmr.2020.11003] [PMID: 32323760]
[109]
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation 2019; 16(1): 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[110]
Mansoor F, Kumar J, Kaur N, et al. Frequency of electrolyte imbalance in patients presenting with acute stroke. Cureus 2021; 13(9): e18307.
[http://dx.doi.org/10.7759/cureus.18307] [PMID: 34725581]
[111]
Rodrigues B, Staff I, Fortunato G, McCullough LD. Hyponatremia in the prognosis of acute ischemic stroke. J Stroke Cerebrovasc Dis 2014; 23(5): 850-4.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.011] [PMID: 23954607]
[112]
Wang A, Tian X, Gu H, et al. Electrolytes and clinical outcomes in patients with acute ischemic stroke or transient ischemic attack. Ann Transl Med 2021; 9(13): 1069.
[http://dx.doi.org/10.21037/atm-21-741] [PMID: 34422981]
[113]
Verbalis JG, Goldsmith SR, Greenberg A, et al. Diagnosis, evaluation, and treatment of hyponatremia: Expert panel recommendations. Am J Med 2013; 126(S10): S1-S42.
[http://dx.doi.org/10.1016/j.amjmed.2013.07.006] [PMID: 24074529]
[114]
Chen Z, Jia Q, Liu C. Association of hyponatremia and risk of short- and long-term mortality in patients with stroke: A systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2019; 28(6): 1674-83.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.02.021] [PMID: 30967305]
[115]
Liamis G, Barkas F, Megapanou E, et al. Hyponatremia in acute stroke patients: Pathophysiology, clinical significance, and management options. Eur Neurol 2019; 82(1-3): 32-40.
[http://dx.doi.org/10.1159/000504475] [PMID: 31722353]
[116]
Ayus JC, Achinger SG, Arieff A. Brain cell volume regulation in hyponatremia: Role of sex, age, vasopressin, and hypoxia. Am J Physiol Renal Physiol 2008; 295(3): F619-24.
[http://dx.doi.org/10.1152/ajprenal.00502.2007] [PMID: 18448591]
[117]
Judge C, O’Donnell MJ, Hankey GJ, et al. Urinary sodium and potassium, and risk of ischemic and hemorrhagic stroke (Interstroke): A case–control study. Am J Hypertens 2021; 34(4): 414-25.
[http://dx.doi.org/10.1093/ajh/hpaa176] [PMID: 33197265]
[118]
Mattsson N, Nielsen OW, Johnson L, et al. Prognostic impact of mild hypokalemia in terms of death and stroke in the general population—a prospective population study. Am J Med 2018; 131(3) : 318.e9-318.
[http://dx.doi.org/10.1016/j.amjmed.2017.09.026] [PMID: 29024624]
[119]
Gao F, Wang CT, Chen C, et al. Effect of hypokalemia on functional outcome at 3 months post-stroke among first-ever acute ischemic stroke patients. Med Sci Monit 2017; 23: 2825-32.
[http://dx.doi.org/10.12659/MSM.902464] [PMID: 28600907]
[120]
Gariballa SE, Robinson TG, Fotherby MD. Hypokalemia and potassium excretion in stroke patients. J Am Geriatr Soc 1997; 45(12): 1454-8.
[http://dx.doi.org/10.1111/j.1532-5415.1997.tb03195.x] [PMID: 9400554]
[121]
Lu Y, Ma X, Zhou X, Wang Y. The association between serum glucose to potassium ratio on admission and short-term mortality in ischemic stroke patients. Sci Rep 2022; 12(1): 8233.
[http://dx.doi.org/10.1038/s41598-022-12393-0] [PMID: 35581319]
[122]
Cheng CJ, Kuo E, Huang CL. Extracellular potassium homeostasis: Insights from hypokalemic periodic paralysis. Semin Nephrol 2013; 33(3): 237-47.
[http://dx.doi.org/10.1016/j.semnephrol.2013.04.004] [PMID: 23953801]
[123]
Rodan AR. Potassium: Friend or foe? Pediatr Nephrol 2017; 32(7): 1109-21.
[http://dx.doi.org/10.1007/s00467-016-3411-8] [PMID: 27194424]
[124]
Larsson SC, Orsini N, Wolk A. Dietary potassium intake and risk of stroke: A dose-response meta-analysis of prospective studies. Stroke 2011; 42(10): 2746-50.
[http://dx.doi.org/10.1161/STROKEAHA.111.622142] [PMID: 21799170]
[125]
Vinceti M, Filippini T, Crippa A, de Sesmaisons A, Wise LA, Orsini N. Meta-analysis of potassium intake and the risk of stroke. J Am Heart Assoc 2016; 5(10): e004210.
[http://dx.doi.org/10.1161/JAHA.116.004210] [PMID: 27792643]
[126]
Wang A, Cao S, Tian X, et al. Lower serum potassium levels at admission are associated with the risk of recurrent stroke in patients with acute ischemic stroke or transient ischemic attack. Cerebrovasc Dis 2022; 51(3): 304-12.
[http://dx.doi.org/10.1159/000520052] [PMID: 34856549]
[127]
Ainan A, Ahmed A, Mehsa H, Eisha H, Hanan E. Correlation of serum calcium with severity of acute ischemic stroke. J Pak Med Assoc 2021; 71(7): 1-8.
[http://dx.doi.org/10.47391/JPMA.04-593] [PMID: 34410266]
[128]
Dibaba DT, Xun P, Fly AD, et al. Calcium intake and serum calcium level in relation to the risk of ischemic stroke: Findings from the regards study. J Stroke 2019; 21(3): 312-23.
[http://dx.doi.org/10.5853/jos.2019.00542] [PMID: 31590475]
[129]
Xiong X, Zhang L, Li Y, et al. Calcium channel subunit α2δ-1 as a potential biomarker reflecting illness severity and neuroinflammation in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 2021; 30(8): 105874.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105874] [PMID: 34049015]
[130]
Liu L, Kearns KN, Eli I, et al. Microglial calcium waves during the hyperacute phase of ischemic stroke. Stroke 2021; 52(1): 274-83.
[http://dx.doi.org/10.1161/STROKEAHA.120.032766] [PMID: 33161850]
[131]
Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): Suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 2003; 23(11): 4410-9.
[http://dx.doi.org/10.1523/JNEUROSCI.23-11-04410.2003] [PMID: 12805281]
[132]
Färber K, Kettenmann H. Functional role of calcium signals for microglial function. Glia 2006; 54(7): 656-65.
[http://dx.doi.org/10.1002/glia.20412] [PMID: 17006894]
[133]
Zhang J, Liu J, Li D, Zhang C, Liu M. Calcium antagonists for acute ischemic stroke. Cochrane Libr 2019; 2019(2): CD001928.
[http://dx.doi.org/10.1002/14651858.CD001928.pub3] [PMID: 30758052]
[134]
Cheng Z, Huang X, Muse FM, et al. Low serum magnesium levels are associated with hemorrhagic transformation after thrombolysis in acute ischemic stroke. Front Neurol 2020; 11: 962.
[http://dx.doi.org/10.3389/fneur.2020.00962] [PMID: 32982953]
[135]
Pan WH, Lai YH, Yeh WT, et al. Intake of potassium- and magnesium-enriched salt improves functional outcome after stroke: A randomized, multicenter, double-blind controlled trial. Am J Clin Nutr 2017; 106(5): ajcn148536.
[http://dx.doi.org/10.3945/ajcn.116.148536] [PMID: 28877896]
[136]
Avgerinos KI, Chatzisotiriou A, Haidich AB, Tsapas A, Lioutas VA. Intravenous magnesium sulfate in acute stroke. Stroke 2019; 50(4): 931-8.
[http://dx.doi.org/10.1161/STROKEAHA.118.021916] [PMID: 30852968]
[137]
van den Bergh WM, Zuur JK, Kamerling NA, et al. Role of magnesium in the reduction of ischemic depolarization and lesion volume after experimental subarachnoid hemorrhage. J Neurosurg 2002; 97(2): 416-22.
[http://dx.doi.org/10.3171/jns.2002.97.2.0416] [PMID: 12186471]
[138]
Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984; 307(5950): 462-5.
[http://dx.doi.org/10.1038/307462a0] [PMID: 6320006]
[139]
Fields RD. Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 2011; 22(2): 214-9.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.009] [PMID: 21320624]
[140]
Kemp PA, Gardiner SM, Bennett T, Rubin PC. Magnesium sulphate reverses the carotid vasoconstriction caused by endothelin-I, angiotensin II and neuropeptide-Y, but not that caused by NG-nitro-L-arginine methyl ester, in conscious rats. Clin Sci 1993; 85(2): 175-81.
[http://dx.doi.org/10.1042/cs0850175] [PMID: 8403787]
[141]
Torregrosa G, Perales AJ, Salom JB, Miranda FJ, Barberá MD, Alborch E. Different effects of Mg2+ on endothelin-1- and 5-hydroxytryptamine-elicited responses in goat cerebrovascular bed. J Cardiovasc Pharmacol 1994; 23(6): 1004-10.
[http://dx.doi.org/10.1097/00005344-199406000-00020] [PMID: 7523773]
[142]
Zhu J, Choi WS, McCoy JG, et al. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg2⁺ binding to the MIDAS. Sci Transl Med 2012; 4(125): 125ra32.
[http://dx.doi.org/10.1126/scitranslmed.3003576] [PMID: 22422993]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy